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                           FSP27 is a lipid droplet (LD) associated protein that is 
transcriptionally regulated by peroxisome proliferator-
activated receptor (PPAR) �  during differentiation in adipo-
cytes ( 1  –  3 ). FSP27 was initially identifi ed by its upregulation 
in TA1 cell adipogenesis and was shown to be highly ex-
pressed in brown and white adipose tissues ( 4  –  7 ). Its LD 
association and role in fat metabolism was discovered re-
cently ( 1 ,  2 ,  8 ). Expression of FSP27 is associated with tri-
glyceride (TG) accumulation in various cell types ( 1 ,  2 ), 
whereas its depletion in adipocytes causes increased lipoly-
sis both in vivo and in vitro ( 1  –  3 ,  9 ,  10 ). White adipocytes 
of FSP27-KO mice have multilocular droplets and in-
creased lipolysis, and these animals have higher mitochon-
drial oxidative metabolism ( 3 ,  11 ). This energy expenditure 
in turn protects the mice from diet-induced obesity and 
insulin resistance. In humans, FSP27 expression is posi-
tively associated with fat accumulation in adipocytes and 
insulin sensitivity ( 9 ,  10 ). Recent studies have demon-
strated that FSP27 regulates LD morphology by playing a 
role in fusion of lipid droplets ( 12 ,  13 ). 

 Besides adipose tissue, FSP27 is also expressed in muscle 
and liver ( 14 ). The very fi rst report on the regulation of 
FSP27 in liver was from Reddy ’ s laboratory in which Yu et al. 
elegantly showed that PPAR �  overexpression in the liver of 
PPAR � (  − / −  ) mice induced FSP27 among other lipogenesis-
related genes ( 7 ). Later on, it was confi rmed that hepatic 
steatosis in leptin-defi cient mice is promoted by FSP27 ( 15 ). 
In fact, a dramatic upregulation of FSP27 transcript occurs 
in the liver of ob/ob mice ( 8 ). The expression of FSP27 was 
markedly decreased in livers lacking the nuclear receptor 
PPAR � . It is now clearly established that FSP27 plays an im-
portant role in hepatic steatosis in mouse models by pro-
moting PPAR � -mediated hepatic steatosis ( 7 ,  15 ). Forced 
expression of FSP27 in hepatocytes in vitro or in vivo leads 
to increased LD formation through increased triglyceride 
levels, whereas repressed FSP27 inhibits hepatic lipid accu-
mulation in both db/db and high-fat diet-fed mice lacking 
mitogen-activated protein phosphatase-1 (MKP-1) ( 16 ). 

 PPAR � -mediated nutritional regulation of FSP27 in 
white adipose tissue was recently suggested ( 17 ). PPAR �  
also regulates expression of FSP27 in hepatocytes ( 7 ,  15 ); 

however, the nutritional regulation of FSP27 in liver has 
not yet been studied. In this issue of the  Journal of Lipid 
Research , Vila-Brau et al. ( 18 ) demonstrate that fasting reg-
ulates FSP27 in the liver of mice. They have shown that 
FSP27 expression in liver is regulated by fasting in a time-
dependent manner. During the early stages of fasting, 
FSP27 expression increases, whereas it decreases at later 
stages. Consistent with the role of FSP27 in TG accumula-
tion, its expression in liver would increase during early 
fasting to accommodate the storage of incoming fatty ac-
ids. Although not shown in the report by Vila-Brau et al. 
( 18 ), it is conceivable that under the conditions used by 
the authors, hepatic TG levels are increased during early 
fasting. At a later stage of fasting, there is increased fatty 
acid oxidation (FAO); hence, a decrease in FSP27 expres-
sion will increase lipolysis to meet the requirement of fatty 
acids needed for oxidation. In fact, this whole process is 
consistent with the hypothesis that the FFAs coming from 
outside the tissue are not directly oxidized but fi rst stored 
as triglycerides, which are then hydrolyzed to provide fuel 
to mitochondria. 

 Interestingly, Vila-Brau et al. found that PPAR � , a master 
regulator of fasting in liver, is not responsible for inducing 
FSP27 expression ( 18 ). The authors followed a logical ap-
proach to show that FSP27 expression in the liver is regulated 
by cAMP-responsive element binding protein (CREB). 
Previously it has been shown that at the onset of fasting, 
hormonal changes produce an increase in both the level 
and activity of CREB-regulated transcript coactivator 2 
(CRTC2), which induces the expression of hepatic gluco-
neogenic genes ( 19 ). Eighteen hours of fasting induces 
the activity of nutrient-sensing sirtuin 1 (SIRT1), which then 
deacetylates CRTC2 and promotes its downregulation 
( 20 ). Overall, the studies support a model (  Fig. 1  ) in which 
during early stages of fasting there is a CREB-dependent 
upregulation of FSP27 to accommodate the increased FA 
fl ux in the liver, whereas at a later stage, FAO would increase 
SIRT1 activity, perhaps by changes in NAD + /NADH, which 
might be responsible for decreased expression of FSP27 
via suppression of CREB/CRTC2. This would cause in-
creased lipolysis to support enhanced FAO. Indeed, FSP27 
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expression was increased when FAO was inhibited in liver 
cells, and FSP27 expression was induced to a higher level 
in the livers of Sirt1-LKO mice than in wild-type animals. 
However, the mechanism of FAO-induced SIRT1 activity 
remains to be determined. In addition, whether FFAs could 
directly regulate the expression of FSP27 in the liver re-
mains an open question.         
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 Fig. 1.        During early stages of fasting, FSP27 is upregulated in the liver 
by CREB to facilitate storage of fatty acids. At later stages of fasting, 
FAO   is increased, which might upregulate SIRT1 activity that would 
inactivate and downregulate CREB, thus decreasing FSP27 expression 
and increasing lipolysis to release fatty acids to be fuel for FAO.    


