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Abstract: We report on the measurement and analysis of the polarization 
state of second harmonic signals generated by starch granules, using a four-
channel photon counting based Stokes-polarimeter. Various polarization 
parameters, such as the degree of polarization (DOP), the degree of linear 
polarization (DOLP), the degree of circular polarization (DOCP), and 
anisotropy are extracted from the 2D second harmonic Stokes images of 
starch granules. The concentric shell structure of a starch granule forms a 
natural photonic crystal structure. By integration over all the solid angle, it 
will allow very similar SHG quantum efficiency regardless of the angle or 
the states of incident polarization. Given type I phase matching and the 
concentric shell structure of a starch granule, one can easily infer the 
polarization states of the input beam from the resulting SH micrograph. 
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1. Introduction 

Nonlinear microscopy techniques exploiting, for example, second and third harmonic 
generation (SHG and THG) [1], two-photon excitation fluorescence (TPEF) [2] and coherent 
anti-Stokes Raman scattering (CARS) [3] are widely used in cellular and tissue imaging 
because they allow high molecular contrast, therefore enabling characterization of subcellular 
details. Much effort has been made, for example, in SHG microscopy of non-centrosymmetric 
biological media and structures, such as collagen and myosin [4–6], due to the strong 
structural dependence of SHG [1,7]. Strong SHG signals are also known to arise in plant 
samples, due to semi-crystalline polysaccharides, such as cellulose and starch, which are 
present [8,9], however detailed characterization of SHG signals originating from these bio-
molecules has not yet been fully pursued. Combination of SHG and CARS microscopy has 
only recently, for instance, been used to investigate the internal structural and chemical 
information of starch granules [10]. It has, however, been demonstrated that there is a 
significant relationship between polarization-resolved SHG signals and the crystalline 
structure of different types of starch grains [11–13]. Specifically it is noted that the second 
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harmonic (SH) signal contrast is dependent on the incident polarization state, hence providing 
an interesting means to probe molecular orientation and disorder [6]. 

Starch is a glucose polymer often found in plants in the form of grains. These grains are 
water insoluble macroscopic complex networks of amylose and amylopectin [14], organized 
in alternating concentric 120–400 nm thick amorphous and semi-crystalline domains, known 
as growth rings [10,15]. The concentric shell structure of a starch granule hence forms a 
natural photonic crystal structure. The organization of the semi-crystalline shells has been 
widely studied by scanning electron microscopy of thin sections of granules [16,17], 
nevertheless, detailed knowledge regarding the structure, organization and arrangement of 
lamellae is still limited. The crystalline layers consist of ordered regions comprising double 
helical structures formed by short amylopectin branches. The amylopectin chains in the 
crystalline layers are strongly anisotropically aligned within the focal volume of the laser and 
thus yield a strong second-order nonlinear optical response [9,18]. Importantly, it should be 
noted that SHG microscopy usually relies on Type I phase matching, that is hνω, ordinary +  
hνω, ordinary→ hν2ω, extraordinary, for the SH signal. Unlike nonlinear optical crystals, such as KDP, 
LBO, etc., the concentric shell (or ring) structure of starch granules implies that phase 
matching is more easily satisfied. Given type I phase matching and the concentric shell 
structure of a starch granule, one can easily infer the polarization states of the input beam 
from the resulting SH micrograph as will be seen below. 

The utility of SHG microscopy for the study of starch grains is a current topic of research 
interest [13,19,20]. The implementation of polarization measurements and SHG imaging of 
starch grains provide complimentary information about micro-domains [11]. Specifically 
polarization-resolved SHG microscopy can provide information about the orientation and 
degree of structural organization inside biological samples using the anisotropy parameter and 
other signal analysis methods [13,21].Since the focal volume of the microscope objective is 
much smaller than the granules in the focal plane, the SHG intensity in each pixel depends on 
the net orientation of the electric dipoles within the illumination focal spot and the input 
polarization of the laser beam. We have developed a four-channel Stokes-polarimeter based 
on a pixel by pixel image analysis, capable of characterizing the polarization response of 
starch spatially. The polarization state of the SHG signal after interaction of the light with the 
amylopectin is characterized by the Stokes parameters, which can be inferred from the 
measured intensities in each polarimeter channel. Stokes polarimetry requires combination of 
a polarization state generator (PSG), a sample and a polarization state analyzer (PSA) to 
deduce the Stokes parameters [22–24]. Most Stokes polarimetry studies have focused on using 
linear optical process on a sample and measuring the degree of polarization of the light in 
transmission mode [25,26]. 

It is reported that chirality can be detected by linearly polarized light generated via a 
second harmonic or sum-frequency generation process and may arise entirely in the electric-
dipole approximation [27,28]. SHG efficiency from chiral molecules has a strong dependence 
upon the handedness circularly polarized excitation beam. 

In this work, we describe the application of a four-channel photon counting based Stokes 
polarimetric and SHG imaging technique to determine the complete polarization state of SH 
light and to differentiate macroscopic structures of starch granules. By varying the incident 
polarization and detecting the SH signal originating from a single plane, a differential 
measurement can be made. Again, we observed that signals from starch granules reflect the 
polarization states of the incident excitation beams due to their concentric shell like structure. 
We also report on characterization of the polarization properties of the molecular structure of 
starch, by deriving various polarization parameters from the measured Stokes vectors, such as 
the degree of linear and circular polarization. 
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2. Materials and methods 

2.1 Polarization imaging system 

The experimental arrangement of our SHG imaging system, used to measure the polarization 
states of the SHG signal, is described in detail in [29]. A femtosecond Ti:Sapphire (Coherent 
Mira Optima 900-F) laser oscillator, with central wavelength of 800 nm, a full width at half 
maximum (FWHM) spectral width of 15 nm pulses with duration of ~100 fs, average power 
~550 mW, and repetition rate ~76 MHz, was used as the excitation light source. Samples were 
mounted upside-down on an XYZ stage and scanned with a laser scanning unit (Olympus, 
FV300). The measured signals were analyzed by means of a polarization state analyzer (PSA), 
specifically, a four-channel Stokes-polarimeter (see Fig. 1). In the four-channel Stokes-
polarimeter imaging configuration, an objective lens (UPlanFLN40X/N.A. 1.3 oil, Olympus 
Corp., Japan) and a long-working distance 0.5 N.A. condenser provide excitation and SHG 
signal collection, respectively. A band pass filter of 400 ± 40 nm (Edmund Optics Inc. 
Barrington, New Jersey) was also inserted into the SHG emission path. The central SHG 
wavelength was verified using a fiber optic spectrometer (QE 65000, Ocean Optics) to be 400 
nm. Stokes images, denoted ‘Sout’, were determined from four distinct polarization resolved 
SH intensity images, measured using a 256 × 256 pixel array, corresponding to 50 × 50 μm 
scanning area, by means of the algorithm detailed in Section 2.2. A pixel dwell time of 8μs 
was used and the light was collected by PMTs through standard multimode fibers 
(FT1500EMT, 1.5 mm core diameter, 0.39 N.A., Thorlabs). 

 

Fig. 1. Schematic diagram of our polarization-resolved SHG microscope with four-channel 
Stokes-polarimeter module. IX81: The Olympus inverted optical microscope, HWP: Half 
wave-plate, QWP: Quarter wave-plate, S: Sample, BS: beam splitter, FR: Fresnel Rhomb, WP: 
Wollaston Prism, Ia, Ib, Ic, Id: photo-multiplier tubes (PMTs). TCSPC: Time Correlated Single 
Photon Counter. 

The PMTs were connected to time-correlated single photon counting (TCSPC) electronics for 
improving sensitivity and signal-to-noise ratio. The measured intensity signals were relayed 
through a four-channel router (PHR800, PicoQuant GmbH, Berlin, Germany). Data collection 
and primary analysis was performed using a commercial software package (SymPhoTime, 
PicoQuant GmbH, Berlin, Germany). 
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2.2 Image processing and algorithms 

Stokes parameters, denoted [S0, S1, S2, S3], give a convenient and complete description of the 
polarization state of light, and were thus used to characterize the polarization state of detected 
SH signals. Physically, S0 represents the total intensity of the emitted signal, S1 is the intensity 
difference in the intensities between horizontal and vertical linear polarization states at 0° and 
90°, S2 is the intensity difference between linear polarization states at 45° and −45°, and S3 is 
the difference in intensities between right (RCP) and left-handed (LCP) circular polarization 
states, respectively [30]. To determine the Stokes parameters, Sout = [S0, S1, S2, S3], of the SH 
signal, the measured intensity images were analyzed on a pixel by pixel basis. Specifically, 
the four SHG signal intensities detected by corresponding pixels in the TCSPC electronics of 
each measurement arm of the Stokes-polarimeter, were first stacked to form a vector I = 
[IaIbIcId]

t (counts per msec). Importantly, the intensity vector, I, can be expressed as the 
product of a 4 × 4 instrument matrix ‘A4x4’ describing the Stokes-polarimeter and the 4 × 1 
Stokes vector, Sout, of the SH signal, i.e. I = A4 × 4Sout. Accordingly, the output Stokes vector 
Sout was therefore determined using the inverse relationship Sout = (A4 × 4)

−1I. This equation 
highlights the importance of the instrument matrix with regards to correct sample analysis. 

Using the Stokes parameters, further physically important parameters, such as the degree 
of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular 
polarization (DOCP) and anisotropy (r) of the SH signal at each pixel of the scanning area can 
also calculated [29,31]. In this regard, we have developed a series of specialized routines in 
MATLAB (MathWorks, R2009b) to automate reconstruction of the 2D intensity images, the 
corresponding Stokes vector and related parameter distributions, from the acquired TCSPC 
data. 

2.3 Sample preparation 

The different polarization properties of SHG signals were obtained from starch granules using 
our Stokes-polarimeter setup. By varying the polarization states of the incident beam and 
detecting the change of different polarization components of the SH signal after the sample, 
we reconstructed 2D SHG Stokes images of starch granules. The polarization-resolved SH 
images were obtained from potato starch suspended in aqueous solution. The starch granules 
were extracted from home-grown potatoes by suspending freshly-cut pieces in tap-water at 
room-temperature for one hour. The starch grains rapidly settle to the bottom of the beaker 
and were transferred to a sample vial using a pipette, and subsequently washed, several times, 
in clean tap water. A drop of a dilute starch-water suspension was then placed on a coverslip 
and the water allowed to evaporate in a flow-hood [10]. The starch grain samples then 
adhered to the coverslip, were re-wetted with the surrounding medium and covered with a 
further coverslip. The samples were mounted upside-down in the microscope stage. 

2.4 Calibration 

The Stokes vector of SH signals from a sample can be determined accurately if the instrument 
matrix ‘A4x4’ of the polarimeter is known. In reality, the instrument matrix is however 
determined by system calibration, by inputting a set of known input polarization states into the 
polarimeter and measuring the output intensities. To avoid dispersion effects in the 
polarimeter, we inserted a polarization state generator (PSG) after the sample stage, 
comprised of KDP micro-crystals (SIGMA, Germany) sandwiched between two cover glass 
slips and immersed in oil, for optimal index matching. By focusing the 800 nm pump laser 
onto the KDP sample, a 400 nm SHG signal is produced. The generated SH light is collimated 
by the condenser lens operating in transmission mode and relayed to the PSG, as described in 
the Materials and Methods of our previous work [29], to generate 0°, 90°, 45° and RC 
polarization states. The PSG is removed once the polarimeter is calibrated. Figure 2 shows the 
normalized Stokes parameters of the SH beams, after the PSG, that were input into the 
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polarimeter. S0 is normalized to its maximum value and S1, S2, S3 are normalized to S0 in a 
pixel-wise manner. It is evident from Fig. 2 that the values of the Stokes parameters of the 
given polarization state are close to the theoretical values. 

 

Fig. 2. Shows the reconstructed 2D Stokes images for input polarization states correspond to 
0°, 45°, 90° linear, and RC polarization, respectively. The color scale shows the values of each 
parameter increasing from blue to red. The theoretical values of S0, S1/S0, S2/S0 and S3/S0 at 0°, 
45°, 90°, RCP are [1 1 0 0], [1 0 1 0], [1 −1 0 0] and [1 0 0 1], respectively. 

We optimized our four-channel Stokes-polarimeter for operation at 400 nm, by minimizing 
the condition number of the instrument matrix (A4x4)

−1, implying that propagation of errors 
from the measured intensities to the determined Stokes parameters was minimal [22]. In this 
work, we typically tuned the PSA to achieve a condition number of the instrument matrix of 
3.0. The performance and accuracy of the four-channel Stokes-polarimeter are discussed in 
detail in [32]. 

3. Results and discussion 

3.1 Illumination dependence of the SHG intensity from starch 

It is known that SHG signal strength depends on the geometrical characteristics and the 
relative path differences between SHG active molecules within the sample [33]. To 
investigate this phenomenon further, we acquired a large variety of SH intensity patterns, by 
varying the polarization state of the incident laser light and detecting different polarization 
components of the SH signal via our PSA. Figure 3(a) and Fig. 3(b) show, for example, the 
reconstructed 2D Stokes images derived from SH signals originating from starch granules 
when illuminated with horizontally and vertically polarized light respectively. From the 
Stokes parameters, it is evident that an excitation pulse of linearly polarized light (which can 
equivalently be considered as an equal superposition of right and left circular polarized light) 
is transformed into right or left elliptically polarized light. The effect of different input 
polarization states is thus evident from the 2D reconstructed Stokes images of SH signal. 
Polarization light microscopy has been used to show that starch granules exhibit positive 
birefringence and theoretically it is predicted that crystallinity in starch granules is aligned in 
a radial direction [16,34]. Although, optical methods using birefringence and interference 
have been used to determine the macromolecular orientation in starch, to date a full 
determination of the polarization state of the output signals has not been reported. We 
demonstrate here that this output polarization directly reflects the molecular symmetry of 
starch granules. 
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Fig. 3. Experimental reconstructed 2D Stokes images of the SHG response from starch 
granules for (a) horizontally, (b) vertically, (c) right and (d) left circularly polarized 
illumination, respectively. White arrows in the leftmost images indicate the direction of 
polarization. The color scale shows the value of each Stokes parameter increasing from blue to 
red. A schematic model of a starch granule is shown in (f). 

As shown in Fig. 3(a) and Fig. 3(b), the SHG intensity images (S0) of the same sample area 
and depth exhibit a two-lobe structure, oriented parallel to the linearly excited polarization 
directions. For a fixed linear laser excitation polarization, the SHG intensity is a function of 
cos2θ, where θ is the angle between the state of (linear) polarization and the net orientation of 
dipoles within the excitation region [6]. For example, the SHG intensity is minima when the 
laser polarization and SHG radiating dipoles are orthogonally oriented [4]. Accordingly the 
two lobe structure can be attributed to the radial arrangement of the SHG active crystals i.e. 
amylopectin in the starch granules. Therefore, it is also seen that lobe orientation in the 
S0intensity distribution mirrors the polarization state of the input beam. From the 
reconstructed 2D Stokes images, it is also observed that orthogonally polarized illuminations 
can generate different polarization states from different positions within a single starch 
granule. This is a consequence of chirality and anisotropy of the starch granules. 

Figure 3(c) and Fig. 3(d) show the SHG images obtained from the same area as those 
shown in Fig. 3(a) and Fig. 3(b), albeit using a right and left circularly polarized illumination, 
respectively. Figure 3(c) and Fig. 3(d) demonstrate that circularly polarized light can excite all 
amylopectin molecules in the starch granules. Right and left circularly polarized light, 
however, is scattered by amylopectin molecules differently and is transformed into left or 
right elliptically polarized light depending on the handedness and absolute orientation of the 
amylopectin molecules. This behavior is particularly evident when considering the degree of 
circular polarization, as is discussed in the next section. Finally, it is worth noting that the 
hilum located at the centre of the starch granule (see Fig. 3(f)), is a centrosymmetric structure, 
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and thus gives rise to a dark spot in the Stokes images, when excited with both linearly and 
circularly polarized light. At other positions in the starch granule, however, differences in the 
polarization states of the SHG signals are clearly distinguishable, upon excitation with 
differently polarized illuminations. 

3.2 Polarization properties of SHG signal from starch granule 

As shown in the previous section, the SH yield from amylopectin molecules in starch granules 
has a strong polarization dependence (see also [12,20]). The unique advantage of SHG 
microscopy in combination with a four-channel Stokes-polarimeter, is the capability to extract 
the complete polarization state of the SH signal, from which additional molecular orientation 
information can be obtained, via further processing of the obtained Stokes parameters. 
Second-order effects are, in particular, very sensitive to the structural symmetry of the 
samples; such that the anisotropic and concentric shell structure of starch granules gives rise 
to a unique polarization dependent behavior of the SH signal. Figure 4, for instance, shows the 
spatial variation in the DOP, DOLP, DOCP and anisotropy, r, as was derived from SHG light 
obtained from starch granules upon illumination with different polarization states. Since these 
polarization parameters are related to the alignment of dipoles within the focal volume, Fig. 4 
highlights the different morphologies of the crystallites present within a starch granule. These 
polarization-resolved SHG images were obtained without relying on any sample alignment or 
analyzer rotation before the detector. 

As shown in Fig. 4, the DOP of the SH signal from starch is approximately unity, 
indicating that the SH signal from starch granules is predominantly fully polarized regardless 
of the illuminating polarization state. Physically, this fact demonstrates that the crystalline 
layer of amylopectin branches is well ordered. The DOLP distributions shown in Figs. 4(a) 
and 4(b), furthermore, depict the degree of crystalline alignment of molecules parallel in the 
horizontal and vertical directions respectively. The DOLP values for both horizontally and 
vertically polarized excitation is seen to peak at approximately unity and to vary sinusoidally 
with angle, again indicating a good radial alignment of the crystallites in the starch granules. 
Linearly polarized light interacting with the amylopectin molecules will, however, also 
undergo optical rotation by virtue of circular birefringence of the starch granules. 
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Fig. 4. Experimental polarization-resolved 2D reconstructed DOP, DOLP, DOCP and 
polarization anisotropy images of SHG response from starch granule for the; (a) horizontal, (b) 
vertical, (c) right and (d) left circularly polarized polarization respectively. The direction of 
polarization is indicated by a white arrow in the images. The color scale shows the values of 
each parameter increases from blue to red. 

Similarly to above, Fig. 4(c) and Fig. 4(d), consider excitation with circularly polarized light. 
The corresponding DOP images show more homogeneity than for linearly polarized 
illumination, whilst the DOLP varied from 1 to 0. It should be noted that the strong SH signal 
arises because the fraction of different handed amylopectin molecules is unequal, in turn 
producing a non-centrosymmetric structure [29].The degree of circular birefringence of the 
SH signal is therefore expected to give information on the distribution of specific amylopectin 
molecules. 

Ellipticity of the SH signal can, however, be quantified by the DOCP, defined as the 
fraction of the difference in intensities in left and right circularly polarized states to the total 
intensity. For linearly polarized excitation, the DOCP values varied in different regions as 
shown in Fig. 4. For horizontal and vertically polarized illumination, the DOCP is zero along 
the direction of excitation polarization, whereas the DOLP value is approximately 1 from the 
same regions. We note that the higher the value of DOLP, the lower the value of DOCP is, i.e. 
molecules are more arranged in a radial direction. The reverse relationship between the DOLP 
and the DOCP is seen when the starch granule is illuminated with circularly polarized light 
(Figs. 4(c) and 4(d)).The DOLP and DOCP distributions hence demonstrate that there exists 
components of both linearly and circularly polarized light in the SH signal. In particular, 
birefringence of starch granules gives rise to a variation of the relative phase between field 
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components [33] with position, which hence transforms an incoming polarized state. 
Depending on the sample depth, the resulting polarization state can vary between being fully 
linearly to circularly polarized light. When a circularly polarized illumination is used, the 
SHG intensity depends strikingly on the helical structure of the amylopectin molecule. 
Consequently, right and left circularly polarized light produce an asymmetric behavior of the 
SHG signal intensities generated from starch molecules. The concentric shell like structure in 
starch granules is seen to affect the SH polarization, resulting in a polarization shift away 
from both the fundamental and SH signal produced by the sample. This shift is clearly visible 
in the DOCP image and the SH signal is a mixture of both linearly and circularly polarized 
light. In this study, with the help of Stokes parameters we have hence shown that linearly 
polarized can be used to detect the handedness of helical materials. 

The effect of birefringence on the SHG signal was also explored via anisotropy 
measurements, which confirm the strong differences from different areas of starch granule. 
The SHG anisotropy value (r) varies between −0.5 to 1, where r = 0 represents an 
arrangement of molecules (e.g. random), such that the parallel and perpendicular polarized 
components of the SHG intensity are equal. In contrast r = 1 corresponds to alignment of all 
molecular dipoles relative to the incident laser polarization. SHG polarization anisotropy 
furthermore provides additional information on the amylopectin distribution within a starch 
granule, since the SHG signal anisotropy is related to the alignment of molecular dipoles 
within the focal volumes [6,13]. Figure 4 shows the acquired polarization anisotropy (r) 
images of starch granules under differing illumination polarization states. For a horizontally 
polarized laser light, the anisotropy value has a minimum of approximately −0.5. 
Furthermore, for a vertically polarized illumination r peaks at approximately unity. In both 
cases there is an angular variation, in a similar manner to the S1 images, indicating that 
amylopectin molecules are arranged in a radial manner. The anisotropy images thus reveal 
that starch granules are highly anisotropic, as would be expected based on the known pitches 
of distinct helices within the coil structure of amylopectin [6]. This suggests that starch 
granules possess cylindrical symmetry. 

4. Conclusion 

In this work, we developed a model Stokes vector based four-channel polarimeter integrated 
within a SHG microscope. Stokes vector based polarization measurements were performed in 
the forward direction for characterization of molecular structure and orientation of starch 
granules in a rapid manner. This technique was shown to yield the polarization states of SHG 
signals, as quantified by the Stokes parameters, for a fixed input polarization state. 
Furthermore, starch granules were shown to exhibit polarization distributions reflecting that of 
the input polarization, due to the radial distribution of amylopectin molecules. The DOLP and 
DOCP of SH signals were calculated and analyzed, further elucidating structural properties of 
individual starch granules. Finally, we presented a technique to observe type I phase matching 
and concentric shell like structure in starch granules through four-channel Stokes polarimeter. 
In conclusion, starch granules were extensively analyzed to demonstrate the validity, and 
potential, of 2D polarization resolved SHG microscopy. 
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