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Mice with null mutations in specific Golgi glycosyltrans-
ferases show evidence of glycan compensation where
missing carbohydrate epitopes are found on biosyntheti-
cally related structures. Repetitive saccharide sequences
within the larger glycan structures are functional epitopes
recognized by animal lectins. These studies provide the
first in vivo support for the existence of a feedback system
that maintains and regulates glycan epitope density in
cells. Receptor regulation by lectin–glycan interactions
and the Golgi provides a mechanism for the adaptation of
cell surface receptors and solute transporters in response
to environmental cues and intracellular signaling. We sug-
gest that other posttranslational modification systems
might have similar conditional features regulated by den-
sity-dependent ligand–epitope interactions. Molecular
& Cellular Proteomics 12: 10.1074/mcp.R112.026989, 913–
920, 2013.

Cells must integrate multiple inputs (i.e. metabolites, trophic
factors, pathogens) in order to maintain systemic control un-
der a range of conditions. It is well established that many of
these adaptive mechanisms involve posttranslational modifi-
cations (PTMs)1 of proteins such as phosphorylation, acyla-
tion, methylation, glycosylation, and others. The modifying
enzymes recognize short consensus sequences in target pro-
teins and a high energy donor substrate. The latter are me-
tabolites, and their concentrations can also regulate PTMs (1).
PTMs can exert conformation and allosteric effects on a tar-
get protein (2). However, PTMs also create binding sites
(epitopes) for other proteins, thereby recruiting signaling com-

plexes to biologically relevant regions in the cell. Most cyto-
kine receptors and solute transporters are co-translationally
N-glycosylated at NXS/T (X � P) sites in the endoplasmic
reticulum. Some of the Asn-(N-)glycans bind chaperones that
promote protein folding, secretion, or degradation of mis-
folded proteins (3). On the cell surface, N-glycans can serve
as ligands for animal lectins (galectin, siglec, and C-type
lectins) (4) that regulate receptor clustering and dynamics,
while phosphorylation at multiple PTM sites on the cytoplas-
mic tails of transmembrane receptors or transporters recruits
adaptor complexes (5). Adaptor proteins are often structured
as tandem domains that bind different and overlapping sets of
PTMs, in which multivalency is a critical feature (6). Multivalent
systems display partial redundancy that might buffer the mu-
tational loss and gain of sites, thereby promoting the evolution
of PTM networks.

Membrane microdomains such as ganglioside-rich lipid
rafts, coated pits, cell junctions, and focal adhesions are
dynamic and regulate the activity of receptors including gly-
coproteins. Here we describe lectin binding to transmem-
brane glycoproteins, which forms dynamic cross-linked “lat-
tices” (7, 8). Lectin–glycan interactions occur widely and have
been implicated in many systemic processes in mammals (9),
but the molecular mechanisms remain poorly understood. We
suggest that glycan epitope density is highly regulated and
has a global impact on lectin-mediated regulation of receptors
and transporters at the cell surface (10–12) (Fig. 1). In these
important features, glycosylation can serve as a model for
density-dependent ligand control of PTMs in general.

Glycan Density, Affinity Enhancement, and Cross-linking—
Glycans on the surface of cells are present as multivalent
epitopes at densities that are compatible with lectin binding
and the formation of cross-linked lattices. The valency of
epitopes on glycoprotein receptors depends on the structure
of the N- and O-glycans, as well as on the number of glycan
sites per molecule, and it controls the affinity for lectins and
cross-linking dynamics (13, 14). The affinity (avidity) of lectins
for multivalent glycan epitopes depends, in part, on the three-
dimensional arrangement of the lectin binding sites. Lectins
with multiple binding sites aligned to a matching array of
glycan epitopes show large affinity enhancements as a result
of simultaneous binding. For example, the binding of the
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asialoglycoprotein receptor to the N-acetyllactosamine (ga-
lactose-�1, 4GlcNAc�, or LacNAc) branches of a triantennary
N-glycan is �106-fold greater in affinity relative to monovalent
LacNAc (15). Man-binding protein, a C-type lectin in the col-
lectin family that functions in innate immunity, possesses
multiple triple helical collagen-like arms and terminal trimeric
carbohydrate-binding subunits with aligned binding sites. As
a consequence, Man-binding lectin exhibits high affinity and
specificity for multiple Man residues on the surfaces of patho-
gens (16).

Plant and animal lectins with binding sites on subunits
oriented in different directions can also bind with high affinity
to multivalent carbohydrates and glycoproteins. In such a

case, lectin affinity increases with the number (valence) of
glycan epitopes in a molecule or on a surface (glycan density)
(17). An example is the binding of galectins, a family of �-ga-
lactose specific animal lectins, to asialofetuin, a globular gly-
coprotein possessing three N-linked triantennary chains and
nine terminal LacNAc residues, which results in 50- to 80-fold
enhanced affinity relative to monovalent LacNAc (18). A dra-
matic example is binding of the GalNAc-specific soybean
agglutinin to a linear glycoprotein (mucin) possessing �2300
GalNAc residues, which results in a �106-fold enhanced af-
finity relative to monovalent GalNAc (19). The high affinity of
the mucin is due to the large number of its glycans. The
binding of lectins to glycan arrays also shows increasing

FIG. 1. Multivalency and conditional regulation at the cell surface. At the cell surface, lectins bind glycan epitopes and cross-link
glycoprotein receptors, altering receptor dynamics and interactions, such as reducing loss to endocytosis. Oligosaccharyltransferase recog-
nizes NXS/T motifs in newly synthesized proteins in the endoplasmic reticulum (ER) and transfers the pre-assembled glycan from
Glc3Man9GlcNAc2-pp-dolichol to the Asn. The chaperones calnexin and calreticulin bind N-glycans and promote protein folding. Glycoproteins
traffic through the Golgi, where exposure to branching and extension enzymes in the medial- and trans-Golgi is dependent on multiple factors,
including protein synthesis rates and the sugar-nucleotide supply. The reaction kinetics for the branching enzymes Mgat1, Mgat2, Mgat4, and
Mgat5 differ as indicated by the Kms for UDP-GlcNAc “D” and glycoprotein acceptor “A.” The enzyme kinetics are tuned for pathway
ultrasensitivity to UDP-GlcNAc and sensitivity to the concentration of glycoprotein substrates passing through the Golgi (protein synthesis
rates). The epitopes are completed in the trans-Golgi, where efficient substitution with galactose generates the LacNAc epitope. Further
extension with fucose, sialic acid, and LacNAc can modify affinities for galectins and generate epitopes for other lectins.
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affinity with increasing glycan epitope density (20). Affinity
enhancement in these multivalent systems is believed to be
primarily due to slower effective off-rates, although increases
in on-rates may occur (20). In essence, a bound lectin is likely
to rebind to proximate free glycan epitopes rather than dif-
fuse away, even if the orientations of the binding epitopes are
random (21, 22). Thus, lectin affinities are sensitive to the
number of glycan epitopes on glycoconjugates and to the
density of glycan epitopes on surfaces including glycan arrays
and cells (14).

Lectins with multiple binding sites can also form two- and
three-dimensional cross-linked complexes (lattices) with mul-
tivalent glycans (23). For example, the Man-specific lectin
concanavalin A, in the presence of a mixture of two multiva-
lent carbohydrates that differ in the number of Man epitopes,
can bind and separate into distinct cross-linked lattices with
each glycan (24). The structural basis for the formation of
separate (homogeneous) cross-linked lattices has been
shown to be crystal-packing interactions (25, 26). Lectin-
mediated cross-linking interactions regulate the levels and
activities of glycoprotein receptors and transporters on cells,
as discussed below.

In vitro studies suggest that galectin-1, a symmetrical
dimer, can form homogeneous lattices with asialofetuin (27).
In vivo experiments by Baum and coworkers demonstrated
that exogenous galectin-1 added to human T cells segregates
CD43 and CD45 into different membrane microdomains and
leads to apoptosis (28). The endogenous galectin-1 lattice on
resting T cells partitions CD45 and T cell receptor (TCR)
differentially and interacts with actin microfilaments on op-
posing sides of the plasma membrane to regulate basal
growth signaling and the thresholds of T cell receptor activa-

tion (29). These findings are consistent with galectin-1 forming
homogeneous lattices with glycoproteins in vivo. In contrast,
in vitro studies indicate that galectin-3 is a mixture of mono-
mers and pentamers in solution, and that the latter form
disorganized heterogeneous lattices with multivalent carbo-
hydrates (30). For example, galectin-3 binds but does not
selectively aggregate CD45 on the surface of apoptosis-sen-
sitive T cells, as does galectin-1 (31). In addition, galectin-3
cross-links different cytokine receptors on the surface of cells,
slowing their mobility and loss to endosomes and enhancing
cellular sensitivity to ligand-dependent signaling (32, 33). The
galectin-3 lattice also regulates the dynamics of receptors in
a context-dependent manner. For example, galectin-3 bind-
ing reduces GFP-tagged EGF receptor mobility in the lipid
bilayer while preserving sensitivity to EGF, but it increases
mobility in focal adhesions and promotes PI3K signaling (33,
34) (Table I). The bi-, tri-, and tetraantennary N-glycans dis-
play increasing LacNAc epitope densities and affinity for ga-
lectins, respectively (35). However, galectin-1 and -3 differ in
their tolerance of additional modification to the LacNAc
epitope, which might contribute to their distinct cross-linking
activities and biological properties (36).

Epitope Density Maintenance in N-glycans—Lectins bind to
epitopes within the larger glycan structure, suggesting that
glycans might be grouped into equivalence classes by
epitope number and used to compute the affinity of glycopro-
teins for lectins. Lau et al. (10) developed a model for the
regulation of cytokine receptors at the surface of mammary
tumor cells based on epitope density and galectin-3 binding
(Fig 2A). Microheterogeneity at each NXS/T site results in a
distribution of glycoforms for each glycoprotein receptor, and
the various combinations can be grouped by affinity for ga-

TABLE I
Interactions with lectins at the cell surface lattice

Receptor and
transporter

Glycans (gene) Lectins Dynamics ina Phenotype Reference

T cell receptor N-(Mgat5)b Gal-3 Immune synapse (�) Autoimmunity (8)
CTLA-4 N-(Mgat5)b Gal-3 Membrane-endo Autoimmunity (10, 52)
CD45 phosphatase N- and O- Gal-1, -3 Membrane (� and �) T cell activation (29, 64)
K� channel Kv1.3 N-branchingb ND Membrane-endo Many cells (65)
EGFR and TGF-� RII N-(Mgat5)b Gal-3 Membrane-endo (�) Cancer, stem cell (32)
VEGF receptor N-(Mgat5) Gal-3 Membrane-endo Neovascularization (66)
Integrins N-(Mgat5) Gal-3, -8, -9 Focal adhesion (�) Cancer, T cells (34, 67, 68)
IL3R� N-(Mgat5)b ND Membrane-endo Growth control (69)
N-cadherin N-(Mgat5) Gal-3 Cell junctions (�) Cancer invasion (60)
TRPV5, Ca2� channel N- Gal-1 Membrane Aging (70)
GLUT2/SLC2A2 N-(Mgat4a) Gal-9 Membrane-endo Diabetes (71)
GLUT4/SLC2A4 N-b ND Membrane-endo ND (10)
B cell receptor N-(ST6Gal1) Siglec2 Membrane, rafts, endo B cell activation (72)

Gal, galactose; ND, no data.
a In the plasma membrane, the galectin lattice opposes receptor loss from the surface to endocytosis. Association with the galectin lattice

decreases receptor dynamics in the membrane (�) but can increase dynamics in stable microdomains as indicated (�), as measured by
fluorescence recovery after photobleaching (FRAP).

b Sensitivity to hexosamine (UDP-GlcNAc) regulation of N-glycan branching has been tested. The gene mutation used to show lattice
dependency is presented in parentheses.
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lectin-3 and treated as biologically equivalent (10). Experi-
mental data with cell lines fit this model well, as described
below and in Table I. Support for the model as a homeostatic
mechanism in vivo comes from recent structural analysis of
glycans in mice with mutations in specific Golgi enzymes (37,
38).

Takamatsu et al. (37) generated N-acetylglucosaminyltrans-
ferase IV (GnT-IV) compound mutant mice, resulting in unde-
tectable levels of GlcNAc�1–4 branching activity and N-gly-
cans in mouse tissues. N-acetylglucosaminyltransferases I, II,
IVa/IVb, and V (encoded by Mgat1, Mgat2, Mgat4a/4b, and
Mgat5) each substitute the trimannosyl core at a specific

position in a sequential manner. GnT-IVa and GnT-IVb are
catalytically redundant and initiate the synthesis of the
GlcNAc�1–4 branch on the core Man�1–3 arm. Loss of the
branch decreases LacNAc epitopes per N-glycan and, conse-
quently, glycoprotein affinities for galectins. Mgat4a expression
is prominent in pancreatic and gastrointestinal tissues, whereas
Mgat4b is widely expressed in most tissues. Mgat4a mutant
mice develop type 2 diabetes with suppressed insulin secre-
tion by �-cells due to the aberrant N-glycans on GLUT2,
which reduce binding and surface retention by galectin-9.
Mgat4b-deficient mice show compensation in the form of a
marked up-regulation of Mgat4a expression in organs corre-
sponding to a near-normal distribution of N-glycans. As such,
the phenotype of Mgat4b-deficient mice is relatively normal,
with modest decreases in coagulation factors and prolonged
bleeding time. Although the Mgat4a/4b double deficiency
eliminated expression of the GlcNAc�1–4 branch, increased
LacNAc epitope was seen as poly-LacNAc in compensating
amounts on the remaining branches of the N-linked glycans
(37).

Mgat4a/4b double-deficient mice displayed elevated rest-
ing glucose levels, similar to the Mgat4a mice, suggesting that
compensation is insufficient. Although epitope compensation
within the same classes of glycans and glycoproteins has
been shown to maintain the residency of receptors at the cell
surface in cell culture (10), homeostasis in vivo might fail at
another level of regulation. In this regard, the mechanism of
compensation in the double null mice was an up-regulation of
multiple enzymes that act downstream of GnT-IV branching to
generate poly-LacNAc and Lex epitopes, whereas compen-
sation in Mgat4a was an up-regulation of Mgat4b encoding
the same activity. Although these compensating enzymes are
increased in the double null mice, they have different promot-
ers and are not likely to mimic the normal epitope density and
wild-type phenotype. In this regard, the Mgat4a gene is sen-
sitive to metabolic regulation through the transcription factors
FOXA2 and HIF1A (39). However, epitope density compensa-
tion in the double null mutant mice precludes a comparison
with a truly epitope-deficient background, with which a more
severe phenotype might be expected.

Mouse Mgat4a and Mgat4b segregate independently, and
offspring from Mgat4a/Mgat4b heterozygote breeding shows
reduced survival of Mgat4b�/� pups with one or two mutant
Mgat4a alleles (37). Thus functional compensation, as mea-
sured in terms of pup survival, is less effective in double
mutant embryos than Mgat4a alone, where GlcNAc�1–4
branching is rescued via up-regulation of Mgat4b expression.
This suggests a partially penetrant phenotype (stochastic) in
which branch-extending activities and epitope densities are
suboptimal in Mgat4a/Mgat4b mice. However, these studies
reveal systemic feedback that appears to maintain epitope
density by means of compensation on related structures,
which, in turn, should support galectin lattices.

FIG. 2. A, Ordinary Differential Equation (ODE) computational
model of receptor regulation by the galectin lattice. N-glycosyla-
tion site (NXS/T) multiplicity interacts with the Golgi branching path-
way to regulate glycoprotein affinities for the galectin lattice. Simula-
tions of fractional change in surface receptors are shown as a function
of the site number (n) and the UDP-GlcNAc supply to N-glycan
branching (x-axis). Experimental validation of the model for EGFR (n �
8 occupied sites) and T�RI/II (n � 3) can be found in Ref. 10. B,
epitope density and differential regulation. This is a more general
model of opposing signaling pathways with high and low site PTM
densities that allows differential regulation by the same PTM sub-
strate and modifying enzymes. C, multidimensional regulatory space.
Interacting pathways can be controlled by low affinity/specificity,
multivalent, and density-dependent PTM systems. The curves indi-
cate possible trajectories for growth signaling. Each is dependent on
the site number in protein sequences (red or blue), where interaction
with an opposing pathway (not shown) results in the specific trajec-
tory. Specificity arises from low-affinity and ubiquitous PTM epitopes,
based on conditional inputs such as metabolism, stress, and devel-
opmental cues.
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Epitope Compensation in O-linked Glycans—Following the
report by Takamatsu et al. (37), Ismail et al. (38) reported on
mice deficient in core 2 �1,6-N-acetylglucosaminyltrans-
ferase (C2GnT), a key component in the O-glycan biosynthetic
pathway encoded by three genes, C2GnT1, C2GnT2, and
C2GnT3. Core 2 branched O-glycans are also preferentially
modified by core 4- and I-GnT enzymes. The triple knockout
mice lacked the immediate product and downstream core 4-
and I-branched O-glycans. Similar to the Mgat4 example
above, the missing O-linked branch is observed as small
quantities of LacNAc epitope on the remaining linear arm of
the O-linked glycans. This compensation was observed in the
gastrointestinal tract but not in the kidneys, unlike in the
GnT-IVa/IVb double-deficient mice, where N-glycan compen-
sation was observed in all organs examined, including the
kidneys. The apparent absence of O-glycan epitope compen-
sation in the kidneys indicates that O-glycan compensation in
the gastrointestinal tract and, by extension, N-glycan com-
pensation are active processes that are not due to random
biosynthetic processing. Surprisingly, O-linked mannosyl gly-
cans were up-regulated in the triple knockout mice. This is an
independent pathway that generates O-Man-GlcNAc-galac-
tose-sialic acid at different sites on proteoglycans in the CNS
and on �-dystroglycan in the muscle. Congenital muscular
dystrophies are associated with mutations in this O-linked
mannosyl pathway (40). The authors suggest that the metab-
olite UDP-GlcNAc might be the common factor in cases when
compensation in the triple mutant results in up-regulation or
increased flux through the hexosamine pathway as a com-
pensatory mechanism. C2GnT triple knockout blocks the nor-
mal flux of UDP-GlcNAc into branched O-glycans, which
might increase GnT activities in other pathways. The single
C2GnT mutations have mild phenotypes, and synthetic phe-
notypes were not reported for the triple null mice. Nonethe-
less, evidence of epitope compensation in these mice indi-
cates a wider generalization of the phenomena.

Glycan Epitope Maintenance in Brain Gangliosides—GM3
is the most widely distributed ganglioside in tissues and
serves as a precursor for the biosynthesis of more complex
gangliosides. In CNS axons, GM3 is converted in separate
pathways to GD1a and GT1b, which are ligands for the re-
ceptor myelin associated glycoprotein (MAG). MAG/Siglec4
is a member of the Siglec family of sialic acid binding lectins
(41), which bind GD1a and GT1b, stabilizing myelin–axon
interactions (42). MAG/Siglec4-deficient mice show early
neuronal cell death with aging, a phenotype associated with
sialic acid binding activity (43). Surprisingly, mice deficient
in GM3 synthase (CMP-NeuAc:lactosylceramide �2,3-sia-
lytransferase) are grossly normal except for a heightened
sensitivity to insulin in skeletal muscle (44). GM3 is absent, but
a biosynthetic pathway normally absent in the CNS is acti-
vated in the mutant mice and produces GM1b and GD1�,
which are also ligands of MAG/Siglec4 (45). Gangliosides are
concentrated in lipid rafts where MAG/siglec4 might regulate

signaling receptors, a possibility that is currently an active
area of research (46). Nonetheless, elimination of the normal
ganglioside ligands GD1a and GT1b in CNS axons of mutant
mice induces feedback that stimulates an alternative pathway
to MAG/Siglec4 ligands. As in the examples above, this sug-
gests feedback from the cell surface to stimulate the com-
pensation pathway to GM1b and GD1�. Beyond their being a
backup system for a GM3-deficient CNS, we can speculate
that the two pathways have overlapping functions and regu-
lation in wild-type mice, again suggesting that glycan home-
ostasis is important. Axon regrowth following injury is en-
hanced by the disruption of MAG–sialic acid binding,
consistent with a role in developmental signaling (42, 47).

Metabolic Regulation of Epitope Density on Receptors—
Galectin lattice formation at the cell surface is highly depen-
dent on N-glycan branching and the LacNAc epitope density
on transmembrane glycoproteins (48). Therefore, the expres-
sion and biochemical properties of the Golgi enzyme have a
considerable effect on the epitope density. Many of the Golgi
enzymes function at subsaturating concentrations of a sub-
strate, either the acceptor N-glycans on glycoproteins or do-
nor sugar-nucleotide (Km values in Fig. 1). This results in a
heterogeneous distribution of LacNAc epitopes at the various
NXS/T sites, consistent with a model dependent on epitope
density, rather than targeted occupancy at specific sites in
glycoproteins. We developed a computational model of
epitope-density-dependent regulation of receptor residency
at the cell surface via binding to galectin-3 (10). The Golgi
output of remodeled N-glycans was computed as a function
of increasing hexosamine pathway activity (i.e. UDP-GlcNAc
concentrations), and the probabilistic glycoform distributions
were computed for EGF receptors (EGFR) and TGF-� recep-
tors (T�R), and then surface receptor levels due to association
with the lattice and the capacity for ligand-dependent signal-
ing (10). T�RI/II has only three N-glycans and is therefore
more dependent on the UDP-GlcNAc supply and branching to
generate affinity for galectin-3 than EGFR, with eight N-gly-
cans (Fig. 2A). In other words, more epitopes per glycan are
required for T�RI/II, whereas with EGFR, a similar affinity for
galectin-3 can be attained with more N-glycans (NXS/T sites)
and less branching. Epitope equivalence or compensation is a
critical feature of receptor regulation by the lattice (Table I).

Experimental data from cell lines and human autoimmune
disease support the lattice model in which the N-glycan num-
ber and the Golgi pathways co-regulate receptor titration into
the galectin lattice (10) (Fig. 2C). These intriguing dynamics
are dependent on a conserved biochemical feature of the
N-glycan branching pathway, namely, multi-step ultrasensi-
tivity to UDP-GlcNAc. Multi-step ultrasensitivity arises from
the decreasing affinities of Mgat1, -2, -4, and -5 enzymes for
UDP-GlcNAc in sequential order of their action. Mass spec-
trometry analysis indicates that bi-, tri-, and tetraantennary
N-glycans increase with intracellular UDP-GlcNAc concentra-
tions (10). In Mgat5-deficient cells, the LacNAc density is
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reduced but can be restored via GlcNAc supplementation to
UDP-GlcNAc, which generates more bi- and triantennary gly-
cans in the absence of tetraantennary (Mgat5) structures.
Titration of UDP-GlcNAc fully restores the ordered associa-
tion of EGFR and T�R into the galectin-3 lattice, growth/
proliferation, and then feedback inhibition via TGF-�/Smad
signaling. A single stimulus, UDP-GlcNAc, promotes a
Michaelis–Menten and a sigmoidal response for high and low
multiplicity receptors, respectively, and the intervening “de-
lay” allows growth signaling to prevail before the onset of
negative regulation by the low multiplicity receptors (Fig. 2B).
Consistent with this model, growth receptor kinases display
roughly five times as many N-glycosylation sites (NXS/T),
higher site densities, and longer extracellular domains than
receptors that mediate differentiation and arrest (10). The
evolution rate of glycoproteins is accelerated relative to that of
proteins inside the cell (49). Moreover, the evolution of NXS/T
multiplicity in receptors suggests that the delay in opposing
signaling pathways has increased in humans since a common
ancestor with mice.

The T cell co-receptors CD28 (n � 5 sites in humans, 4 in
mice) and CTLA-4 (n � 2 in humans, 3 in mice) show a similar
order of titration into the lattice in response to UDP-GlcNAc.
UDP-GlcNAc levels, N-glycan branching, and poly-LacNAc
increase with T cell activation (50, 51). CD28 stimulates
growth, and as UDP-GlcNAc concentrations increase, surface
CTLA-4 is recruited to the lattice, reaching a critical level that
suppresses T cell proliferation (10, 52). A human polymor-
phism in CTLA-4 (49A/G, rs231775) (53) reduces N-glycan
occupancy at one of the two NXS/T sites and increases the
risk of autoimmune disease (54). A hyperactive variant of
MGAT1 (IVAVT-T) suppresses branching, consistent with the
ultrasensitive model of the branching pathway described
above (52). Co-inheritance of MGAT1 (IVAVT-T) and CTLA-4
(49A/G, rs231775) additively weaken the affinity of CTLA-4 for
the lattice and increase the risk of autoimmune disease (mul-
tiple sclerosis) (52). The effect of these alleles on T cell hyper-
sensitivity is reversed by supplementation with GlcNAc, which
is converted to UDP-GlcNAc and increases N-glycan branch-
ing. The MGAT5 (rs3814022, rs4953911) allele (55) has also
been linked to multiple sclerosis severity. Moreover, IL2RA*T
(rs2104286) and IL7RA*C (rs6897932) variants also drive T cell
autoimmunity through N-glycan branching (52). Vitamin D3

deficiency, another well-documented risk factor, suppresses
branching and T cell activation by up-regulating the expres-
sion of MGAT1. Moreover, oral GlcNAc treatment prevents
spontaneous autoimmune diabetes (56) and inhibits experi-
mental autoimmune encephalomyelitis in mice when treat-
ment is initiated after disease onset (57). In the latter study,
oral GlcNAc increased N-glycan branching and suppressed
disease by inhibiting Th1 and Th17 T-helper cell responses.
The “hexosamine branching lattice” provides a conceptual
basis for the regulation of glycoprotein dynamics at the cell
surface based on epitope density and allows for mechanisms

of compensation and remarkable plasticity (11, 58) (see Figs.
2A–2C and Table I).

CONCLUSIONS

To summarize, glycan epitope compensation has been ob-
served in mouse tissues for N- and O-linked glycans and brain
gangliosides, which serves as strong evidence of systemic
feedback. Density can be maintained through the gene ex-
pression of biosynthetic enzymes of the Golgi and the supply
of metabolites to the hexosamine pathways. Changes in the
lectin–glycan lattice-dependent regulation of receptors can
act as an environmental sensor and result in altered signal-
ing to metabolism and Golgi enzyme expression and thus
epitope compensation. Importantly, different arrangements
of epitopes in N-glycans produce distinct glycoform distribu-
tions but maintain comparable affinities for galectins. There-
fore, epitope equivalence might allow the cell surface to adapt
to various environmental inputs and stresses. Adaptation
might involve the shifting of epitopes between different glycan
classes. For example, gangliosides are concentrated in lipid
rafts (59, 60) and might help recruit glycoproteins into lattices
in rafts or, alternatively, compete for galectin that would oth-
erwise bind N-glycans on receptors outside of rafts.

The ultrasensitive response of the branching pathway to
UDP-GlcNAc, and by extension metabolism, is embedded in
the kinetics and gene expression properties of MGAT en-
zymes (10, 11). More generally, ultrasensitive responses pro-
vide a means of decisive all-or-nothing transitions in the cell
cycle and development, where multivalency often plays a role
as well. A small shift in PTM epitope density can promote
decisive transitions in molecular complex formation and sig-
naling (61). These effects are present in other classes of
PTMs, such as phosphorylation (61). For example, the S.
cerevisiae cyclin dependent kinase (CDK) inhibitor Sic1 has
nine sites in unstructured regions of the protein that are pro-
gressively phosphorylated as the G1 phase progresses (21,
22). Six phosphorylated sites are required for a threshold level
of Ccd4 binding to Sic1, which triggers its ubiquitination and
proteolysis, thereby relieving the inhibition of CDK and trig-
gering the G1/S transition in a switch-like or ultrasensitive
response. This ensures an all-or-nothing decisive start to DNA
replication. Ultrasensitive responses are seen widely in regu-
latory systems, and many depend on affinity enhancement via
conditional regulation through PTMs. Phosphorylated sites do
not undergo secondary modification of the phospho-amino
acids, but ubiquitinated sites can become polyubiquitin, gen-
erating multiple epitopes for ubiquitin-binding proteins, anal-
ogous to LacNAc units in branched N-glycans. For example,
anaphase-promoting complex ubiquitinates substrates that
are modified and degraded in a specific sequence that orders
cell cycle events. Anaphase-promoting complex catalyzes the
polyubiquitination of substrates with different relative proces-
sivity (62). Processive substrates obtain many ubiquitin chains
within a single anaphase-promoting complex binding event,
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whereas distributive substrates frequently dissociate between
substitutions (63). In a manner similar to that of N-glycan
epitopes in the regulation of receptors, the differential modi-
fication of proteins by a common donor can time events in the
cell cycle.

Lastly, PTMs such as phosphate, methyl, and acetyl groups
on peptides and glycan epitopes generally present modest
affinity to binding partners (17). Therefore, biological re-
sponses to the modification of PTM sites might depend on
epitope densities and multivalent binding interactions (11).
The encoded number of PTM sites in proteins, and their non-
or partially ordered occupancy, often generates a character-
istic ultrasensitive response to biologically important cues
(Fig. 2B). Therefore, specificity arises from low-affinity and
multiple PTM epitopes in target proteins and the threshold
number of modifications required in order to reach the epitope
density for binding partners. Many other factors affect the
target proteins differentially, such as the modifying enzymes
and substrate levels for modification and, ultimately, the ho-
meostatic opposing pathways (Fig. 2C).
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