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The Benefits of Using Genetic Information
to Design Prevention Trials

Youna Hu,1,2 Li Li,3 Margaret G. Ehm,3 Nan Bing,3 Kijoung Song,4 Matthew R. Nelson,3

Philippa J. Talmud,5 Aroon D. Hingorani,6 Meena Kumari,6 Mika Kivimäki,6 Chun-Fang Xu,7

Dawn M. Waterworth,4 John C. Whittaker,7 Gonçalo R. Abecasis,1 Cathie Spino,1

and Hyun Min Kang1,*

Clinical trials for preventative therapies are complex and costly endeavors focused on individuals likely to develop disease in a short time

frame, randomizing them to treatment groups, and following them over time. In such trials, statistical power is governed by the rate of

disease events in each group and cost is determined by randomization, treatment, and follow-up. Strategies that increase the rate of

disease events by enrolling individuals with high risk of disease can significantly reduce study size, duration, and cost. Comprehensive

study of common, complex diseases has resulted in a growing list of robustly associated geneticmarkers. Here, we evaluate the utility—in

terms of trial size, duration, and cost—of enriching prevention trial samples by combining clinical information with genetic risk scores

to identify individuals at greater risk of disease.We also describe a framework for utilizing genetic risk scores in these trials and evaluating

the associated cost and time savings. With type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI), and advanced age-

related macular degeneration (AMD) as examples, we illustrate the potential and limitations of using genetic data for prevention trial

design.We illustrate settings where incorporating genetic information could reduce trial cost or duration considerably, as well as settings

where potential savings are negligible. Results are strongly dependent on the genetic architecture of the disease, but we also show that

these benefits should increase as the list of robustly associated markers for each disease grows and as large samples of genotyped indi-

viduals become available.
Introduction

Designing a randomized clinical trial for disease prevention

is a complex and costly endeavor.1 A key step is to identify

individuals likely to develop the disease during the study.

The cost of a prevention trial strongly depends on the rate

of disease onset among participants: low rates of disease

onset require large sample sizes or long trial duration to

achieve adequate statistical power. Most primary preven-

tion trials thus apply ‘‘enrichment’’strategies to recruit indi-

viduals at high risk of disease onset.2–4 Such trial design

strategies also have ethical benefits because only at-risk

subjects are exposed topotential side effects of anovel inter-

vention. Enrichment designs can also beused inother types

of clinical trials (see Simon5 for examples).

Now genetic markers have been robustly associated

with many complex diseases; it is timely to explore

how genetic information, in conjunction with clinical

information, can be used in the design of prevention

trials.6 This question can be decomposed into two more

specific questions: first, how can we accurately predict

disease risk from genetic data; and second, how can we

use predicted genetic risks to design more efficient preven-

tion trials? The question of predicting genetic risk of

complex diseases has recently been explored in various

contexts.7–9
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Initial attempts to utilize genetic information in trial

design proposed using a small number of risk genotypes

as discrete inclusion criteria. Examples include using

BRCA1 (MIM 113705) and BRCA2 (MIM 600185) geno-

types in breast-cancer-prevention trials. Here, we explore

an extension of this concept that can incorporate

hundreds or thousands of robustly associated genetic

markers, via a quantitative ‘‘genetic risk score’’ aggregated

across markers.10 The cost and duration of a prevention

trial will depend on the prediction accuracy of the risk

score and the threshold used to select eligible subjects.

To evaluate the benefits and limitations of using genetic

risk-prediction models, we compare the cost and duration

of prevention trials in various scenarios, including trials

using only clinical information and trials also using

genetic information to identify high-risk subjects. To illus-

trate the issues, we consider current risk-prediction models

for four diseases: type 1 diabetes (T1D [MIM 222100]), type

2 diabetes (T2D [MIM 125853]), myocardial infarction

(MI [MIM 608446]), and age-related macular degeneration

(AMD [MIM 603075]). Through simulation, we show that

aggregate risk scores are expected to help reduce cost of

clinical trials, sometimes modestly (T2D, MI) and some-

times substantially (T1D, AMD). Reanalyzing existing

experimental data, we further evaluate our model in the

context of T2D and AMD. Finally, we evaluate the utility
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Table 1. A Summary of Genetic and Treatment Information for Four Disease Traits

Disease Trait T2D AMD T1D MI

Current Genetic Knowledge

Population prevalence 3.0%12 11.8%a,13 0.54%14 4.0%15

Sibling recurrence risk 3.516 2.217 13.714 3.215

Heritability in liability scaleb 0.60 0.68 0.86 0.71

No. known risk variants 2918 719 4120 1221

Range of odds ratios per allele 1.06–1.37 1.31–4.31 1.05–5.49 1.13–1.28

Heritability explained by known genetic risk variants 3%–9% 46%–59% 18%–29% 1%–5%

Example Prevention Trial

Treatment effect thiazoli-dinedione22 zinc þ antioxidants23 oral insulin24 statin4

Inclusion criteriac IGT/IFG R3 baseline AMD grade NAc NAc

Average annual rate of disease onset in control arm (conventional trial) 8.7% 4.4% 2.1% 2.5%

Average annual rate of disease onset in treatment arm (conventional trial) 3.9% 3.2% 1.0% 1.5%

Trial duration 3 years 5 years 4 years 5 years

Clinical screening costd $1,500 $1,500 $1,500 $1,500

Additional per-subject cost for genetic screening $100 $100 $100 $100

Trial cost per year per subject $6,000 $3,500 $12,000 $6,000

aAMD prevalence from individuals with age 80 years or older.
bHeritability is estimated from prevalence and sibling recurrence risk.13
cInclusion criteria are applied only in the experimental data setting for T2D and AMD, not in the simulation-based studies.
dScreening and trial costs are assumed to take failure rate into account.
of biobanks where a large number of already genotyped

individuals couldmake enrichment based on genetic infor-

mation particularly cost effective.
Material and Methods

Framework of Genetic Enrichment Trial for Disease

Prevention
We consider a standard design framework for prevention trials as

‘‘conventional prevention trials.’’ Eligibility criteria are assessed

in potential trial participants after they provide informed consent.

Typically, this involves selecting individuals likely to develop the

disease based on clinical risk factors, such as glucose levels for

T2D3 and low-density lipoprotein (LDL) or C-reactive protein

(CRP) levels for MI.4,11 Additional risk variables such as age,

gender, or smoking history may also be incorporated into the

criteria (Table 1). Eligible participants are randomized to different

treatment arms and followed for a trial period as illustrated in Fig-

ure 1A. The treatment effect will be evaluated by comparing the

frequency of disease onset between arms. The inclusion criteria

capitalize on prognostic factors that ‘‘enrich’’ disease onset among

the trial subjects. Studying these individuals increases the number

of disease-onset events and thus reduces the sample size and the

trial cost.

In genetic enrichment trials, the inclusion criteria further

incorporate genetic information in a quantitative manner (Fig-

ure 1B). In such trials, a larger number of potential participants

are screened to obtain a small fraction of individuals at

higher risk of disease. Consequently, the targeted participants

will be at higher risk than those in conventional trials, and
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they will also be more likely to develop the disease during the trial

period.

Examining the trade-off between resources used in the screening

stage and the trial stage is essential to optimize the efficiency of the

trial. If the eligible criteria are too stringent, the number of poten-

tial participants to recruit and screen will be orders of magnitude

larger than that of conventional trials, and the associated costs

of screening will become a substantial portion of the total trial

cost. On the other hand, too-liberal criteria will fail to enrich the

disease onset among the trial participants, diminishing the bene-

fits of genetic screening.

Another type of possible enrichment trial builds upon a pool of

potential participants with genetic information readily available.

Several large-scale DNA biobanks are currently being established

with sample sizes up to hundreds of thousands patients25 with

consent for genetic prescreening. Individuals found to be at high

risk based on genetic risk factors determined from their banked

genetic information would be prioritized for recruitment. Given

a sufficiently large number of samples in the DNA biobank, this

strategy makes it possible to identify an extremely small fraction

of individuals at much higher risk than others without additional

screening cost (Figure 1C).

Genetic RiskModel fromKnownGenetic Risk Variants
We consider a model of individual genetic risk based on markers

known to be associated with disease traits with genome-wide

significance. Typically an individual genetic risk score is calculated

as a weighted sum of risk alleles26

gðxÞ ¼
X
i

giðxiÞ ¼
X
i

xi logðORiÞ;
013



Figure 1. Frameworks of Conventional
and Genetically Enriched Prevention
Trials
(A) Conventional prevention trial not
utilizing genetic information.
(B) Standard genetic enrichment trial
following up only individuals at high
genetic risk after genetic screening.
(C) Biobank-based enrichment trial where
DNA information is available a priori and
used for inviting individuals at the begin-
ning of trial.
where xi is 0, 1, or 2 copies of ith risk alleles and ORi denotes the

odds ratio of ith risk allele estimated from previous data. When

there were multiple published risk variants in a locus, our analysis

used only variants for which pairwise r2 < 0.10. This helps ensure

independence between risk allele effects; a refined model allowing

for multiple correlated variants per locus may outperform the

approach used here. Assuming that the risk variant effects are

the same in published genetic studies and clinical trial popula-

tions, the rate of disease onset in the prevention trial participants

can be modeled as a logistic function of g(x). Thus,

Prðd j x; zÞ ¼ 1

1þ expð � m� gðxÞ � dzÞ ; (1)

where d denotes disease-onset event during the trial period (e.g., 3

years for our simulated T2D trial and 5 years for our simulated

AMD trial), z is the binary indicator of randomization of treatment

assignment, and treatment effect size of d and intercept term m are

constants selected to ensure the desired rates of disease onset in

the control and treatment arms prior to genetic enrichment. We

solved m and d numerically by using Brent’s root-finding algo-

rithm. The receiver operating characteristics (ROC) of this genetic

risk score can be obtained given the risk allele frequency and

disease prevalence. All numerical estimations were based on simu-

lated genotypes of millions of individuals as described in the next

section.
Simulation of Genetic Risk Scores
We evaluated the performance of genetic enrichment trial designs

by using simulated genetic and phenotype data for four diseases.

To simulate the genetic risk score by using known genetic risk vari-

ants, we simulated genotypes for amillion trial-eligible individuals

based on risk allele frequencies reported from published results.

For each simulated individual, we generated a genetic risk score

by using the published effect size of each risk variant and the simu-

lated genotypes. On the basis of the distribution of genetic risk

scores, we estimated the intercept and treatment effect parameters

to ensure that incidence in the treatment and placebo arms would

match the effects in Table 1. The likelihoods of the individual
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having disease were evaluated by Equa-

tion 1. To account for the uncertainty in

published odds ratios, we sampled odds

ratios from lognormal distribution defined

according to published odds ratios and

confidence intervals and then repeated

the simulation procedure with 100 dif-

ferent sets of sampled risk scores. The

‘‘very optimistic’’ and ‘‘very pessimistic’’
estimates of ROC in Figure S1 (available online) use the upper

and lower bound of 95% confidence intervals of odds ratio for

each of the risk variants, respectively.

Risk Model from Known AUC Values
More generally, individual disease risk can be estimated from

genetic and clinical information independently or collectively.

In particular, we consider combined genetic and clinical risk

from cohort studies of AMD and T2D.23,27 In these studies,

an alternative measurement—the area under the ROC curve

(AUC)28—is reported. Assuming that summed risk scores are

approximately normally distributed, we estimated the variance

of genetic risk scores and effect size of treatment from AUC value,

population prevalence, and rate of disease onset in the control and

treatment arms (see the section ‘‘Details on Parameter Estimation

Based on AUC’’ for further details).

In the analysis of empirical data in AMD, the published AUC

values were adjusted for inclusion criteria of baseline grade 3 or

greater via the following equation:

AUCadj ¼ AUCorg � f2
1� f2

;

where AUCorg and AUCadj denote original and adjusted AUC

values, respectively, and f2 is the proportion of individuals with

baseline grade 2 or less. We have assumed that no individual

with grade 2 developed the disease during the trial period, which

is a reasonable approximation given that only 8 out of 454 (2%)

individuals with baseline grade 2 developed advanced AMD

throughout the trial. For the analysis of T2D empirical data, the

AUCs were calculated with the real data. We also assumed that

the effect from clinical and genetic variables remains constant

over the trial period.

In addition to the analysis of empirical data, AUC-based

methods were also used in two hypothetical simulation settings

where 25% and 50% of the known heritability in liability scale13

could be explained by known genetic variants. This can prospec-

tively project the degree of enrichment through the use of genetic

factors that will be discovered in the future.
Genetics 92, 547–557, April 4, 2013 549



Estimation of Sample Size, Trial Cost, and Trial

Duration
Given a threshold t for the genetic risk score, the expected fraction

of individuals with disease-onset events during the trial can be

modeled as

pCðtÞ ¼ E½d ¼ 1 jgðxÞRt; z ¼ 0�
pTðtÞ ¼ E½d ¼ 1 jgðxÞRt; z ¼ 1�;

where pC(t) and pT(t) are the rates of disease onset in the control

and treatment arms, respectively. Prior to enrichment, these

estimates correspond to the section ‘‘Example Prevention Trial’’

in Table 1. Given a false positive rate a (¼0.05) and power 1 �
b (¼0.8), the required per-treatment group sample size follows29

nðtÞ ¼ 4pðtÞð1� pðtÞÞ�Z1�b þ Za=2

�
ðpCðtÞ � pT ðtÞÞ2

pðtÞ ¼ pCðtÞ þ pTðtÞ
2

:

Given per-sample clinical screening cost Cs, follow-up cost Cf, and

proportion of eligible participants fe, the cost of a conventional

prevention trial is determined as

�
Cs

fe
þ Cf

�
n0;

where n0 represents sample size of conventional trial (see

Figure 1A).

For a genetic enrichment trial (see Figure 1B) with additional

cost Cg, for genetic screening cost Cg, if we assume that clinical

and genetic screening is performed simultaneously with clinical

screening, the overall cost becomes

�
Cs þ Cg

fePrðgðXÞRtÞ þ Cf

�
nðtÞ:

We can estimate the reduction in the required duration of a trial

with a fixed sample size and desired power by first estimating

the number of cases accrued in a trial of fixed length and then

using the simplifying assumption that the number of new cases

in each trial arm is proportional to trial length (ignoring the

competing effects of increased progression as participants age

and of decreased incidence as cases become saturated). For the

short trials examined here, the assumption is reasonable.
Details on Parameter Estimation Based on AUC
Assume that the risk score g(x) ~ N(0,s2) and the treatment effect

size is d. The rate of disease onset is given by

Prðd j x; zÞ ¼ 1

1þ expð � m� gðxÞ � dzÞ ;

which is identical to Equation 1. The objective is to estimate m, s2,

and d from known parameters. We use reported AUC values and

prevalence to estimate s2 and use incidence rate in the treatment

and control arms to estimate m and d.

More specifically, assuming d ¼ 0, we estimate m and s2 from re-

ported AUC values and the disease prevalence (E[djz ¼ 0]) of the

population that the AUC is calculated from. We simulated

a million random samples from the model and numerically solved

m and s2 by using Brent’s root-finding algorithm given E[djz ¼ 0]

and AUC values. Between the trial population and the population

where the AUC is calculated from, we assumed that s2 is identical.

However, because m can often be different between the two popu-
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lations, we re-estimated m and d among the trial subjects by using

the reported incidence rate E[djz ¼ 0] and E[djz ¼ 1], again by

using Brent’s algorithm.
Results

We consider the three types of randomized two-arm

primary prevention trials illustrated in Figure 1: (1)

conventional prevention trials that screen potential partic-

ipants via eligibility criteria based on a set of clinical vari-

ables, (2) genetic enrichment prevention trials that screen

participants via clinical variables and genetic risk factors,

and (3) biobank enrichment prevention trials that identify

potential participants with high genetic risk scores prior to

clinical screening. We first evaluate the benefits of using

genetic information via simulations, and we later use

empirical data from previous studies, such as the Age-

Related Eye Disease (AREDS)23 and Whitehall II27 studies,

to account for potential overlap between clinical and

genetic risk factors.
Effects of Known Risk Variants on Disease Liability

We first evaluated the potential ability of GWAS variants

to identify at-risk individuals by using simulations. We

considered risk variants identified by large-scale meta-anal-

yses for T1D,20 T2D,18 MI,21 and AMD19 as robust genetic

associations (see Table 1). Using published risk allele

frequencies and effect sizes, we simulated individual

genetic risk scores by assuming the log-additive odds

model in Equation 1. Figure 2 illustrates the distribution

of the genetic risk score for individuals with and without

disease for each trait. The distributions of the genetic risk

scores in individuals with and without disease are very

similar for T2D and MI but quite different for AMD and

T1D, where a number of loci with large effect sizes have

been described. These genetic risk profiles depend on

current knowledge of the genetic architecture of each

disease and can also be summarized as receiver operating

characteristics (ROC) curves that describe our ability to

distinguish individuals with and without disease by using

genotypes. In addition to predictions based on published

effect size estimates, ROCs summarized in Figure S1 also

include predictions that account for uncertainty in pub-

lished effect sizes.

We next used simulations to predict the relative preva-

lence of disease in individuals with high and low genetic

risk scores (Table 2). For AMD and T1D, we estimate that

selecting individuals with genetic risks in the top decile

would result in a ~3- to 5-fold increase in disease preva-

lence. Selecting individuals with genetic risks in the top

percentile would result in a ~5- to 12-fold increase in prev-

alence. For T2D and MI, ~1.5- to 2-fold increases in disease

prevalence were expected among individuals within the

top decile, whereas ~2- to 3-fold increases in risk were ex-

pected among individuals with risks in the top percentile

of genetic risk.
013
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Figure 2. Distribution of Genetic Risk
Scores from Currently Known Risk Vari-
ants for Four Disease Traits
The x axis represent the genetic risk score
with respect to the individuals with the
lowest risk genotypes. The y axis represents
the fraction of individuals with disease
based on their risk score. The 95% confi-
dence intervals account for variations in
the odds ratio estimates.
Utility of Known Risk Variants in Efficient Design of

Prevention Trials

Next, we estimated the utility of genetic risk scores for trial

design. We considered prevention trials for T1D, T2D, MI,

and AMD. In each case, we modeled treatment effect, trial

cost, and duration guided by previous studies (Table 1).

These simulations made two important simplifying

assumptions. First, because the largest genetic association

studies for these traits used case-control analysis to esti-

mate the impact of individual risk alleles on prevalence

(rather than incidence within a period of time), we

assumed that the impact of genetic variants on hazard-

ratios (as estimated in a case-control study) and on disease

incidence rates during trial follow-up are the same. Second,

because there is little data on how genetic and clinical

predictors interact to predict disease risk, our models

assume that genetic effects are the same in the subjects

who meet the trial’s eligibility criteria. To the extent that

clinical variables mediate the impact of genetic variants

on disease risk, this assumption will lead to optimistic

predictions of performance for trials that use both genetic

and clinical covariates for enrichment. Further, it could

mean that although we can evaluate the potential value

of genetic enrichment trials, we are not well positioned

to explore whether these trials will be more cost effective

than trials focused on individuals whose clinical profiles

indicate very high risk for disease. Our analysis of prospec-
The American Journal of Huma
tive data generated by the AREDS (on

AMD)23 and Whitehall II (on T2D)27

studies overcomes these limitations.

In our simulations, as individuals

with higher risk were targeted, the

incidence of disease gradually

increased in both treatment arms,

whereas the treatment effect size

only slightly increased (Figure S2).

This increase in the disease incidence

translates into reduced sample size

requirements (Figure 3). At the

same time, large increases in on-trial

disease incidence require progres-

sively larger samples to be screened

for clinical and genetic risk factors,

increasing screening costs. The

optimal trial cost is determined by

balancing these two trade-offs. As
shown in Table 3 and Figure 3, our simulation suggests

that cost savings up to 11% for T2D, 40% for AMD, 67%

for T1D, and 13% for MI are possible when genetic enrich-

ment is used to complement clinical risk factors. For a

fixed sample size, genetic enrichment can reduce trial

duration by ~24% for T2D and MI and by 40%–62% for

AMD and T1D.

Evaluation with Experimental Data

To complement these simulations, we applied our en-

richment trial framework to longitudinal data sets docu-

menting incidence of two specific diseases—AMD and

T2D—as well as clinical and genetic risk factors. This eval-

uation removes the simplifying assumptions required in

our simulations.

Because both clinical and genetic risk scores are

available in this empirical setting, to precisely evaluate

the additional benefits of genetic information, here we

consider (1) conventional prevention trials following

up all participants meeting eligibility criteria, (2) clini-

cally enriched prevention trials focusing on individuals

with high clinical risk scores based on clinical, demo-

graphic, and environmental variables, on top of the eligi-

bility criteria, and (3) genetically and clinically enriched

prevention trials focusing on individuals with high

combined risk scores, incorporating both genetic and

clinical risks.
n Genetics 92, 547–557, April 4, 2013 551



Table 2. Disease Liability Explained by Currently Known Risk
Variants

Genetic Risk
Threshold

Fold Enrichment from Baseline Disease
Prevalence (in Parentheses)a

T2D
(3.0%)

AMD
(11.8%)

T1D
(0.54%)

MI
(4.0%)

Top 50% genetic risk 1.32 1.65 1.84 1.23

Top 20% genetic risk 1.67 2.63 3.42 1.43

Top 10% genetic risk 1.92 3.36 4.96 1.57

Top 5% genetic risk 2.17 4.07 6.82 1.69

Top 2% genetic risk 2.50 4.63 9.78 1.83

Top 1% genetic risk 2.74 4.81 12.42 1.94

aThe ratio of prevalence in the individuals with top genetic risk to the baseline
prevalence in Table 1.
Age-Related Macular Degeneration

A published cohort study of 1,446 individuals at high risk

of advanced AMD allowed us to investigate our framework

for this setting.23 Participants were assayed for known

genetic risk variants in addition to clinical risk vari-

ables—age, gender, education, smoking history, and base-

line AMD grade. In total, 19% (279) of the subjects

developed advanced AMD (including unilateral and bilat-

eral and dry and wet types of advanced AMD) within 6.3

years of entering the study. The advantage of combining

clinical and genetic risk compared to clinical risk only is re-

flected in area under the ROC curve (AUC)30 statistics. A

predictive model based on clinical risk variables alone re-

sulted in AUC statistic of 0.757, whereas a predictivemodel

using combined genetic and clinical variables resulted in

an AUC statistic of 0.821. Among all risk variables consid-

ered, the baseline AMD grade was the strongest predictor of

advanced AMD. Among the 454 individuals with a low

baseline AMD grade of 2, only 8 (2%) of them developed

advanced AMD during the trial period; in contrast, among

992 individuals with a high baseline AMD grade of R3

(defined as AREDS category), 271 (27%) developed

advanced AMD during the trial period. To mimic a realistic

scenario for an AMD prevention trial from the cohort

study, we considered a prevention trial with baseline grade

R3 as inclusion criteria. We estimate that in this subset

of individuals, the AUC would be 0.637 if we used only

clinical predictors and 0.743 with genetic and clinical

predictors.

Based on these adjusted AUCs and the reported rate of

disease onset for each of the treatment groups,17 we esti-

mated the sample size requirements, trial cost, and dura-

tion for evaluating the efficacy of zinc þ antioxidant

treatment (Table 4). Our results show that, compared to

a conventional prevention trial relying only on baseline

AMD grade R3 as the inclusion criterion, enrichment

based on clinical risk scores from the demographic and

environmental risk variables could either reduce trial cost

by up to 15% by reducing sample size requirements by
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24% or reduce the trial duration by 24% at a fixed sample

size. Enrichment with both clinical and genetic factors

can reduce trial cost by up to 33%, either by reducing

sample size requirements by 44% or by reducing trial

duration by 36%—either option corresponds to substantial

efficiency gains beyond enrichment with only clinical

characteristics.

Whereas simulation using GWAS-based effect size esti-

mates, under the assumption that there is no interaction

between clinical and genetic risk factors, suggested a poten-

tial 40% savings in prevention trial cost, this empirical

analysis suggests a savings of ~33% in prevention trial

cost when combining genetic and clinical variables as

risk predictors. In this case, both estimates are similar—

suggesting that the assumptions above do not qualitatively

affect the conclusions of our simulation-based analysis.

Type 2 Diabetes

To empirically evaluate the efficiency of T2D prevention

trials, we used data from the Whitehall II prospective

cohort study. This longitudinal study recruited a cohort

of civil servants, 25 to 55 years old in central London,

from 1985 to 1988 and followed them until 2003–2004.

The detailed design and data analysis were reported previ-

ously.27 Among 5,535 participants, we selected 1,916

prediabetic subjects with either impaired glucose tolerance

(IGT) (7.8–11.0 mmol/dl) or impaired fasting glucose (IFG)

level (5.6–6.9 mmol/dl) in the initial phase or clinical

examination to resemble subjects typically recruited in

a type 2 diabetes prevention trial.3

Using the Framingham offspring T2D risk scores calcu-

lated only from clinical variables,31 genetic risk scores

calculated from 20 robustly associated variants,18 and risk

scores calculated from both clinical and genetic factors,

we evaluated different strategies for trial enrichment.

Consistent with the previous study,27 we find that the

genetic risk scores alone do not effectively predict

onset of T2D in this cohort (AUC: 0.52). The Framingham

T2D risk scores from clinical variables (AUC: 0.75) or

combined risk scores (AUC: 0.76) were much more infor-

mative in predicting progression of diabetes among at-

risk individuals.

In this case, we estimate that clinical risk-score-based

enrichment trials using Framingham T2D risk scores can

reduce the trial cost by 35%, the sample size by 46%, or

the trial duration by 37% (compared to conventional trials

using only IFG/IGT status as eligibility criteria). We also

estimate that, in this case, using combined risk scores

that also include genetic information would result in negli-

gible additional benefits (Table 4). This finding reflects our

limited knowledge of the genetic variants contributing to

T2D risk (mirrored in their low AUC contribution) and is

much more pessimistic than the estimate of an ~11%

cost saving from our simulations.

Biobank-Driven Prevention Trial Designs

We also simulated biobank-driven enrichment trials,

which rely on a very large set of individuals for whom
013



Figure 3. Sample Size and Total Cost of
Genetically Enriched Prevention Trials
Using Currently Known Risk Variants
x axis represents the targeted proportion of
individuals at high genetic risk, and the
left y axis, corresponding to solid lines,
represents sample size for a conventional
trial (red), on-trial sample size for a genetic
enrichment trial (blue), and screening
sample size for a genetic enrichment trial
(green). The right y axis, corresponding to
dashed lines, represents the total cost of
the genetic enrichment trial given targeted
proportion.
genetic information is stored in a DNA biobank and

who have consented to being invited to participate in clin-

ical trials. Given planned biobanking efforts targeting

>100,000 individuals, this approach may allow identifica-

tion of individuals with very rare and very high-risk

genotypes for modest (incremental) screening cost. We

estimated the sample size, trial cost, and possible reduction

in trial durationwhen biobanks that were 1003 larger than

the planned on-trial sample sizes. In this case, individuals

in the top percentile of genetic risk might be targeted

(Table 3) and, except for very simple predictors like age,

traditional clinical risk factors would be ignored.

We estimate that such biobank-driven enrichment strat-

egies might reduce the trial cost by 41% for T2D, 58% for

AMD, 82% for T1D, and 41% for MI, when combined

with screening for clinical risk factors. These estimates

correspond to 20% to 37% in cost savings beyond those

available in standard genetic enrichment trials.

Prospect of Improved Genetic Risk Prediction

To assess the impact of future improvements in genetic risk

predictions, we simulated enrichment prevention trials by

using hypothetical sets of risk variants that might explain

25% or 50% of the heritability13 for the four disease traits

(Table S1). In these simulations, the genetic enrichment

prevention trials of T2D and MI are estimated to achieve

cost and trial size savings similar to those available for
The American Journal of Huma
AMD and T1D. These results suggest

that more complete catalogs of dis-

ease risk alleles may substantially in-

crease the potential utility of genetic

information for trial enrichment.

Discussion

With rapid advances in high-

throughput biological screening strat-

egies, there is great hope that genetic

information will enable the design

of more efficient clinical trials and

that further gains in efficiency may

be provided by other genomic predic-

tors of disease (such as transcript
levels, epigenomic modifications, and proteomic profiles).

Here, we evaluated the potential benefits of using genetic

information for designing prevention trials and derive

a framework for estimating the potential cost savings

when genetic information is used to identify at-risk indi-

viduals for inclusion in a trial.

Our results demonstrate that focusing on individuals

with high genetic risk may allow for reduced trial cost

and duration. Currently, benefits from genetic enrichment

trials are likely to be limited to diseases such as AMD

or T1D, where variants accounting for a large fraction of

the heritability have been identified. However, future

advances in genetic knowledge (driven by sequencing

studies and other studies of rare variation, for example)

should extend the utility of genetic enrichment trials to

broader sets of complex diseases, including conditions

for which genetic enrichment is currently unlikely to

succeed, such as T2D or MI.

It is important to note that the incremental value of

genetic information is dependent on the clinical variables

available and the populations and timescale of interest.

Recent studies on the AMD risk assessment from AREDs

subjects suggest that the improvement in AUC resulting

from genetic factors can be considerably lower when

additional clinical and demographic variables such as the

presence of large drusen, advanced AMD in one eye, and

family history are considered.32,33 When these additional
n Genetics 92, 547–557, April 4, 2013 553



Table 3. Sample Size, Cost, and Trial Duration of Enrichment Trials, Simulated from Published GWAS Risk Variants

Disease
Trait Trial Design

Optimized Trial Cost (Fixed Trial Duration) Reduced Trial Duration (Fixed No. Subjects)

%Targeted
Subjects

Trial No.
Subjects

Trial
Duration

Total
Cost ($)

%Targeted
Subjects

Trial No.
Subjects

Trial
Duration

Total
Cost ($)

T2D conventional trial 100% 231 3.0 years 4.5M 100% 231 3.0 years 4.5M

T2D genetic enrichment triala 43% 184 3.0 years 4.0M 20% 231 2.3 years 5.1M

T2D biobank enrichment trialb 1% 136 3.0 years 2.7M 1% 231 2.1 years 3.3M

AMD conventional trial 100% 1,342 5.0 years 25.5M 100% 1,342 5.0 years 25.5M

AMD genetic enrichment trial 31% 680 5.0 years 15.4M 20% 1,342 3.0 years 24.7M

AMD biobank enrichment trial 1% 565 5.0 years 10.7M 1% 1,342 3.0 years 16.1M

T1D conventional trial 100% 1,061 4.0 years 52.5M 100% 1,061 4.0 years 52.5M

T1D genetic enrichment trial 9% 260 4.0 years 17.1M 20% 1,061 1.5 years 27.4M

T1D biobank enrichment trial 1% 190 4.0 years 9.4M 1% 1,061 1.1 years 16.1M

MI conventional trial 100% 1,309 5.0 years 41.2M 100% 1,309 5.0 years 41.2M

MI genetic enrichment trial 34% 1,032 5.0 years 35.8M 20% 1,309 3.8 years 40.6M

MI biobank enrichment trial 1% 771 5.0 years 24.3M 1% 1,309 3.2 years 26.9M

aIn genetic enrichment trials, the cost-optimizing fraction of targeted samples subjects is selected for determining reduced trial cost, and 20% of targeted samples
subjects is selected for determining reduced trial duration.
bIn biobank-based enrichment, 1% of targeted samples subjects is assumed to determine trial cost and sample size reduction.
covariates were included, overall AUC was considerably

increased, from 0.73 to 0.87, and addition of genetic

factors only marginally increased the AUC from 0.87 to

0.88. Most importantly, adjusting for the clinical variables,

the estimated hazard ratio for CFH and ARMS2 alleles

was substantially reduced from 1.97 to 1.28 and from

2.21 to 1.56, respectively. Therefore, in the AMD preven-

tion trials utilizing these additional clinical variables

described above, the benefit of genetic information might

be marginal. This suggests that—for AMD—much of the

genetic risk may be mediated by these strong clinical

predictors, and when these clinical predictors are included

in models of short-term risk, there is limited additional

predictive value in including genetic risk factors. In prac-

tice, it will be very useful to prospectively evaluate the

risk models including both genetic and environmental

risk factors in appropriate samples—a practice that is,

unfortunately, not yet common.

Our observation that very large gains in efficiency are

possible when DNA biobanks with genetic information

on hundreds of thousands of potential trial participants

is available is particularly interesting. In this setting, trials

can focus on individuals who carry very rare combinations

of many risk alleles. For example, by focusing on individ-

uals in the top 1% of the genetic risk of T1D, T2D, AMD,

or MI, we predict cost savings of 82%, 40%, 58%, and

41%. If basic clinical information is also stored in the bio-

bank, the potential efficiency gains will be even larger.

Our cost models assume a fixed cost of screening and

treatment. They do not allow for cost savings that may

be possible in very large screening efforts; or, conversely,

for cost increases that might result from the necessity of
554 The American Journal of Human Genetics 92, 547–557, April 4, 2
extending screening to additional sites. They also assume

that genetic risk factors do not impact treatment effi-

ciency—although that may not always be the case.

Interestingly, we note that the ratio of screening, genotyp-

ing, and on-trial costs has a noticeable impact on the

potential benefits of genetic information for trial design.

Because genetic information potentially allows for smaller

numbers of on-trial individuals, its benefits are particularly

important when the on-trial costs are large. For our

hypothetical AMD enrichment trials, an increase in on-

trial cost per subject from $3,500 to $20,000 would mean

that an enrichment strategy combining genetic and clin-

ical variables could enable a savings of ~42% in cost

(instead of a ~33% savings when the on-trial costs are

lower). As noted above, this savings will also be dependent

on the precise clinical variables available for study and the

incremental predictive power of genetic information over

these variables.

Our simulations required important assumptions—

particularly, the assumption that clinical and genetic risk

factors do not interact with each other. For T2D and

AMD, we were able to overcome this limitation by extend-

ing our analysis to also consider empirical samples that

included information on disease incidence as well as clin-

ical and genetic risk factors. Although similar empirical

assessments remain to be done for MI and T1D, we predict

that the outcome for MI will be similar to that for

T2D (where we conclude that currently available genetic

markers will typically have limited utility), and we expect

the situation for T1D might be more similar to that for

AMD (where currently available genetic markers can

already enable large cost savings). Future improvements
013



Table 4. Sample Size, Cost, and Trial Duration of Enrichment Trials Based on Experimental Results23,27

Disease
Trait Trial Design

Optimized Trial Cost (Fixed Trial Duration) Reduced Trial Durationa (Fixed No. Subjects)

%Targeted
Subjects

Trial No.
Subjects

Trial
Duration

Total
Cost ($)

%Targeted
Subjects

Trial No.
Subjects

Trial
Duration

Total
Cost ($)

T2D conventional trialb 100% 231 3.0 years 4.51M 100% 231 3.0 years 4.51M

T2D clinical-only enrichment trialc 29% 124 3.0 years 2.92M 20% 231 1.9 years 3.95M

T2D combined (clinicalþgenetic)
enrichment triald

28% 120 3.0 years 2.84M 20% 231 1.9 years 3.93M

AMD conventional trialb 100% 1,342 5.0 years 25.5M 100% 1,342 5.0 years 25.5M

AMD clinical-only enrichment trialc 41% 1,018 5.0 years 21.8M 20% 1,342 3.8 years 28.5M

AMD combined (clinicalþgenetic)
enrichment triald

30% 753 5.0 years 17.2M 20% 1,342 3.2 years 25.7M

aCost-optimizing fraction of targeted samples subjects are selected for determining reduced trial cost, and 20% of targeted subjects are selected for determining
reduced trial duration.
bIn combined enrichment trial, we combine the clinical and genetic information and use this combined risk in the trial design.
cConventional trial uses only basic inclusion criteria—IFG or IGT status for T2D and baseline AMD grade R3.
dIn clinical-only enrichment trial, the clinical risk is calculated with a multitude of clinical factors including demographic and environmental factors.
inmodeling will benefit from estimates of the performance

of combined genetic and clinical risk scores in prospective

studies.

By default, we assumed a multiplicative (or log-additive)

model for risk across loci. If an additive model were

assumed instead,34 the benefits from selecting individuals

with many risk alleles would be much smaller. Very large

prospective population screens are lacking, so this is an

assumption that needs validation. Limited reassurance is

available for some traits, such as macular degeneration,

where log-additive and additive models lead to different

risk predictions (AUC of >0.75 and ~0.57, respectively)

and published empirical data agrees well with the log-addi-

tive model predictions. For other traits, this is an issue that

deserves further empirical study. We note that genotype-

based enrollment (as with other trial enrichment strate-

gies) could limit the generalizability of trial results. In these

cases, demonstration of a benefit for genetically at-risk

individuals could be followed by a larger study evaluating

more general use of the treatment.

Here, we focused on evaluating the utility of genetic

information for enriching prevention trials. However, we

expect that the combination of genetic information and

clinical trials will be a fertile area of research—including

not just advances in trial design but also opportunities to

use genetic variants to understand the biology of drug

response and adverse events. In cases where screening for

clinical risk factors is laborious and expensive, genetic risk

scores may be used as a filter that focuses the clinical

screening on at-risk individuals (an example might be anti-

body test response screening used to identify individuals at

risk of developing T1D35). Finally, for common diseases

where thegenetic architecture ispoorlyunderstood, aproxy

for a high genetic risk score might be the presence of an

affected first-degree relative, such as a parent or sibling.

It should be noted that genetically enriched trials typi-

cally limit the application of treatment only to those with
The Am
high genetic risk, because it is possible that the beneficial

effects are specific to the genetically enriched subjects (see

WebResources). However, once beneficial effects are shown

in an enriched trial, it could motivate a large study to eval-

uate the possibility for more general use of the treatment.

Ourmodel allows estimation of trial cost and duration in

a variety of enrichment scenarios, including eligibility

criteria based on clinical factors, genetic factors, or their

combination. Although we haven’t investigated multi-

arm trial designs, our work can model the utility of bio-

bank-driven enrichment (where genetic information may

be available for hundreds of thousands of individuals) or

of advances in genetic information. Code enabling others

to evaluate cost, sample size, and time requirements for

different trial designs is available from our website (see

Web Resources).
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Supplemental Data include two figures and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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FDA guideline for enrichment strategy for clinical trials,

http://www.fda.gov/downloads/Drugs/GuidanceCompliance
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Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/
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