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Abstract
We present a DNA library preparation method that has allowed us to reconstruct a high coverage
(30X) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this
genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in
these archaic hominins was extremely low. It also allows tentative dating of the specimen on the
basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal
admixture into present-day human populations, and the generation of a near-complete catalog of
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genetic changes that swept to high frequency in modern humans since their divergence from
Denisovans.

Draft genome sequences have been recovered from two archaic human groups, Neandertals
(1) and Denisovans (2). While Neandertals are defined by distinct morphological features
and occur in the fossil record of Europe, Western and Central Asia from at least 230,000
until about 30,000 years ago (3), Denisovans are known only from a distal manual phalanx
and two molars, all excavated at Denisova Cave in the Altai Mountains in southern Siberia
(2, 4, 5). The draft nuclear genome sequence retrieved from the Denisovan phalanx revealed
that Denisovans are a sister group to Neandertals (2), with the Denisovan nuclear genome
sequence falling outside Neandertal genetic diversity, suggesting an independent population
history that differs from that of Neanderthals. Also, whereas a genetic contribution from
Neandertal to the present-day human gene pool is present in all populations outside Africa, a
contribution from Denisovans is found exclusively in island Southeast Asia and Oceania (6).

Both published archaic genome sequences are of low coverage; 1.9-fold genomic coverage
from the Denisovan phalanx and a total of 1.3-fold derived from three Croatian Neandertals.
As a consequence, many positions in the genomes are affected by sequencing errors or
nucleotide misincorporations caused by DNA damage. Previous attempts to generate a
genome sequence of high coverage from an archaic human have been hampered by the high
levels of environmental contamination. The fraction of hominin endogenous DNA is
commonly smaller than 1% and rarely approaches 5% (1, 7), making shotgun sequencing of
the entire genome economically and logistically impractical. The only known exception is
the Denisovan phalanx, which contains ~70% endogenous DNA. However, an extremely
small fragment of this specimen is available to us, and the absolute number of endogenous
molecules that could be recovered from the sample was too low to generate high genomic
coverage.

A single-stranded library preparation method
DNA libraries for sequencing are normally prepared from double-stranded DNA (Fig. 1).
However, for ancient DNA the use of single-stranded DNA may be advantageous as it will
double its representation in the library. Furthermore, in a single-stranded DNA library,
double-stranded molecules that carry modifications on one strand that prevent their
incorporation into double-stranded DNA libraries could still be represented by the
unmodified strand. We therefore devised a single-stranded library preparation method
wherein the ancient DNA is dephosphorylated, heat denatured, and ligated to a biotinylated
adaptor oligonucleotide, which allows its immobilization on streptavidin-coated beads (Fig.
1). A primer hybridized to the adaptor is then used to copy the original strand with a DNA
polymerase. Finally, a second adaptor is joined to the copied strand by blunt-end ligation
and the library molecules are released from the beads. The entire protocol is devoid of DNA
purification steps, which inevitably cause loss of material.

We applied this method to aliquots of the two DNA extracts (as well as side fractions) that
were previously generated from the 40 mg of bone that comprised the entire inner part of the
phalanx (2, 8). Comparisons of these newly generated libraries to the two libraries generated
in the previous study (2) show at least a 6-fold and 22-fold increase in the recovery of
library molecules (8), which is particularly pronounced for longer molecules (Fig. S4).

In addition to improved sequence yield, the single-strand library protocol reveals new
aspects of DNA fragmentation and modification patterns (8). Since the ends of both DNA
strands are left intact, it reveals that strand breakage occurs preferentially before and after
guanine residues (Fig. S6), suggesting that guanine nucleotides are frequently lost from
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ancient DNA, possibly as the result of depurination. It also reveals that deamination of
cytosine residues occurs with almost equal frequencies at both ends of the ancient DNA
molecules. Since deamination is hypothesized to be frequent in single-stranded DNA
overhangs (9, 10), this suggests that 5′- and 3′-overhangs occur at similar lengths and
frequencies in ancient DNA.

Genome sequencing
We sequenced these libraries from both ends using Illumina’s Genome Analyzer IIx and
included reads for two indexes (11), which were added in the clean room to exclude the
possibility of downstream contamination with modern DNA libraries (1). Sequences longer
than 35 bp were aligned to the human reference genome (GRCh37/1000 Genome project
release) and the chimpanzee genome (CGSC 2.1/UCSC pantro2 release) with BWA (12).
After removal of PCR duplicates, insertions/deletions and genotypes were called with
GATK (8, 13). The three Denisovan libraries yielded 82.2 gigabases of non-duplicate
sequence aligned to the human genome (8). Together with previous data (2) this provides
about 31-fold coverage of the ~1.86 gigabases of the human autosomal genome to which
short sequences can be confidently mapped (8). We also sequenced the genomes of eleven
present-day individuals: a San, Mbuti, Mandenka, Yoruba and Dinka from Africa; a French
and Sardinian from Europe; a Han, Dai and Papuan from Asia; and a Karitiana from South
America. DNA from these individuals was barcoded, pooled and sequenced to ~24 to 33-
fold genomic coverage (8). Because the samples were pooled, sequencing errors are the
same across samples and are not expected to bias inferences about population relationships.

Genome quality
We used three independent measures to estimate human contamination in the Denisovan
genome sequence (8). First, on the basis of a ~4,100-fold coverage of the Denisovan
mitochondrial (mt) genome we estimate that 0.35% (95% confidence interval (C.I.) 0.33% –
0.36%) of fragments that overlap positions where the Denisovan mtDNA differs from most
present-day humans show the modern human variant. Second, using the fact that the
Denisovan phalanx comes from a female (2), we infer male human DNA contamination to
be 0.07% (C.I. 0.05% – 0.09%) from alignments to the Y-chromosome. Third, a maximum-
likelihood quantification of autosomal contamination gives an estimate of 0.22% (C.I. 0.22 –
0.23%). We conclude that less than 0.5% of the hominin sequences determined are
extraneous to the bone (i.e. contamination from present-day humans).

Coverage of the genome is fairly uniform with 99.93% of the ‘mappable’ positions covered
by at least one, 99.43% by at least ten, and 92.93% by at least 20 independent DNA
sequences (8). High-quality genotypes (genotype quality >= 40) could be determined for
97.64% of the positions. While coverage in libraries prepared from ancient samples with
previous methods are biased towards GC-rich sequences (14), the coverage of the libraries
prepared with the single-stranded method from the Denisovan individual is similar to the
eleven present-day human genomes (prepared from double-stranded DNA) in that coverage
is positively correlated with AT-content (Fig. S12).

To estimate average per-base error rates in the Denisovan genome we counted differences
between the sequenced DNA fragments and regions of the human genome that are highly
conserved within primates (approximately 5.6 million bases, (8)). The error rate is 0.13% for
the Denisovan genome, 0.17% to 0.19% for the genome sequences from the eleven present-
day humans, and 1.2 – 1.7% for the two trios sequenced by the 1000 Genomes Pilot project
(Table S11). The lower Denisovan error rate is likely due to consensus-calling from
duplicate reads representing the same DNA fragments, and from overlap-merging of paired-
end reads.
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Molecular estimates of divergence and fossil age
We estimated the average DNA sequence divergence of all pair-wise combinations of the
Denisovan genome and the 11 present-day humans as a fraction of the branch leading from
the human-chimpanzee ancestor to present-day humans (Fig. 2, (8)). Assuming a human-
chimpanzee average DNA sequence divergence of 6.5 million years ago (15), the Denisova-
present-day human divergence is approximately 800,000 years, close to our previous
estimate (2).

We next estimated the divergence of the archaic and modern human populations, which
must be more recent than the DNA sequence divergence. To do this, we identified sites that
are variable in a present-day West African individual, who is not affected by Denisovan or
Neandertal gene flow, and counted how often the Denisovan and Neandertal genomes carry
derived alleles not present in chimpanzee (1). From this, we estimate the population
divergence between Denisovans and present-day humans to be 170,000–700,000 years (8).
This is wider than our previous estimate (1), largely because it takes into account recent
studies that broaden the range of plausible estimates for human mutation rates and thus the
human-chimpanzee divergence date.

When comparing the number of substitutions inferred to have occurred between the human-
chimpanzee ancestor and the Denisovan and present-day human genomes, the number for
the Denisovan genome is 1.16% lower (1.13 – 1.27%; Fig. 2, (8)). This presumably reflects
the age of the Denisovan bone, which had less time to accumulate changes than present-day
humans. Assuming 6.5 million years of sequence divergence between humans and
chimpanzees, the shortening of the Denisovan branch allows the bone to be tentatively dated
to between 74,000 and 82,000 years before present, in general agreement with the
archaeological dates (2). However, we caution that multiple sources of error may affect this
estimate (8). For example, the numbers of substitutions inferred to have occurred to the
present-day human sequences vary by up to one-fifth of the reduction estimated for the
Denisovan bone. Nevertheless, the results suggest that in the future it will be possible to
determine dates of fossils based on genome sequences.

Denisovan and Neandertal gene flow
To visualize the relationship between Denisova and the eleven present-day humans, we used
TreeMix, which simultaneously infers a tree of relationships and “migration events” (16)
(Fig. 3). This method estimates that 6.0% of the genomes of present-day Papuans derive
from Denisovans (8). While this procedure does not provide a perfect fit to the data (for
example, it does not model Neandertal admixture), it agrees with our previous finding that
Denisovans have contributed to the genomes of present-day Melanesians, Australian
Aborigines, and other SouthEast Asian islanders (2, 6).

We tested whether Denisovans share more derived alleles with any of the 11 present-day
humans (8). To increase the power to detect gene flow, we used a new approach, ‘enhanced’
D-statistics, which restricts the analysis to alleles that are not present in 35 African genomes
and are thus more likely to come from archaic humans. This confirms that Denisovans share
more alleles with Papuans than with mainland Eurasians (Fig. 4A, Table S24). However, in
contrast to a recent study proposing more allele sharing between Denisova and populations
from southern China, such as the Dai, than with populations from northern China, such as
the Han (17), we find less Denisovan allele sharing with the Dai than with the Han (although
non-significantly so, Z = −0.9) (Fig. 4B; Table S25). Further analysis shows that if
Denisovans contributed any DNA to the Dai, it represents less than 0.1% of their genomes
today (Table S26).
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Interestingly, we find that Denisovans share more alleles with the three populations from
eastern Asia and South America (Dai, Han, and Karitiana) than with the two European
populations (French and Sardinian) (Z=5.3). However, this does not appear to be due to
Denisovan gene flow into the ancestors of present-day Asians, since the excess archaic
material is more closely related to Neandertals than to Denisovans (Table S27). We estimate
that the proportion of Neandertal ancestry in Europe is 24% lower than in eastern Asia and
South America (95% C.I. 12–36%). One possible explanation is that there were at least two
independent Neandertal gene flow events into modern humans (18). An alternative
explanation is a single Neandertal gene flow event followed by dilution of the Neandertal
proportion in the ancestors of Europeans due to later migration out of Africa. However, this
would require about 24% of the present-day European gene pool to be derived from African
migrations subsequent to the Neandertal admixture.

Strikingly, Papuans share more alleles with the Denisovan genome on the autosomes than on
the X chromosome (P=0.01 by a two-sided test) (Table S28). One possible explanation for
this finding is that the gene flow into Papuan ancestors involved primarily Denisovan males.
Another explanation is population substructure combined with predominantly female
migration among the ancestors of modern humans as they encountered Denisovans (thus
diluting the Denisovan component on chromosome X) (19). A third possibility is natural
selection against hybrid incompatibility alleles, which are known to be concentrated on
chromosome X (20). We note that some autosomes (e.g. chromosome 11) also have less
Denisovan ancestry (Table S30), suggesting that factors such as hybrid incompatibility may
be at play.

Denisovan genetic diversity
The high quality of the Denisovan genome allowed us to measure its heterozygosity, i.e. the
fraction of nucleotide sites that are different between a person’s maternal and paternal
genomes (Fig. 5A). Several methods indicate that the Denisovan heterozygosity is about
0.022% (8). This is ~20% of the heterozygosity seen in the Africans, ~26–33% of that in the
Eurasians, and 36% of that in the Karitiana, a South American population with extremely
low heterozygosity (21). Since we find no evidence for unusually long stretches of
homozygosity in the Denisovan genome (8), this is not due to inbreeding among the
immediate ancestors of the Denisovan individual. We thus conclude that genetic diversity of
the population to which the Denisovan individual belonged was very low compared to
present-day humans.

To estimate how Denisovan and modern human population sizes have changed over time we
applied a Markovian coalescent model (22) to all genomes analyzed. This shows that
present-day human genomes share similar population size changes, in particular a more than
two-fold increase in size before 125,000–250,000 years ago (depending on the mutation
rates assumed (23), Fig. 5B). Denisovans, in contrast, show a drastic decline in size at the
time when the modern human population began to expand.

A prediction from a small ancestral Denisovan population size is that natural selection
would be less effective in weeding out slightly deleterious mutations. We therefore
estimated the ratio of non-synonymous substitutions that are predicted to have an effect on
protein function to synonymous substitutions (those that do not change amino acids) in the
genomes analyzed and found it to be on average 1.5–2.5 times higher in Denisovans than in
the present-day humans, depending on the class of sites and populations to which
Denisovans are compared (Fig. 5C, (8)). This is consistent with Denisovans having a smaller
population size than modern humans, resulting in less efficient removal of deleterious
mutation.
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Denisovan genomic features
Since almost no phenotypic information exists about Denisovans, it is of some interest that
in agreement with a previous study (24) the Denisovan individual carried alleles that in
present-day humans are associated with dark skin, brown hair and brown eyes (Table S58,
(8)). We also identified nucleotide changes specific to this Denisovan individual and not
shared with any present-day human (8). However, since we have access to only a single
Denisovan individual, we expect that only a subset of these would have been shared among
all Denisovans.

Of more relevance may be examination of aspects of the Denisovan karyotype. The great
apes have 24 pairs of chromosomes while humans have 23. This difference is caused by a
fusion of two acrocentric chromosomes that formed the metacentric human chromosome 2
(25), and resulted in the unique head-to-head joining of the telomeric hexameric repeat
GGGGTT. A difference in karyotype would likely have reduced the fertility of any offspring
of Denisovans and modern humans. We searched all DNA fragments sequenced from the
Denisovan individual and identified twelve fragments containing joined repeats. By contrast,
reads from several chimpanzees and bonobos failed to yield any such fragments (8). We
conclude that Denisovans and modern humans (and presumably Neandertals) shared a
karyotype consisting of 46 chromosomes.

Features unique to modern humans
Genome sequences of archaic human genomes allow the identification of derived genomic
features that became fixed or nearly fixed in modern humans after the divergence from their
archaic relatives. The previous Denisovan and Neandertal genomes (1, 2) allowed less than
half of all such features to be assessed with confidence. The current Denisovan genome
enables us to generate an essentially complete catalog of recent changes in the human
genome accessible with short read technology (26). In total, we identified 111,812 single
nucleotide changes (SNCs) and 9,499 insertions and deletions where modern humans are
fixed for the derived state while the Denisovan individual carried the ancestral, i.e. ape-like,
variant (8). This is a relatively small number. We identified 260 human-specific SNCs that
cause fixed amino acid substitutions in well-defined human genes, 72 fixed SNCs that affect
splice sites, and 35 SNCs that affect well-defined motifs inside regulatory regions.

One way to identify changes that may have functional consequences is to focus on sites that
are highly conserved among primates and that have changed on the modern human lineage
after separation from Denisovan ancestors. We note that among the 23 most conserved
positions affected by amino acid changes (primate conservation score ≥ 0.95), eight affect
genes that are associated with brain function or nervous system development (NOVA1,
SLITRK1, KATNA1, LUZP1, ARHGAP32, ADSL, HTR2B, CBTNAP2). Four of these are
involved in axonal and dendritic growth (SLITRK1, KATNA1) and synaptic transmission
(ARHGAP32, HTR2B) and two have been implicated in autism (ADSL, CBTNAP2).
CNTNAP2 is also associated with susceptibility to language disorders (27) and is
particularly noteworthy as it is one of the few genes known to be regulated by FOXP2, a
transcription factor involved in language and speech development as well as synaptic
plasticity (28). It is thus tempting to speculate that crucial aspects of synaptic transmission
may have changed in modern humans.

Our limited understanding of how genes relate to phenotypes makes it impossible to predict
the functional consequences of these changes. However, diseases caused by mutations in
genes offer clues as to which organ systems particular genes may affect. Of the 34 genes
with clear associations with human diseases that carry fixed substitutions changing the
encoded amino acids in present-day humans, four (HPS5, GGCX, ERCC5, ZMPSTE24)
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affect the skin and six (RP1L1, GGCX, FRMD7, ABCA4, VCAN, CRYBB3) affect the eye.
Thus, particular aspects of the physiology of the skin and the eye may have changed recently
in human history. Another fixed difference occurs in EVC2, which when mutated causes
Ellis-Van Creveld syndrome. Among other symptoms, this syndrome includes taurodontism,
an enlargement of the dental pulp cavity and fusion of the roots, a trait that is common in
teeth of Neandertals and other archaic humans. A Denisovan molar found in the cave has an
enlarged pulp cavity but lacks fused roots (2). This suggests that the mutation in EVC2,
perhaps in conjunction with mutations in other genes, has caused a change in dental
morphology in modern humans.

We also examined duplicated regions larger than 9 kilobase pairs (kbp) in the Denisovan
and the present-day human genomes, and found the majority of them to be shared (8).
However, we find ten regions that are expanded in all present-day humans but not in the
Denisovan genome. Notably, one of these overlaps a segmental duplication associated with
a pericentric inversion of chromosome 18. In contrast to humans, the Denisovan genome
harbors only a partial duplication of this region, suggesting that a deletion occurred in the
Denisovan lineage. However, we are unable to resolve if the pericentric inversion is indeed
present in Denisovans.

Implications for archaic and modern human history
It is striking that genetic diversity among Denisovans was low although they were present in
Siberia as well as presumably in Southeast Asia where they interacted with the ancestors of
present-day Melanesians (6). Only future research can show how wide their geographic
range was at any one time in their history. However, it is likely that they have expanded
from a small population size with not enough time elapsing for genetic diversity to
correspondingly increase. When technical improvements such as the one presented here will
make it possible to sequence a Neandertal genome to a quality comparable to the Denisovan
and modern genomes, it will be important to clarify whether the temporal trajectory of
Neandertal effective population size matches that of the Denisovans. If that is the case, it is
likely that the low Denisovan diversity reflects the expansion out of Africa of a population
ancestral to both Denisovans and Neandertals, a possibility that seems compatible with the
dates for population divergences and population size changes presented.

By providing a comprehensive catalog of features that became fixed in modern humans after
their separation from their closest archaic relatives, this work will eventually lead to a better
understanding of the biological differences that existed between the groups. This should
ultimately aid in determining how it was that modern humans came to expand dramatically
in population size as well as cultural complexity while archaic humans eventually dwindled
in numbers and became physically extinct.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
For single-stranded library preparation, ancient DNA molecules are dephosphorylated and
heat-denatured. A biotinylated adaptor oligonucleotide is ligated to 3′-ends of the
molecules, which are immobilized on streptavidin-coated beads and copied by extension of a
primer hybridized to the adaptor. One strand of a double-stranded adaptor is then ligated to
the newly synthesized strand. Finally, the beads are destroyed by heat to release the library
molecules (not shown).
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Figure 2.
Average sequence divergence and branch length differences between the Denisovan genome
and 11 present-day humans represented as a tree. Divergence is reported as fraction of the
branch leading from human to the common ancestor with chimpanzee, and in years,
assuming a human-chimpanzee divergence of 6.5 million years ago.
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Figure 3.
Maximum likelihood tree relating the Denisovan genome and the genomes of eleven
present-day humans, allowing one migration event (shown in yellow).
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Figure 4.
(A) Sharing of derived alleles among present-day humans, Denisovans and Neandertals. We
compare all possible pairs of 11 present-day humans {H1, H2} in their “D-statistics”, which
measure the rate at which they share derived alleles with Denisovans (x-axis) and
Neandertals (y-axis). Each point reports ±1 standard error bars from a Block Jackknife. D-
statistics are color-coded by geographic region. The D-statistic is not the same as the
mixture proportion; it is also affected by quantities like the amount of shared genetic drift
between the samples being compared. (B) Sharing of derived alleles that are absent in
Africans among present-day humans, Denisovans and Neandertals. We enhance the power
of the D-statistics by restricting to sites where 35 sub-Saharan African samples have the
ancestral allele, and pooling modern humans by region to increase resolution (bars again
give one standard error). Eastern non-African populations have significantly more archaic
ancestry than European populations (Z=5.3 and Z=4.8 for the tests based on the Denisovan
and Neandertal D-statistics, respectively).
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Figure 5.
(A) Heterozygosity shown by the distribution of the number of bases matching the human
reference genome at sites sampled to 20-fold coverage. The Y-axis is scaled to show the
peak representing heterozygous sites in the center. (B) Inference of population size change
over time using variation in the time since the most recent common ancestors across the
genome shows that Denisovans have had a small population size over the last few hundred
thousand years compared with modern humans, but a similar demographic history earlier.
The y-axis specifies a number proportional to the population size Ne. The x-axis specifies
time in units of divergence per base pair (along the top in years, assuming rates of 0.5×10−9

to 1.0×10−9 per year). Thin red lines around the Denisovan curve represent 100 bootstraps,
thus showing the uncertainty of the inference. (C) The small population size in Denisovans
is reflected in a greater accumulation of non-synonymous sites (normalized by the number
of synonymous sites), whether measured in terms of heterozygous sites in Denisovans vs.
modern humans (ratio 2.0 –2.5), or the accumulation of divergent sites on the Denisovan
lineage divided by modern human lineages (ratio 1.5–2.0). The analysis is restricted to non-
synonymous sites predicted to have a possibly or probably damaging effect on protein
structure or function.
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