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Abstract
New blood vessel formation (angiogenesis) is fundamental to tumor growth, invasion, and
metastatic dissemination. The vascular endothelial growth factor (VEGF) signaling pathway plays
pivotal roles in regulating tumor angiogenesis. VEGF as a therapeutic target has been validated in
various types of human cancers. Different agents including antibodies, aptamers, peptides, and
small molecules have been extensively investigated to block VEGF and its pro-angiogenic
functions. Some of these agents have been approved by FDA and some are currently in clinical
trials. Combination therapies are also being pursued for better tumor control. By providing
comprehensive real-time information, molecular imaging of VEGF pathway may accelerate the
drug development process. Moreover, the imaging will be of great help for patient stratification
and therapeutic effect monitoring, which will promote effective personalized molecular cancer
therapy. This review summarizes the current status of tumor therapeutic agents targeting to VEGF
and the applications of VEGF related molecular imaging.
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Tumor Angiogenesis
Angiogenesis is the process of new blood vessel development, which is critical in both
physiological development and pathological processes such as tumor progression, wound
healing, cardiovascular, inflammatory, ischemic, and infectious diseases (1–3). It has been
found several decades ago that tumors implanted into isolated perfused organs failed to grow
beyond a few millimeters in diameter (4) as diffusion of nutrients and oxygen from nearby
capillaries is inadequate to go beyond 100–200 μm in order to sustain cell function (5–7).
For multicellular tumor clones to grow beyond this size, they must recruit new blood vessels
by angiogenesis and vasculogenesis. It is now widely accepted that both mutations of
oncogenes and tumor suppressor genes lead to the switch into an angiogenic tumor, i.e., the
endogenous balance between pro-angiogenic and anti-angiogenic molecules is tipped in
favor of angiogenesis (8–10). Tumor angiogenesis also involves an intricate interplay
between the tumor and surrounding or supportive cells, including vascular endothelial cells,
pericytes, smooth muscle cells, fibroblasts and tumor-associated macrophages (11).
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Tumor vessels can grow by several different patterns including sprouting, intussusception or
incorporation of bone marrow-derived endothelial precursors. In addition, tumor cells can
co-opt existing vessels (12). Sprouting angiogenesis is the most important mechanism for
tumor vascularization, which involves several steps from the growth of endothelial sprouts
from preexisting post-capillary venules to the growth and remodeling process of the
primitive network into a complex network (2, 13–15). In response to hypoxia, tumor tissues
produce and release angiogenic growth factors such as vasculoendothelial growth factor
(VEGF), the acidic and basic fibroblast growth factors (aFGF, bFGF), and the platelet-
derived endothelial cell growth factor (PD-ECGF) (16). When these angiogenic growth
factors bind to their corresponding specific receptors located on the endothelial cells of pre-
existing blood vessels, various signal transduction pathways are activated to promote the
activation of endothelial cells (17, 18). Subsequently, the original vessels undergo
characteristic morphological changes, including enlargement of the diameter, basement
membrane degradation, a thinned endothelial cell lining, increased endothelial number,
decreased number of pericytes and detachment of pericytes (19). At the sprouting tips of
growing vessels, endothelial cells secrete matrix metalloproteinases (MMPs) to facilitate the
degradation of extracellular matrix and cell invasion (20). Cell surface adhesion molecules
such as integrins also play an important role in endothelial cell migration and in contact with
the extracellular tumor matrix, facilitating cell survival (21, 22). Next, a lumen within an
endothelial cell tubule has to be formed, which requires interactions between the
extracellular matrix and cell-associated surface proteins, among them are galectin-2,
PECAM-1, and VE-cadherin (23). Finally, newly formed vessels are stabilized through the
recruitment of smooth muscle cells and pericytes.

Unlike blood vessels in healthy tissues, the tumor vasculatures appear as disorganized
tubular structures, which are often interconnected, tortuous, highly leaky, resembling
premature sinusoidal vasculatures (24, 25). These abnormal vessels usually lack a clear
separation between arterioles and venules and the recruitment of pericytes and vascular
smooth muscle cells (26). A fast growing tumor almost always creates a hypoxic
environment due to several interconnected reasons including unsynchronized growth rates of
tumor cells and endothelial cells, disorganized vascular architecture, sluggish blood flow
and high interstitial fluid pressure (IFP) (27, 28). Hypoxia leads to increased levels of
hypoxia inducible factor-1alpha (HIF-1α) by inhibiting proline hydroxylase activity and
stabilizing HIF-1α , which increases VEGF expression by activating its promoter (29). High
level of VEGF could further increase vascular disorganization, permeability, and IFP,
leading to severe hypoxia in turn (30). The high leakage and poor perfusion of tumor blood
vessels facilitate cancer cells spreading throughout the body to develop metastasis (22, 31).
Moreover, tumor-associated endothelial cells can acquire cytogenetic abnormalities while in
the tumor microenvironment. This genetic instability may allow endothelial cells to survive
modifications to the intratumor ecosystem, and become resistant to anti-angiogenic agents
(32).

Vascular Endothelial Growth Factor (VEGF)
VEGF is a key tumor-derived angiogenic factor that exerts multiple functions including
stimulation of angiogenesis, vasculogenesis, inflammation and vascular permeability (33,
34). The VEGF family of growth factors and its receptors constitute the most important
signaling pathways in tumor angiogenesis (35–37). Initially, VEGF-A was identified as a
vascular permeability factor (VPF) in 1983 and later characterized as an endothelial-specific
mitogen (38). Subsequently, the whole VEGF family has been identified to comprise eight
members with a common VEGF homology domain: VEGF-A, VEGF-B, VEGF-C, VEGF-
D, VEGF-E, VEGF-F, and placenta growth factor (PIGF) -1 and -2 (36). VEGF-A is a
dimeric, disulfide-bound glycoprotein existing in at least seven homodimeric isoforms due
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to alternative exon splicing of exons 6 and 7, which consist of 121, 145, 148, 165, 183, 189,
or 206 amino acids (Figure 1A). Structurally VEGF belongs to the VEGF-PDGF (platelet-
derived growth factor) super-gene family (Figure 1B). Among these gene products, 8
cysteine residues are conserved at the same positions, the these products function as a
dimeric form since 2 out of 8 cysteines generate intermolecular cross-linking disulfide
bonds. The other 6 cysteines make 3 intermolecular disulfide bonds to form 3 loop structures
(39). Besides the difference in molecular weight, these isoforms also differ in their
biological properties such as the ability to bind to cell surface heparin sulfate proteoglycans
(36). For example, the shortest form, VEGF121, is a freely diffusible protein; VEGF165 is
also secreted, although a significant fraction remains bound to the cell surface and the
extracellular matrix.VEGF189, by contrast, is almost completely sequestered in the
extracellular matrix (40). Among them, VEGF165 is the predominant isoform and is
commonly overexpressed in a variety of human solid tumors (41).

As shown in Figure 2, VEGFs signal through three tyrosine kinase receptors, known as Flt-1
(VEGFR-1), Flk-1/KDR (VEGFR-2) and VEGFR-3 predominantly expressed by endothelial
cells (37, 42). A degree of specificity has been shown for growth factor-receptor binding,
VEGF-B and PlGF-1 and -2 bind to VEGFR-1, whereas VEGF-A interacts with both
VEGFR-1 and -2. Vascular endothelial growth factor-C and -D specifically bind to
VEGFR-3 (43). Both VEGF-E and VEGF-F are exogenous subtypes. VEGF-E, encoded by
a gene found in the NZ7 Orf viral genome, has approximate 25% of amino acid identity with
VEGF-A and 17% with PDGF (44). VEGF-E tightly binds and stimulates VEGFR-2
similarly to VEGF-A, but not VEGFR-1 or VEGFR-3 (45). VEGF-F is a family of snake
venom-derived VEGFs (46). Among them, vammin and VR-1 fromthe venoms of Vipera a.
ammodytes and Daboia r. russelli bind only KDR with high affinity similar to VEGF-A but
not to other VEGF receptors (47). Tf-svVEGF and Pm-VEGF from the venoms of
Trimeresurus flavoviridis and Protobothrops mucrosquamatus have been shown to bind
Flt-1 in preference to KDR, unlike vammin and VR-1 (48, 49).

Both VEGFR-1 and -2 can promote angiogenesis and VEGFR-3 stimulation leads to
lymphangiogenesis (50). Binding with VEGFs leads to the dimerization of VEGFRs and
activation of downstream signaling cascades. Activation of the VEGF/VEGFR pathway
promotes endothelial cell growth, migration and survival. This pathway also mediates vessel
permeability and mobilizes endothelial progenitor cells. There is a general consensus that
VEGFR-2 is the dominant receptor in mediating the pro-angiogenic functions of VEGF-A
and this pathway has been prioritized for the development of antiangiogenic therapies.
Though VEGFR-1 has a 10-fold higher binding affinity for VEGF-A, its activation has less
impact on the activation of intracellular signaling intermediates than VEGFR-2 (51). It has
been reported that VEGFR-1 is critical for physiologic and developmental angiogenesis and
its function varies with the stages of development, the states of physiologic and pathologic
conditions, and the cell types in which it is expressed (36, 52). Apart from VEGFRs,
Neuropilin-1 and -2 are cell surface proteins that bind to the most common isoform of
VEGF-A, VEGF165, and may act as co-receptors to enhance VEGF signaling through
VEGFR-1 (53).

VEGF promotes tumor angiogenesis through several mechanisms, including enhanced
endothelial cell proliferation and survival; increased migration and invasion of endothelial
cells; increased permeability of existing vessels, forming a lattice network for endothelial
cell migration; and enhanced chemotaxis and homing of bone marrow derived vascular
precursor cells (54, 55). In addition to having proangiogenic effects, VEGF has several
important functions that are independent of vascular processes, including autocrine effects
on tumor cell function (survival, migration, invasion), immune suppression, and homing of
bone marrow progenitors to ‘prepare’ an organ for subsequent metastasis (56). Higher
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angiogenesis and VEGF expression have been detected in various human cancers including
colorectal cancer (57), breast cancer (58), non small cell lung cancer (59), renal cell cancer
(60), glioblastoma multiforme (61) and other tumors than corresponding nonmalignant
normal tissue. Among patients with the highest levels of VEGF expression, survival was
significantly worse than in patients with negative or lower levels of VEGF expression (62).
VEGF levels were predictive of future metastases independently of nodal status and
adjuvant chemotherapy, with a positive predictive value of 73% (63).

Recently, it has been found that VEGF-A mRNA splicing generates two families of proteins
by exon 8 distal splice site (DSS) selection that differ by their C′ terminal six amino acids
(Figure 1C), and these are termed VEGF-Axxx and VEGF-Axxxb, where xxx denotes the
amino acid number of the mature protein (64–66). Basal expression is dominated by VEGF-
Axxxb isoforms in many tissues such as in human vitreous fluid, circulating plasma, urine,
renal cortex, colonic epithelium, bladder smooth muscle, lung and pancreatic islets (66, 67).
However, in melanoma, colorectal carcinoma and bladder cancer cells as well as
proliferating dedifferentiated podocytes, VEGF-Axxx isoforms comprise the majority of
VEGF-A (68). Although both VEGF-A165 and VEGF-A165b bind VEGFR-2 with equal
affinity (68), VEGF-A165b inhibits several VEGF-A165-mediated processes including
endothelial cell migration in vitro, proliferation in vitro and vasodilatation ex vivo (65). In
tumors, overexpression of transfected VEGF-A165b delays the growth of melanoma,
kidney, prostate and Ewing sarcoma tumors (69). Tumors treated with VEGF-A165b are
paler, less haemorrhagic and visibly less vascularized, with reduced microvascular density
and increased necrosis (70).

VEGF as a Therapeutic Target
In as early as 1971, Folkman proposed that anti-angiogenesis might be an effective
anticancer strategy (7) based on the observation that tumor growth was associated with
marked vascularity (35). Recognition of the VEGF pathway as a key regulator of
angiogenesis has led to the development of several VEGF-targeted agents, including agents
that prevent VEGF-A binding to its receptors (71), antibodies that directly block VEGFR-2
(72, 73), and small molecules that inhibit the kinase activity of VEGFR-2 thereby block
growth factor signaling (74–76). Some of them were approved by FDA to clinical
applications (Figure 3).

Mechanisms of VEGF-targeted therapy
To block VEGF, several anti-angiogenic effects are expected (77). Firstly, it will inhibit new
vessel growth, perhaps accompanied by vessel regression and subsequent tumor cell death.
VEGF is a survival factor for endothelial cells (78) and VEGF withdrawal can induce tumor
endothelial cell death as well as prevent further angiogenesis (79, 80). Results from clinical
trials suggested a cytostatic effect of VEGF-targeted therapy, that is, tumor growth was
delayed, but there was little evidence of tumor shrinkage (81), providing indirect evidence
that VEGF-targeted therapy is cytostatic for blood vessel growth, as was first hypothesized
(7).

Secondly, blocking VEGF will induce endothelial cell apoptosis. VEGF mediates numerous
pro-survival pathways in endothelial cells including induction or activation of BCL2, Akt,
survivin and inhibitor of apoptosis proteins (IAPs) (82, 83). As VEGF mediates endothelial
cell survival functions, loss of VEGF signaling has been proposed to lead to endothelial cell
apoptosis. Using an inducible VEGF expression system in glioma cells, Benjamin and
Keshet (84) demonstrated that shutting off VEGF production leads to the detachment of
endothelial cells from the walls of preformed vessels and their subsequent death by
apoptosis, indicating that VEGF was required for endothelial cell survival in tumor
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xenografts (Figure 4). Many studies using VEGF-targeted therapies in murine models
demonstrated that inhibition of VEGF signaling could lead to tumor endothelial cell
apoptosis, although rarely did such therapies lead to regression of established tumors (85,
86).

In addition, anti-VEGF therapy will cause blockade of incorporation of haematopoietic and
endothelial progenitor cells. VEGF can stimulate vasculogenesis in tumors by recruiting
bone marrow-derived haematopoietic progenitor cells (HPCs) and endothelial progenitor
cells (EPCs) (55, 87). In preclinical models the rate of incorporation of EPCs is typically 5–
50% for most studies (77). While in humans the percentage of tumor vessels derived from
bone marrow precursors is much lower (88). Although the incorporation rate of EPCs into
tumor vasculature may be low, these cells provide a crucial function in sustaining
angiogenesis in growing tumors. Thus, blockade of VEGFR-1+ HPCs and VEGFR-2+ EPC-
mediated vasculogenesis in tumors may be an important mechanism of VEGF-targeted
therapy in selected tumor types. Indeed, selective inhibition of VEGFR-1+ HPCs eliminates
the pre-metastatic niche, reducing the formation of micrometastases. Selective targeting of
VEGFR-2+ EPCs results in the formation of micrometastases without vascularization (56).
The chemotaxis of EPCs is largely under the influence of VEGF (89). Preclinical studies, as
well as early-phase clinical studies, have shown that VEGF-targeted therapy can inhibit the
mobilization of EPCs and their presumed incorporation into the tumor vasculature (90).
However, there exists controversial report that BM-derived, VEGFR-2 positive cells or other
endothelial cell precursors do not contribute to the angiogenic tumor vasculature (91).

VEGF can increase the expression of nitric oxide (NO), prostacyclins and other soluble
mediators that lead to vasodilation (92). Therefore, VEGF targeted therapy will cause
vascular constriction. In clinical trials, shortly after the administration of VEGF-targeted
therapy (within 48 h), a decrease in tumor perfusion has been observed with functional CT
scan (93), which suggested that this is not due to vessel destruction, but more probably
effects on the integrity (permeability) and function (vessel perfusion) of the vascular bed.
The acute effects on blood flow are probably due to decreases in production of the
vasodilators NO and prostacyclin. Owing to the fact that many of the abnormalities of the
tumor vascular network are secondary to VEGF, Jain has hypothesized that VEGF-targeted
therapy can ‘normalize’ the vasculature of tumors (24, 94). This window of normalization in
mice is relatively short (days) and occurs soon after the initiation of VEGF-targeted therapy.
Expression of all VEGFRs, as well as NP1 and NP2, has been detected on tumor cells (95),
which have been shown to promote survival, proliferation and metastasis via autocrine
mechanisms (96, 97). Thus, VEGF-targeted therapy might have a direct inhibitory effect on
tumor cells in addition to its effect on the vasculature (98, 99). Immune modulation may also
be involved in anti-VEGF therapy. Accumulating evidences suggest that VEGF has an
important role in establishing immune privilege of tumors by blocking dendritic cell (DC)
differentiation (100). Treatment of tumor-bearing mice with neutralizing VEGF antibodies
resulted in an increased number of spleen and lymph node DCs and improved DC
differentiation (101). Treatment with VEGF-targeted antibodies was also shown to improve
anti-tumor peptide cytotoxic T-lymphocyte responses and efficacy of tumor immunotherapy
in mouse models (102). Thus, VEGF is a strong negative modulator of DC function in the
tumor microenvironment, which contributes to immune privilege of tumors in the host. It is
also now clear that VEGF receptors can be expressed and functional on cancer cells,
indicating that anti-VEGF treatment strategies may have direct antitumor effects (103).

VEGF Targeted and anti-VEGF Drugs
Bevacizumab—At present, antibodies are indisputably the best established class of
binding molecules for tumor diagnosis and therapy (104, 105). Bevacizumab is a humanized
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monoclonal antibody composed of the consensus human IgG1 framework and antigen-
binding regions (93%) and compliment-determining regions from the murine mAb A.4.6.1
(7%) (106). Bevacizumab neutralizes all isoforms of human VEGF and inhibits VEGF-
induced proliferation of endothelial cells in vitro with an ED50 of around 50 ng/ml.
Distribution analyzed in a rabbit model demonstrated that the majority of bevacizumab
remained in the plasma, with a large quantity being distributed to the heart, testes, bladder
and kidney as compared to other organs (107) with a circulating half-life of ~20 days (108).
Bevacizumab was tested in combination with several chemotherapeutic drugs such as
doxorubicin, topotecan, paclitaxel and docetaxel, showing an additive antitumor effect (109,
110). The combination of bevacizumab with paclitaxel resulted in marked tumor growth
suppression in both the CWR22R androgen-independent xenograft model of prostate cancer
or in the OVCAR3 ovarian tumor model (111, 112). The combination regimen significantly
reduced tumor growth as compared to bevacizumab or paclitaxel alone. It has also been
reported that bevacizumab could reverse the protection effect of endothelial cells by the high
levels of VEGF produced by the tumor from the antiangiogenic effects of docetaxel (113).
Bevacizumab is currently approved by the FDA for patients with metastatic colorectal
cancer, non-small cell lung cancer, recurrent glioblastoma multiforme and metastatic breast
cancer in combination with chemotherapy (114, 115) (116) and renal cell carcinoma in
combination with interferon alpha (117).

Pegaptanib, the VEGF-A aptamer—Aptamers are RNA or DNA oligonucleotides that
have been selected for their ability to bind proteins with both high affinity and high
specificity. The selection of aptamers with specificity for virtually any protein target has
become straightforward following the advent of systematic evolution of ligands by
exponential enrichment (SELEX) (118). It is believed that aptamers are essentially non-
immunogenic even when administered in excess of therapeutic doses (119, 120).
Unmodified nucleic acids are very susceptible to nuclease attack and an unmodified
antisense oligonucleotide has a serum half-life less than a minute (121). Therefore, F- and
NH2-substituted ribonucleotides were subsequently used in the development of resistant
aptamers (122, 123).

Pegaptanib is an anti-VEGF RNA aptamer, selected by having chosen VEGF165 as the target
with SELEX methodology using F-substituted nucleotides (122–124). For detailed screening
process, please see the review (125). Pegaptanib inhibited binding of 125I-labeled VEGF165
to human umbilical vein endothelial cells (HUVECs) and also to human dermal
microvascular endothelial cells, with IC50 values in the range of 0.75–1.4 nM. Pegaptanib
also inhibited VEGF165-mediated phosphorylation of VEGFR-2 and phospholipase Cγ and
inhibited VEGF165- induced calcium mobilization in HUVECs (126). The binding of
pegaptanib to VEGF involves close contact with cysteine-137 of VEGF165 so pretreatment
of the cells with pegaptanib inhibited proliferative responses only to VEGF165, but not to
VEGF121 (123). This residue is contained within the 55-amino-acid heparin-binding domain
of VEGF, which is not present in VEGF121 (Figure 4) (127). In 2004, the US FDA approved
pegaptanib sodium (MacugenR) for the treatment of all types of neovascular age-related
macular degeneration (AMD) (128).

Certain guanosine-rich phosphodiester oligodeoxynucleotides, termed G-rich
oligonucleotides (GRO), have antiproliferative activity against a variety of cancer cell lines
(129, 130). An active GRO (named GRO29A) can cause cell cycle arrest and induction of
cell death in human cancer cell lines but not in nonmalignant human cells (130). Several
phase I clinical trials showed that AS1411, the truncated version of GRO29A was well
tolerated and had promising clinical activity and now it is in phase II clinical trial to treat
patients with relapsed or refractory acute myeloid leukemia (AML) and renal cell carcinoma
(RCC) (131). It has been reported that AS1411 binds with nucleolin and nuclear factor-κB
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(NF-KB) essential modulator (NEMO) to inhibit NFκB pathway most probably(132). Other
VEGF specific aptamers have also been developed and showed potential clinical
applications in cancer detection and therapy (133).

VEGF Trap—VEGF Trap is a soluble receptor to VEGF developed by Regeneron, Inc.
VEGF Trap is a high-affinity anti-VEGF compound, engineered by combining domains
from VEGFR-2 and VEGFR-1. Initial animal data revealed that soluble VEGFR had poor
bioavailability when administered subcutaneously (s.c.). These characteristics were
hypothesized to be related to a high positive charge of the protein, which led to the
deposition of Trap molecules at the s.c. injection site due to nonspecific adhesion to
components of the extracellular matrix. To overcome this issue, investigators removed the
third Ig domain of VEGFR-1 (with significant basic charge), replaced it with the third Ig
domain from VEGFR-2, and added a dimerization domain from the Fc region of human IgG
(134). These changes decreased the isoelectric point of VEGF Trap and increased
bioavailability after s.c. administration, with an increase in Cmax and area under the curve of
VEGF Trap. The structural changes introduced into VEGF Trap dramatically improved the
affinity of the VEGF Trap molecule for VEGF-A, VEGF-B, and placental growth factor. In
equilibrium binding assays, VEGF Trap, with a molecular weight of 115 kDa, had an
affinity for VEGF of about 1 pM, significantly improved from the 5 pM binding affinity
seen with a Trap molecule made solely from VEGFR-1 domains (134). In addition, VEGF
Trap binds placental growth factor with an affinity of 45 pM, compared with the VEGF
affinity of bevacizumab of 500 pM. With higher affinity, the goal of depleting tissue and
plasma VEGF is hypothesized to be better accomplished.

Several in vitro experiments have shown the potential antitumor efficacy of VEGF Trap
(134, 135). When given s.c. twice weekly, VEGF Trap led to significant decrease in tumor
size for the xenografts tested when compared with control treated animals.
Immunohistochemical staining showed a dramatic, dose-dependent reduction in tumor
vasculature in the VEGF-treated mice (134). VEGF Trap treatment also led to the
suppression of growth in pancreatic cell lines and was accompanied by a significant
reduction of tumor microvessel density (MVD) (135). In a neuroblastoma xenograft modal,
treatment with VEGF Trap biweekly led to 79% decrease in mean tumor weight after 36
days of treatment (136). VEGF Trap also has been used in combination with conventional
cytotoxic chemotherapeutic agents. The combination of VEGF Trap and paclitaxel led to a
98% reduction in tumor volume with associated reduction in ascites (137). Correlative work
showed significant decrease in tumor vasculature in the tumors treated with VEGF Trap and
paclitaxel. Treatment with VEGF Trap alone or paclitaxel alone resulted in only modest
rates of apoptosis (10% and 40%, respectively), whereas the combination of VEGF Trap and
paclitaxel led to apoptosis in >90% of tumor cells. In a phase I clinical trial, 47 patients with
refractory solid tumors or non-Hodgkin's lymphoma received VEGF Trap at doses ranging
from 0.3 to 7.0 mg/kg IV every 2 weeks. The results showed that i.v. VEGF Trap was well
tolerated at the dose levels tested. In addition, changes in volume transfer constant measured
by DCE-MRI at baseline and at 24 hours after administration indicate a possible dose-
related change in this pharmacodynamic marker (138).

VEGFR tyrosine kinase inhibitors sunitinib and sorafenib—Tyrosine kinase
inhibitors currently approved for use in patients with solid tumors include imatinib,
erlotinib, gefitinib, sorafenib and sunitinib. These agents compete with ATP for binding
within the intracellular domain of various wild-type and/or mutated receptor tyrosine
kinases, which represent a new paradigm in anticancer therapy (139). Unlike Bevacizumab,
VEGF Trap and Pegaptanib, which target extracellular VEGF, tyrosine kinase inhibitors
target the intracellular signaling pathways of VEGF receptors. Tyrosine kinase inhibitors
target not only VEGF receptors and but also a variety of receptors that rely on a tyrosine
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kinase component to function properly, including PDGF receptor, FMS-like tyrosine kinase
3 (FLT3), RAF, and c-KIT receptors (140) .

Sunitinib malate, marketed by Pfizer as Sutent, has been shown to be a potent inhibitor of
VEGF receptors, FLT3, c-KIT, and PDGF receptors in vitro (141). These targets give
sunitinib direct antitumor and antiangiogenic properties (140).Certain types of cancer,
including RCC, demonstrate a hypervascular histology, which is thought to be due to
overexpression of VEGF and PDGF (142). Inhibition of VEGF and PDGF by sunitinib
prevents further growth of new vessels. The direct antitumor effects of sunitinib are a result
of its actions on the FLT3 and c-KIT receptors. Currently, sunitinib is approved by FDA as a
second-line treatment of mRCC in patients who have not responded to or who are not
eligible to receive IL-2 and as a monotherapy for treatment of advanced renal cell carcinoma
(RCC) (143).

Similar to sunitinib, sorafenib inhibits VEGF receptors, PDGF receptors, FLT3, RAF-1, and
BRAF in vitro (144). RAF-1 and BRAF belong to RAS family and are involved in normal
cell proliferation, differentiation, and transformation. This signaling pathway is also present
in tumor cell lines and plays a role in the pathogenesis of various cancers. VEGF requires a
signaling cascade through the RAF–MEK–ERK pathway to take into effects. This allows
sorafenib to counteract the activity of VEGF by two mechanisms: inhibiting the VEGF
receptor and blocking the downstream activity of VEGF (144). In preclinical trials,
sorafenib was shown to have broad-spectrum antitumor activity in mouse models and was
found to prevent the growth of tumors but not to reduce tumor size (144). Sorafenib was
approved by FDA for patients with metastatic renal cell carcinoma and hepatocellular
carcinoma (145). Sunitinib and sorafenib share a similar mechanism of action and primarily
target tumor angiogenesis by inhibiting a variety of tyrosine kinases. However, their efficacy
appears to be differerent. Sorafenib does not result in tumor shrinkage, but sunitinib
significantly reduces tumor size (146).

Pazopanib (GW786034) is an oral, second-generation multi-targeted tyrosine kinase
inhibitor targeting VEGF-1, -2, and -3 receptors, PDGF-α and-β receptors, and c-kit.
Pazopanib exhibited good potency against all of the human VEGFRs and closely related
tyrosine receptor kinases in vitro, and demonstrated antitumor activity in several human
tumor xenografts, including renal cell carcinoma (RCC), and breast and lung cancer (147).
A phase II clinical trial with 225 patients with metastatic RCC showed that overall RR was
35% and median duration of response was 68 weeks, supporting the further development of
pazopanib in advanced RCC (148). Another phase II single-arm study in patients with
recurrent glioblastoma demonstrated that pazopanib was reasonably well tolerated with a
spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib
did not prolong PFS in this patient population but showed in situ biological activity as
demonstrated by radiographic responses (149).

Besides TKIs, antibodies blocking VEGFR2 also has been developed. Ramucirumab
(IMC-1121B; ImClone Systems, New York, NY) is a fully human immunoglobulin G1
monoclonal antibody (MAb) that binds with high affinity (approximately 50 pM) to the
extracellular VEGF-binding domain of VEGFR-2 (150). Ramucirumab binds to a VEGFR-2
epitope involved in ligand binding and block VEGF ligands from binding this site and
activating the receptor (151). Inhibition of VEGF-stimulated VEGFR-2 activationby
ramucirumab conferred significant antitumor activity in a range of malignancies in animal
models as single agents and in combination with other therapeutics (152). In a phase I
clinical trial, patients with advanced solid malignancies were treated onceweekly with
escalating doses of ramucirumab. The results showed that tumor perfusion and vascularity
decreased in 69% of evaluable patients (153).
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Combination of anti-VEGF drugs with either chemotherapy or radiation
therapy—Anti-angiogenetic drugs are either used either as a single agent or adjunctive to
chemotherapy. It is a sound deduction that a treatment aimed at reducing the blood supply of
a tumor would also reduce the delivery of any other therapy such as chemotherapy and
reduce the oxygen supply necessary for a response to radiotherapy (154). Indeed, a phase II
trial tested the combination of 5-fluorouracil and leucovorin with two different doses of
bevacizumab for treating metastatic colorectal cancer. The higher-dose group resulted in
lower response rate than the lower-dose group, indicating that while bevacizumab might be
antagonistic with chemotherapy, especially in excessive doses (155). Another example is
that addition of bevacizumab to capecitabine treatment of metastatic breast cancer patients
did not increase TTP or OS, although RR increased from 9.1% to 19.8 (115). However,
synergism of anti-angiogenetics and chemotherapeutics has been observed in patients with
colon cancers (114), non-small cell lung cancers (156). One explanation is that blockage of
VEGF signaling, bevacizumab induces normalization of newly formed vessels, and thus
reduces the interstitial tissue pressure (ITP) within tumors, allowing enhanced delivery of
chemotherapy to the tumors (90). Moreover, the combination of anti-VEGF and
chemotherapy might enhance killing of endothelial cells in the tumor blood vessels (79).
Multiple preclinical studies suggest that combining radiation and angiogenesis inhibitors
enhances the therapeutic ratio of radiation therapy (157, 158), though there is still concern
that a reduction of tumor oxygenation resulting from inhibition of angiogenesis with
destruction of the tumor vasculature could render the tumor hypoxic and thereby more
radioresistant. The rationale came from the fact that endothelial cell apoptosis determines
tumor response to RT (159) and RT induces VEGF expression and secretion by tumor cells,
thereby inducing a paracrine endothelial protective stress response (160). However, the
optimal timing and duration of antiangiogenic therapies to maximize radiation’s therapeutic
ratio need be further determined (161).

Toxicity and Resistance with VEGF Inhibitors
Treatments that interfere with VEGF function are generally well tolerated although a
specific side-effect profile is associated with this treatment modality. The most common
toxicities are hypertension (grade 3 in approximately 10% patients), proteinuria (usually
grade 1–2), hemorrhage, arterial and venous thrombotic events (104), impaired wound
healing and, of particular concern in the initial phase II bevacizumab trials in ovarian cancer,
gastrointestinal perforation (162). Although the role of VEGF in normal endothelial
homoeostasis is not well understood, the rapid regression of capillaries in several different
tissues such as pancreatic islets, thyroid, adrenal cortex, choroid plexus and small intestinal
villi is seen within a few days of starting treatment with VEGF inhibitors in animal models
(163). Loss of fenestration of renal glomerular capillaries also occurs, which might
contribute to hypertension and proteinuria (164). VEGF also promotes endothelial nitric
oxide production, and the removal of this stimulus may lead to vasoconstriction and
hypertension (163, 165). VEGFR TKIs have also been associated with clinical
hypothyroidism, which could be caused by the inhibition of iodine uptake in the thyroid
(166).

One of the most common features after anti-VEGF therapy was the occurrence of a rapid
decrease in density in central areas of the tumor in contrast to a sustained rim of well-
vascularized tumor tissue in the surrounding area, forming a pseudo-capsule at the interface
between the tumor and normal tissue. After various durations of exposure, some tumors
eventually re-grew from peripheral areas, suggesting that the tumor rim is the primary place
of evasion from anti-angiogenic VEGFR-targeting agents (167). It has been proposed that
tumor collapse causes central regions of hypoxia that may help circumvent VEGFR-
inhibited signaling pathways and promote evasion from VEGFR inhibitors in peripheral
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areas (168). Mutation of VEGFR/PDGFR or altered receptors or polymorphisms may also
have a role in the resistance to anti-VEGF/VEGFR therapy. The resistance of this peripheral
rim of viable tumor cells may be overcome by combination TKIs with targeted agents
directed against kinases such as mammalian target of rapamycin (mTOR), mitogen-activated
protein kinases (MAPKs) and protein kinase C (PKC) or the addition of cytotoxic drugs to
destroy subclones evading multitargeted agents (139). In addition to morphological
differences, tumor endothelial cells have distinct gene expression profiles (169) compared
with normal endothelium and can also be cytogenetically abnormal (32), which may also
contribute to the resistance to antiangiogenic treatment strategies.

A decrease in the expression level of soluble VEGFR has been consistently reported in
patients receiving sunitinib treatment. Conversely, an increased level of VEGF seems to
occur in many patients receiving treatment with sunitinib and may have a role in the flare-up
of tumor growth that may occur after sunitinib discontinuation (170). Activation of
alternative signaling pathways may overcome VEGFR inhibition. In this latter phase of
circumvention, which produces phenotypic resistance to VEGFR-2 blockade, tumor cells
upregulate the expression of other pro-angiogenic factors including PDGF/PDGFR and
FGFs that reactivate angiogenesis in a VEGFR-independent manner (171). Exposure to
VEGFR inhibitors upregulates ephrin B2 and ephrin B4, which are primarily expressed by
endothelial cells and have an important role in regulating the assembly of vascular cells into
stable networks by mediating endothelial–mesenchymal cell interactions (172). As
mentioned above, VEGF-A165b contains binding domains for the vast majority of anti-
VEGF-A antibodies, including therapeutic antibodies such as bevacizumab. The dose of
Bevacizumab required to prevent tumor growth in VEGF-A165-expressing tumors had
absolutely no effect on VEGF-A165b-expressing tumors (68), which suggests that treatment
of patients with tumors expressing significant levels of VEGF-Axxxb with bevaciumab may
not be effective, because VEGF-A165b will inhibit the effect of this anti-VEGF-A antibody.

Evaluation of Anti-angiogenesis Therapy

Imaging blood flow and vascular volume—The most commonly used end-point for
assessing anti-angiogenic treatment in clinical studies is microvessel density (MVD),
measured from biopsies taken before and at one or more times after treatment, using a
variety of immunohistochemical vascular markers such as CD34, CD31, CD105 and von
Willebrand factor (vWF) to identify the vessels (90). However, measurement of MVD is
problematic for assessing the vascular efficacy of antiangiogenic agents (82) since blocking
angiogenesis may be accompanied by a proportional reduction in tumor growth that would
not result in a net change in MVD. Besides, vessel counts and/or density may remain
unchanged even in the face of effective therapy (173). Therefore, although a reduction in
MVD following treatment is indicative of an antiangiogenic effect, it does not mean that no
change in MVD is indicative of no antiangiogenic effect, as is commonly assumed. In fact,
recent studies with anti-DLL4 therapy (targeting the Notch pathway on endothelial cells)
have indicated that vascular functions but not numbers are essential for promoting tumor
growth (174, 175). Notch ligands and their receptors are involved in arteriogenesis, vascular
remodeling, and maturation (176). Paradoxically, inhibition of Notch signaling evokes
suppression of tumor growth accompanied by increased levels of tumor neovascularization
(177). These new findings challenge the classical thinking of tumor angiogenesis and tumor
growth where more tumor blood vessels would make a tumor growing faster (7).

Non-invasive imaging methods for measuring functional vascular volume are available and
can provide a noninvasive means of detecting angiogenesis within and about the perimeter
of the whole tumor and give functional information. For instance, PET studies with 15O-
oxygen and related tracers can offer direct physiological measurement of circulatory
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parameters of regional blood flow and vascular volume (178). Ultrasound (particularly
microbubble contrast enhanced ultrasound) is also a valuable imaging modality to determine
the tumor microvascular blood volume and blood velocity (179). Especially, dynamic
contrast-enhanced ultrasonography (DCE-US) allows repeated examinations and provides
both morphologic and functional analyses. Several quantitative parameters considered as
indicators of tumor flow such as the peak intensity (PI) or time-to-PI can be extracted from
the time-intensity curves of contrast uptake (180). Using DCE-US, the antitumor efficacy of
AVE8062, a tumor vasculature disruptive agent, has been assessed in melanoma-bearing
nude mice (181). In a human melanoma xenograft model, CEU measures of tumor
neovascularity was compared with the expression of molecular markers of angiogenesis
(182). After power Doppler and intermittent pulse-inversion harmonic imaging (PI-HI), the
tumor tissues were surgically removed and sectioned in the same planes as the ultrasound
images and immunohistochemical staining for VEGF were carried out. Although there is a
trend of correlation between percent area stained with VEGF and intermittent PI-HI results,
no statistical significance was achieved. In a follow-up study using similar approach in two
melanoma models, linear regression analysis indicated statistically significant correlations
between percent area stained with VEGF and power Doppler and intermittent PI-HI
measures of tumor neovascularity (183). Power Doppler ultrasonography has been used to
demonstrate the presence of blood flow in small vessels and it was also found that the
vascular signal correlates with histopathological quantification of the vascular density of
synovial tissue (144).

Dynamic contrast-enhanced MRI (DCE-MRI) has also been well established to investigate
angiogenesis within tumors, and in particular the response to antiangiogenic therapy. The
leakage of MR contrast agent through tumor vessels results in a fast “wash-in” of contrast
coupled with the rapid “wash-out,” and allows a functional analysis of the tumor
microcirculation (184). DCE-MRI has been the most utilized pharmacodynamic imaging
modality in early phase clinical trials of angiogenic inhibitors. This functional imaging
technique is non-invasive and can be used to serially assess tumor vasculature in vivo (185).
DCE-MRI can be performed with low-molecular-weight contrast media (LMCM) such as
Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) or macromolecular contrast media
(MMCM) such as Gd conjugated human serum albumin (Gd-HSA) (186). DCE-MRI can be
used to demonstrate the antiangiogenic effects of drugs early after their administration, and
can predict traditional treatment response parameters such as changes in tumor size. The
ability to accurately monitor angiogenesis response to therapy means that drug efficacy can
be established at a very early stage of treatment so that non-responding patients may be
detected and management plans altered on a timely basis (187). It has been shown that DCE-
MRI can detect responses to PTK/ZK (a VEGF receptor tyrosine kinase inhibitor) therapy as
early as two days after therapy with significant reductions in area under gadolinium-
contrast-medium curve (AUGC) (30) or permeability parameters (188), which also predict
subsequent response. LMCM DCE-MRI has also shown significant reductions in
permeability values in patients treated with the antivascular agents AG-013736 (an inhibitor
of the VEGF, PDGF, c-Kit receptor tyrosine kinases) and SU5416 (a selective inhibitor of
VEGFR-2 tyrosine kinase) activity (189). Although consensus is still lacking on the exact
kinetic model to be used in analyzing DCE-MRI data, the differences among the various
methods are often marginal. Therefore, DCE-MRI is rapidly emerging as the imaging
technique of choice for monitoring clinical response in trials of new antiangiogenic and
antivascular therapies.

However, like MVD measurements, a negative effect on vascular volume indicated by non-
invasive imaging cannot be interpreted as absence of antiangiogenic effect, either (190).
Indeed, a study in a xenografted model of human breast cancer showed a poor correlation
between MVD and fractional blood volume estimates as measured by functional MRI and
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macromolecular contrast agents (86). Tumor blood flow rate is an also accessible end-point
for clinical studies. A decrease in tumor blood flow rate would be expected if MVD
decreased and its measurement would provide additional functional information linked to
oxygen availability and tumor growth. However, some pre-clinical studies have
demonstrated an increase in tumor blood flow rate following antiangiogenic therapy. For
example, Teicher et al. (191) showed that tumor blood flow and oxygenation significantly
increased in the first weeks of treatment with TNP-470, a synthetic analogue of fumagillon.
Following antiangiogenic therapy, blood flow rate within individual vessels may be
improved, which has been termed as ‘‘normalizing tumor vasculature’’ (192). The
mechanisms may lie in that the most immature and inefficient tumor blood vessels was
‘‘pruned’’ from the tumor vascular network by antiangiogenic therapy, leaving a more
efficient system (192). In addition, many pro-angiogenic growth factors are associated with
high vascular permeability and their withdrawal can reverse this effect (193). It is possible
that a decrease in vascular permeability to macromolecules could improve blood flow rate
by reducing tumor interstitial fluid pressure. Thus, measurement of vascular permeability or
interstitial fluid pressure could provide alternative end-points for assessing tumor vascular
effects of antiangiogenic agents (190).

Biomarkers and molecular imaging—A biological marker (biomarker) is defined as “a
characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”
(194). For example, in response to sunitinib exposure, genes involved in cell survival and
proliferation (p85PI3K); adhesion (cadherin 11 (CDH11) and ephrin receptor B4 (EPHB4));
and transcription (VHL) were overexpressed, and may be investigated as potential
biomarkers for clinical studies (195). In addition, a Phase II study in patients with HCC who
were treated with sorafenib suggested that phosphorylated extracellular signal regulated
kinase (ERK) may represent a useful marker, as higher baseline levels of phosphorylated
ERK in tumors correlated with slower tumor progression (196). However, transcription
profiling usually requires quality-controlled fresh tumor tissues that may not be readily
available in clinical trials and clinical practice. Thus, surrogate molecular markers that were
more easily accessible for pre-treatment and post-treatment monitoring in clinical studies are
in great need. Other potentially promising biomarkers for anti-angiogenesis therapy
monitoring include circulating proteins related to angiogenesis such as soluble VEGFR-2
(sVEGFR-2), sVEGFR-3 and sKIT, circulating endothelial cells and/or their stem-cell
progenitors (197). Biomarkers have great value in early efficacy and safety evaluations,
disease diagnosis/staging, indicating disease prognosis, and prediction/monitoring of clinical
response to an intervention. Imaging techniques can also be used as biomarkers to provide
valuable information at the structural/functional and/or molecular level.

In view of the critical role of VEGF/VEGFR in cancer progression, development of VEGF-
or VEGFR-targeted molecular imaging probes could serve as a new paradigm for the
assessment of anti-angiogenic therapeutics, and for better understanding the role and
expression profile of VEGF/VEGFR in many angiogenesis-related diseases. Due to the
soluble and more dynamic nature of VEGF, imaging VEGF expression and explanation of
the imaging results are very difficult, although single photon emission computed
tomography (SPECT) or positron emission tomography (PET) imaging of VEGF has been
performed with radioisotopes labeled anti-VEGF antibody (198). The more rational design
is to use radiolabeled VEGF isoforms for SPECT or PET imaging of VEGFR expression.
With SPECT imaging, recombinant human VEGF121 was labeled with 111In for the
identification of ischemic tissue in a rabbit model, where unilateral hind-limb ischemia was
created by femoral artery excision (15). VEGF121 has also been labeled with 99mTc through
an “Adapter/Docking” strategy and the tracer was tested in a murine mammary carcinoma
with tumor uptake of about 3 %ID/g (199). Cai et al. have labeled VEGF121 with 64Cu for
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PET imaging of tumor angiogenesis and VEGFR expression (200). MicroPET imaging
revealed the dynamic nature of VEGFR expression during tumor progression in that even for
the same tumor model, VEGFR expression level can be dramatically different at different
stages (Figure 5A). It is well known that all VEGF-A isoforms bind to both VEGFR-1 and
VEGFR-2 (201). A VEGFR-2-specific PET tracer has been developed using the
D63AE64AE67A mutant of VEGF121 (VEGFDEE) generated by recombinant DNA
technology. The renal uptake of 64Cu-DOTA-VEGFDEE was significantly lower than that
of 64Cu-DOTA-VEGF121 as rodent kidneys expressed high levels of VEGFR-1 based on
immunofluorescence staining (202). With the development of new tracers with better
targeting efficacy and desirable pharmacokinetics, clinical translation will be critical for the
maximum benefit of VEGF-based imaging agents. Peptidic VEGFR antagonists can be
labeled with short-lived isotopes such as 18F and they may allow for higher throughput than
antibody- or protein-based radiotracers, as one hour post-injection is usually sufficient for a
peptide-based tracer to clear from the non-targeted organs and give high contrast images
(203).

Ultrasonography (US) is by far one of the most commonly used clinical imaging modalities
because it is safe and cost effective. Ultrasonic contrast agents such as microbubbles have
been the subject of active research, especially in recent years, with added interest in
developing site-directed ultrasonic contrast agents (204). With at least several micrometers
in diameter, microbubbles are too large to extravasate so only the tumor endothelium can be
targeted (205). Moreover, acoustic destruction of “payload-bearing” microbubbles can be
used to deliver drugs or to augment gene transfection (206). Angiogenesis-targeted
microbubbles may also have applications in site-specific therapy for ischemic tissues or
tumors. Thus, VEGFR-2 is an excellent candidate for targeted untrasound imaging since it is
almost exclusively expressed on activated endothelial cells (207). In a mouse model of
pancreatic adenocarcinoma, anti-VEGFR2 or anti VEGF-VEGFR complex antibodies
conjugated microbubbles were used to image and quantify vascular effects of two different
anti-tumor therapies in both subcutaneous and orthotopic pancreatic tumors (205).
Significant signal enhancement of tumor vasculature was observed when compared with
untargeted or control IgG-targeted microbubbles. Video intensity from targeted
microbubbles also correlated with the expression level of the target (VEGFR-2 or the
VEGF-VEGFR complex) and with MVD in tumors under therapy. In another report,
Willmann et al. have imaged VEGFR-2 expression in two murine tumor models using anti-
VEGFR2 monoclonal antibody conjugated microbubbles (208, 209). Contrast-enhanced
ultrasound imaging using targeted microbubbles showed significantly higher average video
intensity compared with control microbubbles in both tumor models (Figure 5B). These
studies support that targeted microbubbles can be used for non-invasive, vascularture-
targeted molecular imaging of tumor angiogenesis and for in vivo monitoring of vascular
effects after therapy.

Although optical imaging may not be widely used in clinical settings, near infrared (NIR)
(700–900 nm) approaches provide opportunities for rapid and cost-effective preclinical
evaluation in small animal models. Optical imaging has been used to study gene expression
(210), tumor angiogenesis, physiological function of tumors, and tumor metastasis (211). In
a transgenic mouse model where a VEGF promoter was chosen to drive a GFP reporter
gene, VEGF expression during wound healing and possible impairment of wound healing
due to collateral tissue damage was imaged in vivo (210). Human VEGF has also been
conjugated to a self-assembled “dock and lock” system and retained its functional activities
(212). After incorporating an additional cysteine residue for site-specific modification, a
NIR fluorescent dye Cy5.5 (maximum emission 696 nm) was conjugated and the resulting
Cy5.5-VEGF was used for in vivo imaging. Although tumor contrast was observed after
administration of the probe, no information was reported about the whole body distribution

Niu and Chen Page 13

Curr Drug Targets. Author manuscript; available in PMC 2013 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of Cy5.5-VEGF (212, 213). Another component of optical imaging is bioluminescence
imaging (BLI), which can be used to detect very low levels of signal because the emitted
light is virtually background free (214). Non-invasive indirect imaging of VEGF expression
with BLI in living transgenic mice has also been reported, where a two-step transcriptional
amplification approach was used to augment the transcriptional activity of the relatively
weak VEGF promoter (215).

Conclusions and perspectives
As a key regulator of tumor angiogenesis, VEGF is definitely an effective target for
prevention and control of malignant diseases especially solid tumors, which has been
substantiated by emerging evidences both preclinically and clinically. However, the
complexity of the interplaying pathways during the angiogenesis process is still not fully
unveiled. Sometimes controversial conclusions have been drawn from different experiments
and clinical trials with different tumor types and patients subgroups. How to develop new
agents to better block VEGF/VEGFR pathway and combine currently available agents to
realize better tumor control are two major issues.

One obstacle in anti-VEGF/VEGFR therapy lies in that VEGF is not the only angiogenic
factor generated by tumor tissues. For example, fibroblast growth factor-2 (FGF-2), platelet-
derived growth factors (PDGFs), angiopoietins (Ang), hepatocyte growth factor (HGF), and
insulin-like growth factors (IGFs) are all frequently produced by malignant cells (216).
Moreover, tumor-produced angiogenic factors not only individually induce angiogenesis or
vasculogenesis via their own receptors but also cross-communicate with each other to
synergistically induce tumor neovascularization (217). In addition to a positive interplay
between various angiogenic factors, some of them are negatively interacted. One example is
the interaction between PlGF and VEGF-A .When PlGF and VEGF-A are expressed in
different cell populations, the homodimeric form of PlGF can compete with VEGF-A for
binding to VEGFR-1, allowing more VEGF-A to interact with its functional receptor,
VEGFR-2. However, when PlGF and VEGF are synthesized in the same cell population,
PlGF and VEGF can preferentially form biologically inactive heterodimers, which makes
less VEGF-A homodimers available (218, 219). Thus, PlGF both positively and negatively
modulate VEGF-A function depending upon its temporal and spatial relation to VEGF-A
expression. The multitargeted approach with tyrosine kinase inhibitors or combination of
specific single-targeted agents seems to have advantages in synergistic therapeutic effect and
to overcome drug resistance, especially for anti-angiogenesis related therapy. A
disadvantage of using multitargeted agents is that it might be difficult to determine which
particular kinase inhibition(s) results in an antitumor effect.

Another hurdle is that preclinical models have limitations and thus we may not be able to
appreciate the full extent of mechanisms associated with inhibiting VEGF in these types of
studies. Typically, preclinical models of tumor growth are quite rapid and are supported by
vascular structures that likewise grow rapidly. Thus, tumor vessels in murine models tend to
be more plastic and responsive to anti-angiogenic therapy. Although functional changes in
the vasculature of humans receiving anti-VEGF therapy have been clearly observed with
sophisticated imaging techniques, the tumor response (if any) is much less dramatic than
observed in mice (220, 221). Therefore, preclinical findings should be extrapolated to
clinical situations with caution.

The effectiveness of anti-angiogenesis drugs does not always translate into changes in the
diameter of the tumor, making the radiological evaluation of efficacy using standard
RECIST and/or WHO criteria inappropriate (167). Although related biomarkers such as
RNA profiling from biopsy samples, soluble receptors and progenitor cells from serum are
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being investigated as correlating indicators, non-invasive imaging modalities are under
intensive investigation to reflect both functional and molecular changes with therapeutic
interventions. However, several challenges still exist to impede its clinical translation.
Firstly, the imaging based quantification and explanation still need be refined to reflect
target expression or activity more accurately. For example, the imaging probes accumulation
on certain regions reflected by images relates mainly to targets expression and probe-target
interaction. However, other factors such as blood flow, extravascularization of the probes,
interstitial pressure also need to be taken into account (222). Thus, a more thorough decipher
of the images acquired by multiple molecular imaging modalities is critical to effectively
replace the conventional sampling methods for pharmacokinetic (PK) parameters and
pharmacodynamic (PD) endpoints evaluation. To achieve this goal, probes with optimal
specificity and affinity to target molecules must be developed. In addition, further
improvements in sensitivity and spatial/temporal resolution of the imaging techniques are
still needed. In addition, advanced quantification algorithm and models may also be
required.
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Figure 1. Protein and mRNA products of human vascular endothelial growth factor A (VEGF-
A)
A The pro-angiogenic isoforms (VEGF-Axxx, left) are generated by proximal splice site
(PSS) selection in exon 8. B Protein structure of VEGF-A containing the dimerization sites
and binding sites for heparin, VEGF-A receptor 1 (VEGFR1; encoded by exon 3) and
VEGFR2 (encoded by exon 4), which are present in all isoforms. C The anti-angiogenic
family (VEGF-Axxxb, right) from exon 8 distal splice site (DSS) choice. UTR, untranslated
region. Reprinted with the permission of reference (64).
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Figure 2.
Binding specificity of various vascular endothelial growth factor (VEGF) family members
and their receptors. VEGF-E and VEGF-F are exogenous subtypes.
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Figure 3.
VEGF targeted and anti-VEGF drugs.
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Figure 4.
Vessel regression and tumor necrosis following shut off of VEGF expression. Hematoxylin
and eosin staining of sections from C6 tumors grown in Nude mice for 2 weeks in the
absence of tetracycline and resected 0 h (A), 24 h (B), 48 h (C), 72 h (D), 4 days (E), and 5
days (F) after administration of tetracycline to shut off expression of VEGF from the
transfected VEGF165. n, Necrosis. Reprinted with permission of reference (84)
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Figure 5.
Molecular imaging of tumor angiogenesis. A MicroPET of 64Cu-DOTA-VEGF121 in
U87MG tumor-bearing mice. Serial small animal PET scans of large and small U87MG
tumor-bearing mice injected intravenously with 5–10 MBq of 64Cu-DOTA-VEGF121 ( 2–4
μg of VEGF121). Mice injected with 64Cu-DOTA-VEGF121 30 min after injection of 100 μg
VEGF121 are also shown (denoted as “Small tumor + block”). Tumors are indicated by
arrows. Reprinted with the permission of reference (200). B Transverse color-coded US
images of subcutaneous 9-mm malignant glioma tumor (arrows) in same nude mouse.
Images obtained 4 minutes after intravenous administration of anti-VEGFR2
monoclonalantibody conjugated microbubbles (MBV, left), IgG conjugated microbubbles
(MBC, middle) or non-targeted microbubbles (MBN, right). Differences in video intensity
from subtraction of pre- and postdestruction images (green) on gray scale images were
higher with MBV than with MBC. No signal was detected after MBN application. Reprinted
with the permission of reference (208).

Niu and Chen Page 32

Curr Drug Targets. Author manuscript; available in PMC 2013 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Niu and Chen Page 33

Table 1

Summarization of Anti-VEGF drugs

Drug name Mechanism Indications Status References

Bevacizumab (Avastin) A humanized anti-VEGF
antibody

Metastatic colorectal cancer, non-small cell lung
cancer, recurrent glioblastoma multiforme and
metastatic breast cancer in combination with
chemotherapy Renal cell carcinoma in
combination with interferon alpha

FDA approved (114, 115)
116) (117)

Pegaptanib An anti-VEGF RNA
aptamer

All types of neovascular age-related macular
degeneration (AMD)

FDA approved (128)

VEGF Trap A soluble VEGF receptor Refractory solid tumors or non-Hodgkin's
lymphoma

Phase I (138)

Sunitinib malate A inhibitor of VEGFRs,
FLT3, c-KIT, and PDGFRs

Gastrointestinal stromal tumor after disease
progression on or intolerance to imatinib
mesylate
Advanced renal cell carcinoma

FDA approved (143)

Sorafenib A inhibitor of VEGFRs,
PDGFRs, FLT3, RAF-1,
and BRAF

Metastatic renal cell carcinoma and
hepatocellular carcinoma

FDA approved (145)

Pazopanib A inhibitor of VEGFRs,
PDGFRs, and c-kit

Metastatic RCC
Recurrent glioblastoma

Phase II (148) (149)

Ramucirumab A fully humanized MAb
targeting to the
extracellular VEGF-
binding domain of
VEGFR-2

Advanced solid malignancies Phase I (153)
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