SCIENTIFIC @2 ¥

REPg}RTS

SUBJECT AREAS:

MATHEMATICS AND
COMPUTING

NEUROSCIENCE
NONLINEAR PHENOMENA
STATISTICAL PHYSICS

Received
2 January 2013

Accepted
19 March 2013

Published
5 April 2013

Correspondence and
requests for materials
should be addressed to
H.S. (hideyuki@iis.u-
tokyo.ac.ip)

Chaotic Boltzmann machines

Hideyuki Suzuki', Jun-ichi Imura?, Yoshihiko Horio® & Kazuyuki Aihara'

Unstitute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan, 2Graduate School of Information Science and
Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan, 3Graduate School of Advanced Science and Technology,
Tokyo Denki University, Tokyo 120-8551, Japan.

The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a
Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities
comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient
hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is
shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to
relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented.

oltzmann machines are a type of neural network model composed of stochastic elements. Since they were

proposed more than twenty years ago, it has been demonstrated that they are capable of solving various

problems such as optimisation problems’, repairing degraded images’, and learning interdependency
among random variables’. For optimisation problems, convergence to the global optimum is guaranteed, pro-
vided that the system is annealed at a sufficiently slow rate’. For learning problems, parameter values for a
Boltzmann machine that represent data distribution can be learned by a simple algorithm, which is theoretically
sound and insightful®.

Although they are theoretically important, it is difficult to apply Boltzmann machines in their original form to
real-world problems. The main difficulty is in their computation costs. For optimisation problems, the optimality
is only assured theoretically for a extremely slow annealing schedule?, which is impractical. For learning pro-
blems, the learning algorithm requires lengthy computation to obtain equilibrium statistics**.

However, these difficulties do not necessarily mean that Boltzmann machines are not practically important.
The capability of solving optimisation problems without prior knowledge of the problem structures is highly
attractive. As for learning problems, many attempts have been made to increase computation speeds at the
expense of the learning capability by restricting network structures and by using approximations in the learning
algorithm. Even restricted versions of Boltzmann machines, such as restricted Boltzmann machines® and deep
Boltzmann machines’, combined with approximate learning algorithms, such as mean-field approximation** and
contrastive divergence®, achieve state-of-the art performance among various machine learning methods. This fact
highlights the potential capabilities of Boltzmann machines.

Hardware implementation is one approach to enhance the computation speed of Boltzmann machines without
degrading their capability. One of the difficulties in this approach is the generation of good random numbers,
which is necessary to realise stochastic behaviour of the component units. Although thermal noise exists in
electronic circuits, it is difficult to utilise this noise to precisely simulate the probabilistic behaviour of Boltzmann
machines. Therefore, pseudo-random number generators™'® or mechanisms to utilise physically controllable
randomness, such as quantum effects'' ™", are required in the circuit. Other previous studies on hardware
implementation avoid randomness by using mean-field approximations.

In this paper, we propose a deterministic system that works as a Boltzmann machine, and show numerically
that the system has computing abilities comparable to a Boltzmann machine. The apparently stochastic behaviour
of the system is realised, without any use of random numbers, by chaotic dynamics that emerges from pseudo
billiard dynamics'*. Although the numerical simulation of the system is not efficient when calculated sequentially
on ordinary digital computers, the proposed approach allows possibly efficient hardware implementation of a
Boltzmann machine as a parallel distributed system. More generally, our approach presents a novel mechanism
for biologically inspired information processing and analogue computing'®°.

Results

Chaotic boltzmann machines. A Boltzmann machine is a stochastic system composed of binary units interacting
with each other. Let s; € {0, 1} be the state of the ith unit in a Boltzmann machine composed of N units.
Interactions between the units are represented by a symmetric matrix (w;;) whose diagonal elements are all
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zero. The states of the units are updated randomly as follows. First, a
unit is selected randomly; let i be the index of the selected unit. The
input z; to the ith unit is calculated as follows:

zi=bi+ Zwijsjv (1)
j

where b; represents a constant bias applied to the ith unit. The state of
the ith unit is updated according to the probability
1

P[Si= 1} = —l—l—exp(—z,-/T) >

(2)
where T denotes the temperature of the system. By repeating this
procedure for randomly selected units, the state s = (s, ..., sy) of a
Boltzmann machine is updated sequentially. The obtained states
eventually follow the Gibbs distribution

Pls)= exp(~E(5)/T), ()

where the global energy E and the partition function Z are given by

E(S) = — Z b,‘S,‘ — Z W,‘jSiSj, (4)

i<j
Z=") " exp(—E(s)/T). (5)

The procedure of state updates can be understood as Gibbs sam-
pling, or as a Markov-chain Monte Carlo method.

Here, we propose a deterministic system that can simulate
Boltzmann machines without any use of random numbers. In the
system, the ith unit is associated with a state variable x; € [0, 1],
which we call the internal state of the unit. The internal state x;
evolves according to the following differential equation

dxi (1 - 25,‘)2,‘)

i —25)(1
" ( s)( +exp—r

(6)
The states s of the units are updated by a deterministic rule, instead of
the probabilistic rule described in equation (2). Specifically, the state
s; € {0, 1} of the ith unit changes when and only when x; reaches 0 or
1 as follows:

si:=0whenx;=0 and s :=1whenx;=1 (7)
Note that regardless of the states of other units, the right-hand side of
equation (6) is positive for s; = 0 and negative for s; = 1. Therefore,
the internal state x; continues to oscillate between 0 and 1.

The differential equation (6) is designed from equation (2) so that
it satisfies |dx;/d¢| oc P[s;] ' Let us assume that the states of other
units are fixed. Then, according to equation (6), it takes (1 + exp(z;/
T))~" unit time for going up from x; = 0 to 1,and (1 + exp(—z/T)) ™"
unit time for going down from x; = 1 to 0. Hence, x; oscillates
between 0 and 1 with the period of 1 unit time, and so does s;.
Therefore, the probability of observing s; = 1 is given by (1 +
exp(—z;/T))™", which is consistent with equation (2). However, since
the states of other units in the system actually change, it is not
theoretically assured that the probability of observing a certain state
in the proposed system is exactly the same as the original Boltzmann
machine. In this paper, we present numerical evidence that the pro-
posed system actually works as a Boltzmann machine.

Asindicated by equations (6) and (7), the internal state x = (x;, ...,
xn) goes straight in the hypercube [0, 1]V, and its direction changes
only at the boundary. Therefore, the dynamics can be regarded as a
pseudo billiard" in the hypercube. The billiard dynamics induces a
Poincaré map on the boundary of the hypercube. Since it exhibits
chaotic behaviour as shown below, we call this system a chaotic
Boltzmann machine. Note that the system dynamics can be com-
puted by simple arithmetic calculations, because the right-hand side
of equation (6) is piecewise constant.

Application to combinatorial optimisation problems. As an exam-
ple for solving combinatorial optimisation problems, we applied the
chaotic Boltzmann machine to maximum cut problems. Given an
undirected network of N nodes whose edge weights are represented
by a symmetric weight matrix (d;;), the maximum cut problem is to
find a subset S C {1, ..., N} that maximises Z;c s ; ¢ sd;;. To solve this
problem, the parameter values of the Boltzmann machines are set as
b; = Zd; and w; = —2d;. When the energy is minimised, the
solution of the maximum cut problem is given by the set of nodes
taking on the state s; = 1. We used the problem sets provided along
with the Biq Mac solver*', for which exact solutions are also provided.

For comparison, we used conventional (stochastic) Boltzmann
machines having the same parameter values. We regard N iterations
of Gibbs sampling as one unit time. Note that this does not mean that
one unit time of a stochastic Boltzmann machine corresponds to that
of a chaotic one. Since the mechanisms are different, the comparison
of time is not straightforward.

The typical behaviour of chaotic and stochastic Boltzmann
machines for a maximum cut problem is shown in Fig. 1. The tem-
perature is fixed at alarge value, T = max;Z;|w;;|. The sampled energy
values appear to fluctuate similarly in both types of models (Figs. 1(a)
and (b)). The histograms of the sampled energy values coincide with
each other (Fig. 1(c)). Figure 2 shows the largest Lyapunov exponent
per unit time calculated for the Poincaré map induced on the bound-
ary of the hypercube [0, 1]V. The Lyapunov exponent always takes
positive values, thereby indicating chaos.

In order to solve the problem using Boltzmann machines, simu-
lated annealing is applied, as shown in Fig. 3. The initial temperature
is set to the same value as in Fig. 1, and it is multiplied by 0.95 every
N/4 unit time. Annealing is terminated when the same energy value is
sampled ten times consecutively. Table 1 shows statistics of the solu-
tions obtained by chaotic and stochastic Boltzmann machines. For
each of the datasets, simulated annealing is performed 100 times. For
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Figure 1 | Behaviour of Boltzmann machines for a maximum cut
problem (g05_100.0). Typical time evolutions of (a) chaotic and (b)
stochastic Boltzmann machines for T = 128. Energy values are sampled
every 10 unit time. (c) Histograms of the energy values sampled 100,000
times from chaotic (thin red line) and stochastic (thick pink line)
Boltzmann machines.
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Figure 2 | The largest Lyapunov exponent /£ of the chaotic Boltzmann
machine for a maximum cut problem (g05_100.0). For each temperature
value, the Lyapunov exponent is calculated over 10,000 unit time for 50
different initial values. A peak is observed around 7' = 1.8.

all the problems with N = 100, optimal solutions are obtained.
Opverall, fairly good solutions (2-3% degraded from optima) are
obtained without excessive tuning of the annealing schedule. The
point to be noted here is that there is no significant difference
between the chaotic and stochastic Boltzmann machines. A detailed
comparison of the results has no meaning, because time cannot be
directly compared.

It should be noted that there have been many studies that utilise
chaotic dynamics for solving combinatorial optimisation pro-
blems®**°. We have presented novel chaotic dynamics that can be
related to stochastic approaches to combinatorial optimisation
problems.

Application to the ising model. For application of Boltzmann
machines to learning problems, a simple learning rule’ has been
derived as gradient decent on the Kullback-Leibler divergence
between the data distribution and the equilibrium distribution as
follows:

Awif o« <Si$j>data - <Si$j>m0del, (8)

where (s;5)data and {s;s)moder denote the expected values of s;s; at
equilibrium state of the system in which the units are clamped to
data vectors and unclampled, respectively. Therefore, for the
learning process to work, it is essential to obtain faithful samples
from equilibrium distributions.

To evaluate the applicability of the chaotic Boltzmann machines to
such problems, we start from a simple example, the Ising model on a
two-dimensional lattice, which has been extensively investigated.
The Ising model is a simple model of ferromagnetism, and it can
be regarded as a Boltzmann machine whose connections are limited
to only neighbouring nodes in the lattices. Despite the simplicity of
the model, it exhibits rich behaviour including phase transition with
critical behaviour.

The Hamiltonian of the Ising model is given by

E(o)=—) a0 (9)
(i)

where summation is taken for every adjacent pair of the two-dimen-
sional lattice. Note that here we use o; € {+1, —1}, instead of {0, 1},
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Figure 3 | Simulated annealing of chaotic (red) and stochastic (pink)
Boltzmann machines solving a maximum cut problem (g05_100.0). The
energy values of the two models follow almost the same time course.

following the convention in statistical physics. The differential equa-
tion of the chaotic Ising model used is given as follows:

dx; 1
E = —O',‘GXP<— ?O'izj:O'j>,

which is designed essentially in the same way as equation (6).

Figure 4 shows snapshots of the chaotic and stochastic Ising mod-
els. There appears to be no difference between the two models. As
observed from Fig. 5, there is no difference in the following ther-
modynamic statistics: the average absolute magnetisation {|m|) =
(|Z;0,])/N and the magnetic susceptibility y = N((m?) — (|m[)*).

The largest Lyapunov exponent is always positive in this case also.
It should be noted that the largest Lyapunov exponents exhibit peaks
in both Figs. 2 and 5(c). These peaks are analogous to those observed
in neuron models coupled by gap junctions*”*®. In Fig. 5, the peak
corresponds to the ferromagnetic phase transition. This result is
consistent with a previous study that also relates the peak to the
synchronisation phase transition in the Kuramoto model*.

It should be noted that some deterministic discrete-time models
that can simulate the Ising model have been proposed on the basis of
the ideas of microcanonical ensembles**** and coupled map lat-
tices®*”. The chaotic Ising model proposed in this paper has con-
tinuous-time billiard dynamics that is totally different from these two
series of models.

(10)

Discussion

It is intuitively understandable from equation (6) that a unit in a
chaotic Boltzmann machine takes the states s; = 0 and 1 with the
same probability as Gibbs sampling (equation (2)), because x; moves
at a speed inversely proportional to the conditional probability as
|dx;/dt| o< P[s;|s\s;]”". However, considering all the interactions in
the system, it is not trivial at all that the billiard ball moves following
the joint probability of the Gibbs distribution (equation (3)).
Although the results presented in this paper provide numerical evid-
ence, further theoretical investigation of the dynamics from the view-
points of both nonlinear dynamics and statistical mechanics is
necessary. It is also important to characterise the differences in
dynamical aspects of stochastic and chaotic Boltzmann machines.
Chaotic Boltzmann machines can be a good example of a system
whose macroscopic behaviour appears to be that of an equili-
brium system, even though the microscopic behaviour is far from
equilibrium™.

We have described a method to derandomise the Gibbs sampling
of Boltzmann machines by using billiard dynamics. This approach
seems applicable to a wider class of probabilistic models such as
Markov random fields and graphical models. It can be extended to
multi-valued random variables in the following two possible ways.
One way is to extend the phase space of x; to [0, S;), where S; denotes
the number of values of the ith unit. The internal state x; moves
unidirectionally from 0 to S;, and the state s; is determined by
si=|x; . If the endpoints of the phase space are regarded as iden-
tical, s; takes values of 0, 1, ..., $;— 1 cyclically. Another way is to use a
switched arrival system® composed of §; tanks. In this case, s;
switches probabilistically due to the chaotic behaviour of swit-
ched arrival systems; however, the system dynamics becomes
non-invertible.

The numerical simulation of chaotic Boltzmann machines is
slower than that of stochastic Boltzmann machines, because every
time s is updated, the probabilities for all the units have to be calcu-
lated. As for stochastic Boltzmann machines, calculation is necessary
only for the selected unit. Hence, it is impractical to use chaotic
Boltzmann machines, instead of stochastic ones, on ordinary digital
computers.

However, stochastic Boltzmann machines are not amenable to
parallelisation. Even if all the nodes can communicate quickly with
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‘ Table 1 | Solutions of maximum cut problems obtained by chaotic and stochastic Boltzmann machines. For each dataset, the network size
and the value of maximum cut are shown. The first and second line for each dataset show the statistics of the results obtained by chaotic and
stochastic Boltzmann machines, respectively

Problem Obtained results

dataset size opt. max. avg. s.d.
g05_100.0 100 1430 1430 1415.62 13.65
1430 1414.97 13.69
pw09_100.0 100 13585 13585 13447.51 133.99
13585 13440.37 134.19
ising3.0-300_5555 300 8493173 8454235 8304704.46 88561.68
8430298 8215987.23 98257.26
12920_5555 400 24838942 24798931 24346513.46 266841.24
24791603 24138133.96 300049.99
t3g7_5555 343 28302918 28302918 27910192.78 317104.08
28302918 27550104.43 423472.58

each other, state updates of stochastic Boltzmann machines must be
carried out one by one, sequentially and exclusively; simultaneous
updates of multiple units are not allowed except for special cases such
as restricted Boltzmann machines and the Ising model, for which
parallelisation depending on the specific network structures is pos-
sible. Due to the parallel distributed manner of information proces-
sing in the nervous system, neural network models appear to be easily
parallelisable; however, this is not the case for stochastic Boltzmann
machines. On the other hand, chaotic Boltzmann machines are
defined as a dynamical system in which units evolve in parallel.
Moreover, no random numbers are required. Therefore, efficient
hardware implementation as a parallel distributed system is highly
expected. Although there may be unexpected difficulties in hardware
implementation of chaotic Boltzmann machines, this paper presents
at least a novel mechanism for implementing Boltzmann machines
that inherit the parallelism of neural networks.

Compared with stochastic Boltzmann machines, the units in cha-
otic Boltzmann machines are more like real neurons. The behaviour
of internal states can be regarded as oscillators that interact with each
other through discretised signals. The units are analogous to neurons
in the brain that also show oscillatory behaviour and interact through
digital signals, namely, neuronal spikes. Actually, a chaotic
Boltzmann machine is similar to a neural network model of simpli-
fied hysteresis neurons®.

The functional roles of chaos in the brain have been discussed
extensively***®. Chaotic neural networks*' have been proposed as a
simple neural network model that exhibits chaotic behaviour, and
the chaotic dynamics has been shown to be effective when used for
associative memory networks***” and for solving optimisation pro-
blems***’. We have presented here another mechanism that induces
chaotic behaviour in neural networks.

Figure 4 | Snapshots of (a) chaotic and (b) stochastic Ising models on a
two-dimensional lattice of size 128 X 128 with a periodic boundary
condition for T = 2.1, 2.3, 2.5, and 2.7 (from left to right). The black and
white dots represent the states +1 and —1, respectively.

We have also shown that chaos in hybrid dynamical systems can
be utilised for computing. Herding systems*® are an example that
utilises the complex behaviour of piecewise isometries for machine
learning; note that time discretisation of chaotic Boltzmann
machines yields piecewise isometries. In general, hybrid dynamical
systems with rich nonlinear dynamics are expected to form the pos-
sible components of future computers, as discussed in ref. 49.
Chaotic Boltzmann machines can be a suitable candidate if they
can be implemented efficiently in microelectronic circuits. More-
over, because a similar billiard dynamics can be implemented as a
model of city traffic by using a switched flow system®, it may be
possible to devise a physical mechanism that can realise chaotic
Boltzmann machines. From the viewpoint of thermodynamics and
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Figure 5 | Statistics of chaotic (thin red lines) and stochastic (thick pink
lines) Ising models on a two-dimensional lattice of size 24 X 24 with a
periodic boundary condition. (a) The average absolute magnetisation per
site (Iml) and (b) the magnetic susceptibility per site y. The statistics are
calculated during 100,000 unit time for 100 different initial values.

(c) The largest Lyapunov exponent 4 of the chaotic Ising model. Both the
magnetic susceptibility and the largest Lyapunov exponent exhibit peaks
corresponding to the ferromagnetic phase transition.
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reversible computing®'~>?, it is intriguing that the billiard dynamics of

the chaotic Boltzmann machines is invertible.

In conclusion, we have proposed a chaotic dynamical system that
works as a Boltzmann machine. We have shown numerically that
chaotic Boltzmann machines have computing abilities comparable to
the conventional ones. The proposed approach allows possibly effi-
cient hardware implementation of a Boltzmann machine as a parallel
distributed system. Moreover, chaotic Boltzmann machines are not
merely an implementation of Boltzmann machines, as they have
implications in various research fields including nonlinear dynamics,
statistical physics, thermodynamics, computing, machine learning,
and neuroscience.

Methods

See ref. 50 for the derivation of the Poincaré map (spin-flip map) defined on the
boundary of the hypercube.
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