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Abstract
Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading
frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of
frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In
this study we aimed to determine whether the length of the normal - unexpanded - allele of the
GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in
C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or
affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72
genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls,
leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an
accurate quantification of the length of the normal alleles in all patients and controls. No
meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in
C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or
non-mutation carriers.

*Corresponding author: Department of Neuroscience, Mayo Clinic College of Medicine 4500 San Pablo Road, Jacksonville, FL
32224 Phone: (904) 953-6279 Fax: (904) 953-7370 Rademakers.rosa@mayo.edu.

Disclosure Statement The authors disclose no conflicts of interest.

NIH Public Access
Author Manuscript
Neurobiol Aging. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Neurobiol Aging. 2012 December ; 33(12): 2950.e5–2950.e7. doi:10.1016/j.neurobiolaging.2012.07.005.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
Amyotrophic lateral sclerosis; Frontotemporal Dementia; C9ORF72; Repeat-expansion disease;
Association study

1. Introduction
Expansions of the non-coding GGGGCC hexanucleotide repeat located in the chromosome
9 open reading frame 72 gene (C9ORF72) were recently identified as a major cause of both
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (DeJesus-
Hernandez et al. 2011; Renton et al. 2011). The long-awaited identification of this genetic
lesion arose following linkage of a number of families, with members suffering from ALS,
FTD or a combination of the 2 diseases (FTD-ALS), to a locus on chromosome 9p21
(Morita et al. 2006; Vance et al. 2006; Valdmanis et al. 2007; Luty et al. 2008; Le Ber et al.
2009; Gijselinck et al. 2010; Boxer et al. 2011; Pearson et al. 2011).

ALS is the most frequent motor neuron disease resulting from the progressive degeneration
of both the upper and lower motor neurons, leading to spasticity, muscle weakness and
death, commonly within 2-5 years from symptom onset (Boillee et al. 2006). FTD is the
second most common form of presenile dementia and is characterized by behavioral and
personality changes, and language and cognitive difficulties resulting from the atrophy of
the frontal and temporal lobes (Graff-Radford and Woodruff 2007). FTD and ALS often co-
occur in a family and sometimes present in the same patient (FTD-ALS), leading to the
recognition that ALS and FTD may be part of a disease spectrum with a common underlying
pathogenesis; a notion which was reinforced by the discovery of C9ORF72 repeat
expansions in both disorders (Mackenzie et al. 2010).

The length of a number of coding repeats have previously been implicated in ALS
susceptibility; the most recent being expansions of the polyalanine repeat (GCG) in NIPA1
(Blauw et al. 2012), and intermediate expansions of the polyglutamine repeat (CAG) in
ATXN2 (Elden et al. 2010). Association of age at disease onset with the length of the
normal allele has been reported in Huntington’s disease, in which the unexpanded
polyglutamine repeat (CAG) in the HTT gene interacts with the expanded allele to influence
age at disease onset (Djousse et al. 2003).

The C9ORF72 GGGGCC hexanucleotide repeat expansion is the first non-coding repeat
expansion published to be causal of ALS. So far, patients with an expanded allele appear to
have between 700 and 1600 repeats (DeJesus-Hernandez et al. 2011); however, the minimal
repeat size associated with disease may be considerably smaller, and it is unknown whether
longer repeat lengths within the normal range could increase the risk for ALS or FTD
(Rademakers 2012).

In this study, we focus on the length of the normal alleles of the C9ORF72 repeat in patients
with or without repeat expansions, to determine whether the length of this “wild-type” allele
has any effect on the disease phenotype or age of disease onset in our patient populations.
We hypothesize that longer GGGGCC repeats within the normal range, suggested to be <30
repeats (Cerami et al. 2012), in C9ORF72 may lead to an increase in disease risk or an
earlier age at disease onset.
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2. Materials and methods
Our study cohort consisted of 3179 individuals, 1735 patients (580 FTD, 995 ALS and 160
FTD-ALS) and 1444 controls. The demographic information on these individuals is
summarized in Table S1. Study participants were obtained from Mayo Clinic Jacksonville
(n=1907), the Coriell Institute for Medical Research (n=564), ALS Clinic of Vancouver
Coastal Health (n=171), University of California, San Francisco (n=162), Mayo Clinic
Rochester (n=135), London Motor Neuron Disease (MND) Clinic (n=79), Northwestern
University Feinberg School of Medicine (n=39), Drexel University College of Medicine
(n=34), University of Western Ontario (n=31), University of British Columbia (n=30), Mayo
Clinic Scottsdale (n=11), University of Texas Southwestern Medical Center (n=11) and
Ludwig-Maximilians University (n=5). All subjects and/or their proxies gave informed
consent to take part in this study. FTD patients were diagnosed according to Neary criteria
(Neary et al. 1998) and a diagnosis of ALS was assigned if El Escorial criteria were
fulfilled. If a clinical patient deceased and autopsy was performed, the pathological
diagnosis was used. Patients with mutations in known disease genes (PGRN and MAPT for
FTD patients and SOD1, TARDBP and FUS for ALS patients) were excluded from this
study.

All patient and control subjects were genotyped for the C9ORF72 GGGGCC repeat using
our previously published two-step protocol (DeJesus-Hernandez et al. 2011). First, DNA of
all subjects was PCR amplified with one fluorescently labeled primer, followed by
fragment-length analysis on an ABI 3730 DNA Analyzer. Subjects that appeared to be
homozygous in this first assay were further analyzed using the repeat-primed PCR method.
A characteristic stutter pattern in this second assay was considered indicative of a
pathogenic C9ORF72 GGGGCC repeat expansion.

To account for the fact that non-mutation carriers have two alleles in the normal range, the
number of GGGGCC repeats corresponding to the longest of the two normal alleles was
used to evaluate a dominant effect, while we summed the number of repeats on both normal
alleles to examine an additive effect. All analyses were performed separately in GGGGCC
mutation carriers and non-mutation carriers. For mutation carriers, we considered only the
non-expanded ‘normal’ allele. In all analyses, we considered number of GGGGCC repeats
as both a continuous variable and also as a categorical variable in order to examine potential
non-linear trends. In mutation carriers, associations of number of GGGGCC repeats with
disease status (pair-wise comparisons of FTD, ALS, and FTD-ALS) were evaluated using
logistic regression models adjusted for gender and age at onset. In non-mutation carriers,
associations of number of GGGGCC repeats with disease (FTD, ALS, FTD-ALS, and all
diseases vs. controls) were examined using logistic regression models adjusted for age (age
at onset in cases and age at blood draw in controls) and gender, with additional adjustment
for disease status when all diseases were analyzed together. Odds ratios (ORs) and 95%
confidence intervals (CIs) were estimated. When combining all disease groups, the
association of number of GGGGCC repeats with age of onset was examined using linear
regression models adjusted for gender and disease group; regression coefficients and 95%
CIs were estimated. In order to account for multiple testing, we employed a Bonferroni
adjustment for all statistical tests that were performed within the same GGGGCC repeat
expansion group (presence or absence) and in relation to the same outcome (disease or age
at onset). In analyses including mutation carriers, p ≤ 0.0083 were considered significant in
disease association analysis (6 tests) and p ≤ 0.025 were considered significant in onset age
analysis (2 tests). In analyses including non-mutation p ≤ 0.0031 were considered significant
in disease association analysis (16 tests) and p ≤ 0.0125 were considered significant in onset
age analysis (4 tests). Statistical analyses were performed using R Statistical Software v
2.11.0.
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3. Results
In our cohort of 1735 patients and 1444 controls, we identified 211 patients (59 FTD, 94
ALS and 58 FTD-ALS) and 0 controls with a characteristic stutter pattern on the
electropherogram following repeat primed PCR, suggesting a pathogenic GGGGCC
hexanucleotide repeat expansion. A subset of these patients were already published as part
of previous studies (Murray et al. 2011; Boeve et al. 2012; Hsiung et al. 2012; Khan et al.
2012; Stewart et al. 2012; Whitwell et al. 2012). The maximum number of GGGGCC
repeats within the normal range that we identified was 25 in a patient and 23 in a control
individual. For a complete overview of the allele counts in patients and controls see Tables
S2 and S3. A graphical representation of the number of repeats on the normal alleles in non-
mutation carriers in each of the disease groups compared to controls is provided in Figure
S1.

In C9ORF72 mutation carriers (Table S4), we observed no statistically significant evidence
of an increased risk of developing one disease (FTD, ALS or both) over another as the
length of the normal allele increased. The strongest association that we did observe was
toward an increased likelihood of FTD in relation to FTD-ALS (OR [3 repeat increase]:
1.35, p=0.089). There was no significant association between increasing allele length and
onset age in the overall group of mutation carriers.

For the non-mutation carriers (Table S5) when using an additive model, we did not identify
significant evidence of a linear association between repeat length and either disease risk or
age at onset (all p≥0.057). When considering GGGGCC repeat length as a five-level
categorical variable based on sample quintiles, we also did not observe a significant
association between repeat length and risk of FTD, ALS, FTD-ALS, or any disease after
adjusting for multiple testing (p≤0.0031 considered significant after Bonferroni adjustment
for multiple testing). There was a nominally significant difference in risk of FTD-ALS
across the 5 repeat length categories (p=0.030), however this finding is of uncertain
biological significance given that it was driven by a higher risk of FTD-ALS in individuals
with a combined number of GGGGCC repeats between 8 and 10 (OR: 1.75, 95% CI: 1.00 –
3.08) and not observed in any of the lower or higher repeat length groups. Similarly, we
observed a significant difference in onset age across the five repeat length categories
(p=0.011), however this difference was most apparent by the earlier onset ages in patients
carrying 8-10 and 11-13 total GGGGCC repeats but not in patients carrying longer alleles
(>13), suggesting this may be a false positive observation.

Using a dominant model in non-mutation carriers (Table S5), we did not identify any
significant associations of GGGGCC repeat length with risk of disease or onset age. Linear
trends of small magnitude that did not approach significance after multiple testing
adjustment (p≤0.0031 considered significant) were identified toward an increased risk of
ALS (OR: 1.09 [3 repeat increase], 95% CI: 1.01 – 1.18, P=0.035) and any disease (OR:
1.07 [3 repeat increase], 95% CI: 1.00 – 1.15, P=0.040) in individuals carrying longer
GGGGCC alleles.

4. Discussion
The goal of this study was to examine whether normal - unexpanded - C9ORF72 GGGGCC
hexanucleotide repeat alleles, play a role in disease presentation or affect age at disease
onset in patients with or without a pathogenic C9ORF72 repeat expansion.

C9ORF72 mutation carriers can present with FTD, ALS or a combination of both diseases
and the age at which first symptoms appear varies widely, ranging from early 30s to late 70s
(Hodges 2012). However, using our large collection of 211 C9ORF72 mutation carriers, we
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did not observe any evidence for a role of the unexpanded GGGGCC allele on disease
presentation or onset age, suggesting that other genetic or environmental factors are
responsible for the clinical variability. One possibility may be that the length of the
pathogenic, expanded, allele plays a role in the disease presentation or penetrance; however,
this currently remains a challenging question to study. Accurate sizing of expanded repeats
can only be performed by southern blot analyses, which is complicated by somatic
instability of the repeat and tissue heterogeneity (DeJesus-Hernandez et al. 2011).

Similar to the mutation carriers, we did not observe any meaningful associations between
GGGGCC repeat length and risk of disease (ALS, FTD, FTD-ALS, or any disease) or onset
age in the overall disease group when studying our larger cohort of non-mutation carriers.
Several trends (p≤0.05) were observed in non-mutation carriers that did not withstand
correction for multiple testing. The only statistically significant finding in our study that did
withstand correction for multiple testing was an association of the total number of
GGGGCC repeats and age at onset in non-mutation carriers; however this finding was of
unclear biological significance and likely resulted from our effort to identify potential non-
linear associations by evaluating repeat length as a categorical variable.

In conclusion, this is the first study aimed at determining the role of the normal –
unexpanded – GGGGCC repeat in FTD and ALS. Despite our extensive patient and control
study cohorts, including more than 3000 individuals, we observed very limited evidence to
support the hypothesis that the length of the normal allele of the GGGGCC hexanucleotide
repeat in C9ORF72 has an effect on the disease phenotype or age at disease onset in patients
with or without C9ORF72 repeat expansions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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