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The Shape of Protein Crowders is a Major Determinant of Protein Diffusion
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ABSTRACT As a model for understanding how molecular crowding influences diffusion and transport of proteins in cellular
environments, we combined experimental and theoretical approaches to study the diffusion of proteins in highly concentrated
protein solutions. Bovine serum albumin and g-Globulin were chosen as molecular crowders and as tracers. These two proteins
are representatives of the main types of plasma protein and have different shapes and sizes. Solutions consisting of one or both
proteins were studied. The self-diffusion coefficients of the fluorescently labeled tracer proteins were measured by means of
fluorescence correlation spectroscopy at a total protein concentration of up to 400 g/L. g-Globulin is found to have a stronger
influence as a crowder on the tracer self-diffusion coefficient than Bovine serum albumin. Brownian dynamics simulations
show that the excluded volume and the shape of the crowding protein have a significantly stronger influence on translational
and rotational diffusion coefficients, as well as transient oligomerization, than hydrodynamic or direct interactions. Anomalous
subdiffusion, which is not observed at the experimental fluorescence correlation spectroscopy timescales (>100 ms), appears
only at very short timescales (<1 ms) in the simulations due to steric effects of the proteins. We envision that the combined
experimental and computational approach employed here can be developed to unravel the different biophysical contributions
to protein motion and interaction in cellular environments by systematically varying protein properties such as molecular weight,
size, shape, and electrostatic interactions.
INTRODUCTION
Molecular crowding is a fundamental aspect of protein
diffusion and transport in cellular environments to which
increasing attention is being paid (1–7). The aqueous
compartments in living cells are packed with a high con-
centration of macromolecules such as proteins and nucleic
acids, which strongly influence macromolecular diffusion
(7,8). Subdiffusion, in which diffusion is hindered, and the
mean-squared displacement (msd) does not increase linearly
with time (9), is expected in highly crowded media such as
the cytoplasm or cell membranes (6). This is because macro-
molecules are transiently confined to certain volumes due
to molecular interactions with the surrounding crowders
before they are, stochastically, allowed to diffuse further.
Subdiffusion has been proposed to influence how proteins
find partners for specific interactions in crowded environ-
ments (10).

To mimic physiological media in in vitro experiments,
a total concentration of macromolecules of up to 400 g/L
is commonly used (7,11). Frequently, random-coil poly-
mers, such as polyethylene glycol, Ficoll, or dextran, are
used as macromolecular crowding agents because of
their ease of availability and experimental manipulation
(12,13). However, these nonbiological crowding agents
may not reveal physiologically relevant information (2,3).
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To obtain a more realistic description of physiological envi-
ronments, biological macromolecules, such as globular
proteins, can be used as crowding agents (3).

In this work, we have studied the effects of crowder and
tracer size, shape, direct interactions, and hydrodynamic
interactions on the translational diffusion coefficients of
bovine serum albumin (BSA) and g-Globulin (IgG) by
means of fluorescence correlation spectroscopy (FCS) and
Brownian dynamics (BD) simulation. BSA and IgG were
used as tracers as well as crowding agents. The crystal
structures of human and bovine serum albumin have
a heart-shaped structure (14), whereas antibodies like IgG
form a Y-shape. IgG has a much higher molecular mass
(155 kDa) than BSA (66 kDa).

FCS is a highly sensitive optical method to measure
the diffusion of fluorescently labeled molecules and their
interactions in solution (15–19). FCS can be used to
analyze fluorescence-intensity fluctuations arising from
local concentration fluctuations of a low concentration
solution (1 nM) of fluorescently labeled molecules. Because
the measured correlation function reflects the kinetics of
molecules diffusing in and out of the detection volume
of a confocal microscope, it is an ideal analytical tool for
studying molecular dynamics (20,21), concentration (15),
chemical reaction kinetics (22), and the interactions
of molecules at nanomolar concentrations (15,23–25).
In the last decade, FCS has become a standard technique
for studying diffusion, including anomalous diffusion
and biomolecular interactions in crowded environments
(12,26–29).
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BD simulation is a computational technique that can
be used to study the diffusion of macromolecules in
solution on timescales from nanoseconds to hundreds of
microseconds (30–32). In BD simulations, solvent mole-
cules are treated implicitly. The inertia of the solute
molecules is neglected under the assumption that the
velocities of the diffusing solute particles relax much
faster than the time interval used for the simulation anal-
ysis (33). In the model used here, the proteins are treated
as atomically detailed rigid bodies moving in a continuum
solvent.
MATERIAL AND METHODS

Sample preparation

Albumin from bovine serum (BSA), g-Globulin (IgG) from bovine blood,

and phosphate-buffered saline (PBS) were purchased from Sigma, Munich,

Germany. g-Globulin is referred to as IgG, because it is the main fraction

(80%).

For titration experiments, the proteins were used without further purifi-

cation and were dissolved in PBS to a wide range of concentrations

(up to 400 g/L). The titration studies were performed with a small number

of labeled proteins (tracer, �0.001 g/L) in a solution of unlabeled proteins

(crowder, up to 400 g/L). For 0 g/L, the tracer proteins were dissolved

in PBS. The final concentration of protein in 0g/L protein solution

was <40 mg/L. Labeled proteins (BSA-633 and IgG-633) were prepared

through covalent coupling of lysine residues with the amino-reactive

n-hydroxysuccinimidyl ester derivative of the fluorescent dye Atto633

(see the Supporting Material).
Fluorescence correlation spectroscopy

The autocorrelation function describes the self-similarity of a measured

signal within a certain time interval. The fluorescence fluctuation at time

t is dF(t) ¼ F(t) � hF(t)i and gives the deviation from the average fluores-

cence intensity (34). To analyze the fluorescence fluctuations dF(t),

a normalized form of the autocorrelation function was used (22). The

fluctuations of the fluorescence signal at time t were multiplied with the

fluctuations of the signal shifted by a lag time t. The correlation function

G(t) of the temporally changed fluorescence signal F(t) for a single species

is defined as

GðtÞ ¼ hdFðtÞdFðt þ tÞi
hFðtÞi2 : (1)

The measured fluorescence autocorrelation functions G(t) were fitted using

the nonlinear least-squares method with a fitting program (OriginLab,

Northampton, MA). The autocorrelation function G(t) for a free three-

dimensional diffusion single species with triplet state correction is given

as (35)

GðtÞ ¼ XTripðtÞGDðtÞ; (2)

with triplet state correction
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In this equation, N is the total number of fluorescent particles in the detec-

tion volume element, which corresponds to 1/[G(0)�1]. The values z0 and

w0 represent the radii of the axial and radial axis of the detection volume

element.

tD ¼ w2
0

4Dt

is defined as the average lateral diffusion time, where Dt is the translational

self-diffusion coefficient. The values T and tt are the fractional population

and the relaxation time of the triplet state, respectively. The elongation

and size of the volume were obtained by using the equation above. The cali-

bration was done by measuring the diffusion time of Atto655-carboxylic

acid in pure buffer and taking into account its translational diffusion

coefficient (36).
Brownian dynamics simulations

BD simulations were performed with SDAMM (31), a parallelized program

based on the SDA software (37) capable of handling many proteins treated

as rigid bodies in atomic detail. The positions and orientations of the

proteins were propagated using the Ermak-McCammon algorithm (33).

BD simulations were carried out using 250 protein molecules initially

randomly positioned (avoiding overlaps) in a rectangular box with periodic

boundary conditions. By using 250 proteins, each protein was surrounded

by at least two nonperiodic proteins in each direction. The dimensions of

the box were varied according to the concentration of the protein solution.

Homogeneous solutions of BSA or IgG were simulated.

Each system was subjected to 6 ms of simulation at 300 K. Equilibration

was assessed by monitoring the convergence of the radial distribution func-

tion and the stabilization of the energies. In all cases, 1 ms was sufficient to

obtain an equilibrated system according to these criteria and the remaining

5 ms were used for the analysis. The integration timestep was 0.5 ps. The

positions and orientations of the proteins were recorded along with energy

values every 0.5 ns. Forces were computed as described below.
Interaction energies and forces

The forces between the proteins were computed as finite-difference deriv-

atives of the pairwise free energies of interaction between the proteins.

For each pair of proteins, the interaction free energy, DG1–2, was defined as

DG1�2 ¼ 1
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(5)

A detailed description and parameterization of Eq. 5 can be found in

Mereghetti et al. (31) and Gabdoulline and Wade (38). In Eq. 5, Fel is
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the electrostatic potential computed by solution of the linearized Poisson-

Boltzmann equation, Fedes is the electrostatic desolvation potential, Fnpdes

is the nonpolar desolvation potential, and Esoftcore is the soft-core repulsion

energies. The effective charges, q, are located on selected atoms in charged

residues and derived from computation of the electrostatic potential with

partial atomic charges assigned to all atoms (39), A are solvent-accessible

surface areas, and the r notations are atomic coordinates. For computational

efficiency, all interaction potentials,F, were mapped onto grids centered on

the simulated proteins.
Hydrodynamic interactions

Hydrodynamic interactions (HI) are implemented in SDAMM using a mean

field method (32,40–42). In this method, an isotropic short-time transla-

tional diffusion coefficient ðDtshort Þ for a protein of a given type is assigned

and rescaled based on the local volume fraction (f) occupied by the

proteins according to Dtshort ðfÞ=Dt
0 ¼ f ðfÞ. The function f(f), which

describes the volume fraction-dependent, short-time translational diffusion

coefficient, normalized by its infinite dilution value ðDt
0Þ, is computed

according to the model developed by Tokuyama and Oppenheim (43) which

includes near-field as well as far-field hydrodynamic interactions (see

Section S3 in the Supporting Material). Similarly, we took into account

rotational HI by rescaling the short-time rotational diffusion coefficient

using the model derived by Cichocki et al. (44), which includes lubrication

forces as well as two- and three-body expansions of the mobility functions:

DrshortðfÞ
Dr

0

¼ 1� 0:631f� 0:726f2: (6)

The rescaled values are then used in the Brownian dynamics simulations for

updating the particle positions.
Protein preparation

Simulations of bovine serum albumin (BSA) solutions were performed

using a three-dimensional structure of BSA obtained by homology

modeling based on the crystal structure of human serum albumin (HSA)

(14). The model was taken from MODBASE (45). Because of the high

sequence identity (76%) between BSA and HSA, this model showed

good quality as assessed using PROCHECK (46), ProQ (47), and AIDE

(48). Further details about the model can be found in the Supporting Mate-

rial. For the g-Globulin simulations, we decided to consider only IgG as it

represents the main fraction of the g-Globulin in bovine blood (fraction

80%). Because the three-dimensional structure of bovine IgG is not avail-

able, we used the crystal structure of an intact mouse IgG (PDB:1IGT

(49)) which has the highest resolution among the available intact IgG

crystal structures.

Polar hydrogen atoms were added according to the specified pH and ionic

strength using Hþþ (50). All simulations were performed at pH ¼ 7 and

ionic strength ¼ 150 mM. At these conditions, the net charges of BSA

and IgG are �16e and þ3e, respectively. Partial atomic charges and radii

were assigned to all atoms from the OPLS force field (51). Electrostatic

potential grids F were computed by solving the linearized Poisson-Boltz-

mann equation using the UHBD software (52).

For BSA, nonpolar desolvation, electrostatic desolvation, and soft-core

repulsion grids were set to 200 � 200 � 200 Å3 with a grid spacing of

1.0 Å, whereas the electrostatic potential grid size was set to 130 � 130 �
130 Å with a grid spacing of 1.0 Å. For the IgG, nonpolar desolvation,

electrostatic desolvation, and soft-core repulsion grids were set to 190 �
190 � 190 Å3 with a grid spacing of 1.0 Å, whereas the electrostatic poten-

tial grid size was set to 200 � 200 � 200 Å3 with a grid spacing of 1.0 Å.

The infinite dilution values of the translational and rotational diffusion

coefficients were computed using HYDROPRO from the protein atomic

coordinates (53).
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Translational self-diffusion coefficient

The time-dependent, time ensemble-averaged, mean-squared translational

displacement ðhmsdðtÞiteÞ was computed using

hmsdðtÞite ¼ 1

N0
XN0

i¼ 1

1

ðtend � tÞ=t þ 1

�
Xðtend�tÞ=t

t¼ 0

½riðt þ tÞ � riðtÞ�2;
(7)

where N0 is the number of proteins of the same type present in the simula-

tion, t is the time interval, tend is an integer multiple of t, and ri(t) is the
center of geometry of protein i at time t. In this article, hmsdðtÞite will be
simply denoted by msd.

A linear fit was performed on a closed interval [t1, t2], and the self-diffu-

sion coefficient, Dt, was computed from the slope using the Einstein rela-

tion (see the Supporting Material). The results were compared with an

analytical model developed by Tokuyama and Oppenheim (43) (see the

Supporting Material) which describes the concentration dependence of

the normalized long-time translational self-diffusion coefficient.
Computation of the anomalous exponent for
translational diffusion

In complex media, the mean-square displacement of the protein position

may deviate from the linear Stokes-Einstein relation, and obey a more

general power-law behavior characterized by the exponent a (10). If a <

1, the dynamics is subdiffusive. On the other hand, when a > 1 the

dynamics is superdiffusive. The exponent awas computed by a least-square

fit of the curve log(msd/t) versus log(t). For details of the computation of

the a-exponent, see the Supporting Material.
Rotational diffusion coefficient

The rotational diffusion coefficient was obtained by first computing the

time-ensemble averaged autocorrelation function of the protein orientation

vectors e(t) and then fitting it with a single exponential of the form

heðtÞeðt þ tÞifAe�t=trel (see the Supporting Material). Alternatively, as

described in Mazza et al. (54), the long-time rotational diffusion coefficient

was computed from the ensemble-averaged rotational mean-squared

displacement (see the Supporting Material).
Oligomer analysis

The average fractions of oligomeric species were computed by recording

the occurrence of the oligomeric states at each step of the simulation and

then averaging over the total number of steps. The criteria used to define

an oligomer and the details of the computation can be found in the

Supporting Material.
RESULTS AND DISCUSSION

Translational self-diffusion coefficient

The translational self-diffusion coefficients (Dt) of IgG
and BSA were determined from FCS measurements and
computed from BD simulations at several protein
concentrations.
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To exemplify the results of the FCS measurements, Fig. 1
(left panel) shows three measured normalized autocorrela-
tion curves of BSA-633 in 0 g/L, 150 g/L, and 300 g/L
BSA solution. The short-time fluctuations in the curve
with 300 g/L BSA are within the standard deviation of the
10 repetitions. Moreover, the systematic measurement error,
the optical aberration due to refractive index variation, is
within the accuracy of the standard FCS technique (55).
The diffusion coefficients determined from the FCS
measurements are shown in Fig. 1. The normalized transla-
tional diffusion coefficients Dt/Dt

0 of the tracer proteins,
BSA-633 (solid symbols) and IgG-633 (open symbols), are
plotted as a function of protein volume fraction. Plots are
for crowder solutions of BSA with a maximum concentra-
tion of 400 g/L (black symbols) and IgG with a maximum
concentration of 200 g/L (gray symbols). The tracer
mobility was reduced by increasing the crowder concentra-
tion, resulting in a corresponding decrease in the transla-
FIGURE 1 (Top) Exemplary normalized FCS curves. Each curve is an

average of ten 60-s acquisitions of BSA-633 in BSA solution with

increasing protein concentration shown without error bars for clarity. The

average diffusion time increased with the BSA concentration: 0 g/L (solid

line), 150 g/L (shaded dashed line), and 300 g/L (dotted line). (Bottom)

Normalized translational diffusion coefficients of labeled BSA and IgG

in the corresponding protein solutions measured with FCS by titration of

BSA-633 (solid symbols) and IgG-633 (open symbols) in up to 400 g/L

BSA solution (solid symbols) and up to 200 g/L IgG solution (shaded

symbols).
tional diffusion coefficient. A distinctly faster decay was
visible for the IgG crowder solution than for BSA solution.

Because the dependence on crowder type appears more
important than the dependence on the tracer type, simula-
tions were performed using homogeneous protein solutions,
i.e., BSA in BSA and IgG in IgG. In Fig. 2, experimental
and computed values of the concentration-dependent trans-
lational diffusion coefficients are compared to an analytical
model derived by Tokuyama et al. (56) which considers
spherical particles interacting by a soft-core potential as
well as many body near-field and far-field hydrodynamic
interactions. The comparison with the long-time self-
diffusion coefficient obtained using the Tokuyama analyt-
ical model helps to explain what causes the reduction of
the diffusion coefficient.

For BSA (Fig. 2 A), two sets of experimental data are
shown, one obtained in this work using FCS (red crosses),
the other (orange circles) obtained by pulsed-gradient
spin-echo NMR by Nesmelova et al. (57). General agree-
ment between the two experimental measurements is
evident although a deviation appears at intermediate
FIGURE 2 Normalized long-time translational self-diffusion coefficient

of BSA (A) and IgG (B). Experimental values obtained in this work using

FCS (red crosses) and, for BSA, by pulsed-gradient spin-echo NMR by

Nesmelova et al. (57) (orange circles) are shown. The values computed

from BD simulations with direct interactions and t-HI and r-HI (green

diamonds), with direct interactions and t-HI (black squares), with soft-

core and t-HI (blue up-triangles), and with soft-core interactions only

(blue down-triangles) are shown. (Black continuous lines) Diffusion

coefficient computed from the analytical model of Tokuyama et al. (56).

Biophysical Journal 104(7) 1576–1584
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concentrations (0.1–0.15 f). In BD simulations, the role of
the different interaction terms can be revealed by including
or omitting such terms in the simulations. We performed
four sets of simulations: one including direct interactions,
defined by Eq. 5, plus translational (t-HI) and rotational
(r-HI) hydrodynamic interactions (the abbreviation HI
means t-HI plus r-HI); a second set including direct and t-
HI; a third set including soft-core interactions and t-HI;
and finally, a set performed with the soft-core energy term
only. As expected, on both BSA and IgG, rotational hydro-
dynamics have a negligible effect on the translational diffu-
sion coefficient. Simulations with direct and HI give similar
results to with soft-core and t-HI (within the error bars). On
the other hand, when only the soft-core interactions are
considered, the diffusion coefficients are overestimated.
This suggests a minor role for direct interactions and HI
in determining the translational diffusion coefficient.
The values obtained from BD simulations, which include
the direct and HI as well as the experimental values, deviate
from the analytical model for concentrations above
0.15 volume fraction. When all but the soft-core terms are
switched off, the diffusion coefficients are close to the
analytical model curve, implying that the diffusion of
BSA resembles that of a soft sphere.

More pronounced effects leading to similar conclusions
are observed for IgG. In this case, a strong deviation from
the analytical model is observed for experimental and
computed diffusion coefficients, especially for concentra-
tions above 0.1 f. As can be seen in Fig. 2 B, very similar
Dt values are obtained from the simulations with the soft-
core only or including direct interactions and HI, which
implies that the shape is the main factor responsible for
the strong reduction of the translational diffusion coeffi-
cient. The HI tends to slightly lower the translational diffu-
sion coefficients.

A significant improvement in the quality of fit of the
experimental data by considering subdiffusion could not
be observed for either of the proteins and would be small
relative to the large systematic error (Fig. 1). Small devia-
tions from normal diffusion measured by FCS could be
explained by optical artifacts (28,58). To check for the
possibility of subdiffusion, we computed the anomalous
exponent, a, from the BD simulations.
FIGURE 3 Computation of the anomalous diffusion exponent, a. Values

computed from the BD simulations of log(msd/t) are plotted against t on

a logarithmic scale for solutions at different concentrations. Concentration

decreases from bottom to top (300, 203, 116, and 10 g/L for BSA and 300,

200, 100, and 10 g/L for IgG). The results for BD simulations with the soft-

core interaction term only (A and C) and with the full interaction terms

(B and D) are shown. Results of simulations of BSA are shown in panels

A and Bwhereas those of IgG are shown in panels C andD. The a-exponent

and the boundaries of the fitting intervals are shown on the plot.
Transient anomalous diffusion

The computed time-dependent diffusional properties were
analyzed by examining plots of log(msd/t) versus log(t).
By fitting these curves at given closed intervals, the anoma-
lous exponent, a, was derived for different time regimes.
Moreover, the crossover time, i.e., the time associated
with a change from anomalous to normal diffusion (59),
was obtained. A slope ¼ 0, which corresponds to a ¼ 1,
reflects a normal diffusion process whereas a slope < 0 is
associated with anomalous subdiffusive behavior. Sig-
Biophysical Journal 104(7) 1576–1584
nificant deviation from normal diffusion appears for concen-
trations > 200 g/L (see Fig. 3 and Fig. S1 in the Supporting
Material). For BSA, an appreciable deviation can be
detected in the simulations at 300 g/L, whereas for IgG
transient subdiffusive behavior was observed at 200 g/L
as well.

Two diffusional regimes can be distinguished: an anoma-
lous regime on the submicrosecond timescale and a normal
diffusion regime on longer timescales. The crossover time
(tc) varies depending on the concentration and it is in
general longer for IgG compared to BSA, as indicated in
Fig. 3. By comparing the simulations with direct interac-
tions plus HI with the soft-core term only, we observe that
the transient anomalous diffusion occurs in both cases
(compare panels B and D with panels A and C in Fig. 3).
Hence, we suggest that, for these systems, the subdiffusion
is mainly determined by the steric effects of the crowder
molecules. Moreover, we can observe that the presence of
direct interactions increases the a-exponent resulting in
less anomalous behavior. To explain this behavior, we
should consider the formation of transient oligomers.
When direct interactions are present, oligomers form in
the solution in a concentration-dependent manner (see
Transient Cluster Formation). Each monomer moves in
a polydisperse medium where the oligomers can dynami-
cally vary their size and the monomer itself can be tran-
siently part of the oligomers. This implies that at short
timescales on the order of the lifetime of the oligomers,
diffusion is more strongly affected by increasing the
concentration compared to simulations without direct
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interactions where no oligomers are formed. Indeed,
comparison of panels B and D with panels A and C in
Fig. 3 shows that the values of log(msd/t) at short timescales
are lower when direct interactions are computed. The
formation of oligomers then leads to a faster convergence
of the diffusion coefficient to its long-time value, explaining
the less anomalous behavior in simulations with direct
interactions.
Rotational diffusion coefficient

The simulations show that the short-time rotational diffu-
sion coefficients of both BSA and IgG decrease markedly
as protein concentration increases (see Fig. 4). For BSA,
direct interactions have an important effect on the rotational
diffusion coefficient. At the highest concentration, 300 g/L,
the computed rotational diffusion coefficient is threefold
lower in simulations with direct interactions compared to
the simulations without direct interactions. Hydrodynamic
interactions, when applied to the translational diffusion
only, have an almost negligible effect on the rotational
diffusion. However, the inclusion of rotational hydro-
dynamic interactions shows a modest effect, further
reducing the rotational diffusion coefficient. For IgG, the
concentration-dependent decrease in the rotational diffusion
coefficient is even stronger than for BSA. But unlike BSA,
the strong decrease in the rotational diffusion coefficient is
almost completely due to the steric effects of the protein
crowders. Indeed, simulations performed with the soft-
core term only, show values of the rotational diffusion coef-
ficients similar to those obtained including the direct plus
rotational and translational HI. As for BSA, translational
hydrodynamic interactions have a negligible effect. Very
FIGURE 4 Normalized rotational diffusion coefficients of BSA (A) and

IgG (B) estimated from the correlation function of protein orientations ob-

tained in the BD simulations. The simulations were performed with direct

interactions plus r-HI and t-HI (green diamonds), direct interactions with

t-HI (black squares), soft-core plus t-HI (blue down-triangles), and soft-

cores only (blue up-triangles).
similar behavior is observed for the long-time rotational
diffusion coefficient Drlong (see Fig. S2), implying that corre-
lations are not seen beyond a few hundred nanoseconds.
Transient cluster formation

To further investigate the role of direct interactions (elec-
trostatics and nonpolar desolvation) in determining the
dynamics of the proteins in solution, we checked for
the presence and formation of protein oligomers during
the simulations. We restrict our discussion here to the anal-
ysis of oligomer formation in the IgG solutions; analogous
conclusions can be drawn for BSA (see Fig. S3). As shown
in Fig. 5 A, oligomer formation is observed to be concentra-
tion-dependent. The increase in the osmotic pressure, due to
the increase in the concentration, allows the small electro-
static repulsion between the proteins to be overcome, result-
ing in short-range attractive interactions. From an analysis
of oligomer formation in the simulations with only the
soft-core repulsion term, using the same contact parameters
as applied to the analysis of the simulations with direct
interaction terms, we found that the simulations with the
soft-core term only result in 99% of the proteins being in
FIGURE 5 Transient oligomer formation in BD simulations of IgG solu-

tions. (A) Average mole fractions of IgG oligomers up to pentamers

observed in simulations at 10 g/L (dark red), 100 g/L (green), 200 g/L

(blue), and 300 g/L (pale yellow) concentrations. Mole fractions of oligo-

mers larger than or equal to pentamers are shown (inset) on a log-log scale

(only present for concentrations R to 200 g/L). (B) Oligomer dissociation

times for IgG at different volume fractions. If a value is not plotted, e.g., the

tetramers or pentamers at the lowest concentrations, it means that they form

in too low a concentration to give reliable dissociation times.

Biophysical Journal 104(7) 1576–1584
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the monomer state at all concentrations. This observation
indicates that the oligomers found in the simulations with
direct interactions depend on the formation of true contacts
(see Fig. S4). It should be noted that the oligomers formed
in the simulations are diffusional encounter complexes.
The absence of the treatment of internal flexibility and
hydrogen bonds hinders the formation of fully bound oligo-
mers. To characterize the oligomers found in the simula-
tions, we computed their lifetimes (see Fig. 5 B). If the
lifetime of an oligomer is much shorter than the time that
it needs to diffuse one protein diameter, tD0 , the oligomer
can be defined as transient and the dynamics will be essen-
tially determined by the monomers (60). The diffusional
relaxation time, tD0 , can be estimated as tD0 ¼ a2=Dt

0, where
a is the hydrodynamic radius of a monomer and Dt

0 is its
diffusion coefficient. For IgG, we assumed a hydrodynamic
radius of 55.29 Å (estimated using HYDROPRO (53)),
which gives a tD0 of 760 ns. The lifetimes of the oligomeric
species shown in Fig. 5 B are at least one order of magnitude
smaller than the diffusional time tD0 , indicating that
oligomer formation is in the transient regime. Due to the
rapid dissociation of the oligomers, the long-time dynamics
are only slightly affected by oligomerization, as shown
by the small reduction of the long-time diffusion coeffi-
cients that occurs when direct interactions are switched on
(see Fig. 2).
CONCLUDING DISCUSSION

The measured and computed translational diffusion coeffi-
cients for systems with BSA and IgG as crowding solutions
show good agreement. The simulations show that the strong
concentration dependence of the translational diffusion
coefficient observed experimentally for BSA and IgG
solutions is mainly determined by the steric effect of the
crowder proteins, which depends on both the excluded
volume and the shape of the crowders. Indeed, the experi-
mental translational diffusion coefficients can be quantita-
tively reproduced by means of BD simulations that only
include the soft-core interaction term between the mole-
cules. The concentration dependence of the translational
diffusion coefficient of IgG could not be reproduced by an
analytical model in which the protein is assumed to be
spherical, underlining the important contribution of shape
to translational diffusion. Given the good correspondence
of the translational diffusion coefficients determined exper-
imentally and computed from BD simulations, simulation
data were analyzed to examine how the rotational diffusion
coefficient and the transient oligomer formation depend
on the properties of the crowder solution. We were not
able to obtain rotational diffusion coefficients from time-
resolved anisotropy measurements in the appropriate crow-
der concentration range for the proteins investigated here,
possibly because different rotamer conformations of the
Atto633 label lead to multiple lifetimes or because oligomer
Biophysical Journal 104(7) 1576–1584
formation affects the lifetime of the fluorescence of the
label.

The computed rotational diffusion coefficients also
display a strong dependence on crowder concentration.
However, whereas the rotational diffusion coefficient
decreases strongly with increasing IgG crowder concentra-
tion because of the Y-shape of the molecule, for the more
spherical BSA, the rotational diffusion coefficient is deter-
mined by both steric effects (excluded volume) and direct
interactions. Moreover, for the systems studied, our results
show that hydrodynamic interactions have a relatively minor
role in determining diffusion properties. Oligomerization
was dependent on the presence of direct interactions between
the proteins. The extent of oligomerization was concen-
tration-dependent but, at all concentrations studied, it was
transient and therefore had little impact on the long-time
translational diffusion. We conclude that the excluded
volume and shape of crowder macromolecules are key
determinants of the diffusional motion of (tracer) proteins.
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