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Abstract

The task of extracting the maximal amount of information from a biological network has drawn much attention from
researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well
known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected
among themselves than with the rest of the network. However, practical applications of utilizing the community
information have been rather limited. For protein function prediction on a network, it has been shown that none of the
existing community-based protein function prediction methods outperform a simple neighbor-based method. Recently, we
have shown that proper utilization of a highly optimal modularity community structure for protein function prediction can
outperform neighbor-assisted methods. In this study, we propose two function prediction approaches on bipartite
networks that consider the community structure information as well as the neighbor information from the network: 1) a
simple screening method and 2) a random forest based method. We demonstrate that our community-assisted methods
outperform neighbor-assisted methods and the random forest method yields the best performance. In addition, we show
that using the optimal community structure information is essential for more accurate function prediction for the protein-
complex bipartite network of Saccharomyces cerevisiae. Community detection can be carried out either using a modified
modularity for dealing with the original bipartite network or first projecting the network into a single-mode network (i.e.,
PPI network) and then applying community detection to the reduced network. We find that the projection leads to the loss
of information in a significant way. Since our prediction methods rely only on the network topology, they can be applied to
various fields where an efficient network-based analysis is required.
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Introduction

Recent revolutionary advances in protein sequencing technol-

ogy have made the proteome-scale protein-protein interaction

(PPI) data of many species available. For global analysis of large-

scale PPI data, the network-based approach has been widely

utilized. Ever since the modular nature of biological networks was

demonstrated, detecting communities/modules, a set of nodes that

are more densely inter-connected among themselves than with the

rest of the network, has become one of the most popular

approaches for their analysis. Many studies have shown that

proteins belonging to the same community within a biological

network are more closely related to each other, in terms of

functional and physical aspects. Proteins from the same commu-

nity tend to participate in the same biological process [1,2],

forming protein-complexes more frequently than proteins in

different modules.

Utilizing the modular characteristics of the community struc-

ture, many researchers have tried to solve a more practical

problem, function prediction from biological networks. Annotating

protein function is one of the most important issues since the

number of species whose whole proteome-scale interaction data is

available keeps increasing, and performing large-scale function

annotation by experiments is impractical. Conventionally, com-

munity-assisted function prediction is carried out by assigning

statistically enriched functions, judged by hypergeometric distri-

bution, to all members in the community. However, recent

benchmark studies [3,4] show that community-assisted methods

are inferior to simple neighbor-assisted methods, which take into

account only direct neighbor information of a target node.

Assigning enriched functions to all member proteins of the

community generally leads to overprediction, which results in

significantly low prediction accuracy. This raises practical

concerns regarding the way the community information is used

for function prediction on the network.

A number of community-detection methods have been suggest-

ed in the past decade [5–11]. Among them, the modularity

optimization approach is the most widely used to analyze various

networks. Modularity is a quality measure to evaluate a given

community structure, and it is defined as

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60372



Q~
X

c

lc

m
{

dc

2m

� �2
 !

, ð1Þ

where lc is the number of intra-community edges of community c,

dc is the sum of degrees of nodes in community c, and m is the

total number of edges in the network. Conceptually, the

modularity indicates the difference between the fraction of intra-

community edges observed and the expected value in a random

network. Most community-detection methods have focused on

maximizing the modularity of a given network based on the

assumption that the community structure with the maximum Q
would correspond to the optimal community structure to extract

hidden information. However, the meaning of the optimal

community structure is dubious.

The relationship between the modularity and the amount of

information revealed by the community structure has not been

investigated in a systematic way. If there is a positive correlation, it

is essential to obtain the community structure with as high

modularity as possible to extract maximum information from the

network. In practice, however, community structures with

reasonably high modularity values are used to analyze biological

networks due to the enormous complexity of finding the true

maximum modularity solution and limited computational resourc-

es. Recently, we have demonstrated that appropriate utilization of

an accurate community structure of a protein-protein interaction

(PPI) network leads to improved function prediction from the

network [12]. This was contrary to the existing benchmark studies

[3,4], where utilization of community information failed to

compete with direct-neighbor assisted methods. However, there

are a few issues that need to be addressed.

First, many recent studies have highlighted the importance of

using bipartite networks, which consist of two types of nodes, for

better understanding of complex biological processes. For exam-

ple, drug-target, disease-gene, and therapy-drug bipartite networks

have been widely studied [13–17]. Additionally, due to recent

advances in experimental methods, protein-complexome network-

based studies are also actively investigated [18,19]. With the

bipartite network, there are many unresolved issues. One of them

is how to define communities. One way is to deal with the bipartite

network directly and allow a community to contain both types of

nodes. Another possibility is to project the bipartite network into a

single network containing only the type of node of interest. For

example, by proper projection, one may opt to construct a

weighted PPI network out of a protein-complexome network, and

apply the analysis of ref. [12] to extract protein function

information. Here, one may want to investigate how much

information is gained or lost by projection. Second, the machine-

learning based analysis method suggested in ref. [12] is rather

complicated. Considering the rapidly increasing size of biological

interaction data, a faster and simpler biological network analysis

tool with reasonably robust performance is in great demand.

Lastly, it is uncertain if improvement to function prediction by

incorporating community information depends on the type of a

network and/or the function annotation scheme. In ref. [12], only

a single PPI network was tested with the function annotation by

gene ontology (GO) [20].

In this study, we address the above issues by performing

community-assisted function predictions of the protein-complex

network of Saccharomyces cerevisiae [18], a bipartite network

consisting of proteins and complexes (see Fig. 1 for schematic

representation of the network), with MIPS function annotations

[21]. The predictions were carried out by using a machine-

learning based method as well as a newly devised simple screening

method. The community structure of the network was identified

by the Mod-CSA method, a modularity maximization algorithm

based on the conformational space annealing (CSA) global

optimization algorithm. We observe that Mod-CSA finds higher

modularity solutions than the simulated annealing (SA) method,

which has been considered the most accurate until recently

requiring less computational time regardless of the network size

[22]. In the benchmark test with small networks, a number of

independent CSA runs all converged to identical solutions, which

coincide with the known optimal solutions found by the exact

method [22,23].

We observe that the highest modularity yielding community

structure obtained by CSA is functionally more coherent than sub-

optimal ones found by SA, when judged by the number of

enriched functions. We compared our community-assisted func-

tion prediction methods with two widely used neighbor-assisted

methods, 1) neighbor counting (NC) [24] and 2) Markov random

field (MRF) [25–27]. The result shows that the efficiency of the

function prediction can be improved significantly and maximally

by using the community-assisted methods with the highest

modularity community structure. We find that projecting the

original bipartite network of a protein-complexome network into a

PPI network leads to the loss of information in a significant way.

There are multiple ways to use the community information of a

bipartite network and our claim that a community structure can

facilitate discovery of additional information from a network

appears to be universal across variations in the type of networks

and the function annotation scheme.

Results and Discussion

Community Detection of the Yeast Protein-complex
Network

For the community detection of the yeast protein-complex

network with modularity optimization, we used the conforma-

tional space annealing (CSA) and simulated annealing (SA)

methods [28]. Due to the stochastic characteristics of both

methods, we performed 10 independent runs for each method.

The best modularity value is recorded for each run, and the 20

best ones are shown in Fig. 2. All CSA simulations provide the

identical optimal community structure with the modularity of

0.6905. Based on our previous benchmark result [22], this

convergence strongly suggests that this community structure

corresponds to the optimal and true maximum modularity

solution. On the other hand, the 10 best SA simulations result

in various community structures, all of which have modularity

values less than 0.6905. The maximum and average modularity

values from the 10 best SA runs are 0.6865 and 0.6835,

respectively. The apparent gap between the best modularity

values indicates that there exists significant difference in search

efficiency between CSA and SA. Statistical properties of the

modularity optimization results are listed in Table 1. In terms of

the number and the sizes of communities, the differences are not

significant. The optimal CSA solution divides the network into 24

communities and the average number of communities found by

SA is 27.1 with a standard deviation of 3.8.

Qualities of community structures are investigated using a

hypergeometric P-value analysis to detect meaningful functional

clusters. For each community, all MIPS functional annotations

[21] of protein nodes are identified and the P-value of each

annotation is calculated from all constituent proteins. The

annotation’s hypergeometric P-value, probability of observing at

least Lf proteins with the annotation f from a community of size

Extracting Information from Community Structure
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where N is the number of proteins in the network and Kf is the

number of proteins with f in the network. If the P-value of an

annotation is less than a threshold value, the group of proteins

associated with that annotation in the same community is

considered as a meaningful functional cluster irrespective of

connectivity. Since a protein may have multiple functional

annotations, the meaningful functional clusters of a community

may overlap, and some proteins may not belong to any functional

cluster. This should be contrasted to the fact that communities

defined in this study form a non-overlapping partition of the

projected protein-protein network. It should be noted that

functional clusters do not span multiple communities.

The average numbers of meaningful functional clusters

obtained by CSA and SA with P-value threshold of 0.05 are 480

and 427.3 (with a standard deviation of 0 and 21.4), respectively,

as shown in Fig. 3-(a). The number of meaningful functional

clusters from SA ranges between 403 and 479, which may cause

problems in the reproducibility of the method. However, CSA

provides a converged optimal community structure, which reveals

many more meaningful functional clusters. We checked that this

result is insensitive to the selection of the P-value by varying the P-

value threshold between 10{1 and 10{5. The average number of

meaningful functional clusters from SA is consistently lower than

that from CSA, as shown in Fig. 3-(b). In conclusion, CSA finds

the optimal community structure of the yeast protein-complex

network in terms of the modularity, and this community structure

reveals more functional information of proteins than the sub-

optimal ones generated by SA.

Using the optimal community structure, we investigated the

distribution in numbers of complexes and proteins belonging to a

community, as shown in Fig. 4. It is clear that the distributions are

more consistent with the exponential distribution than with the

power-law distribution, as is frequently reported in diverse

biological networks [29,30]. It should be noted that the cumulative

distribution of an exponential/power-law distribution also follows

the exponential/power-law distribution in the continuum limit.

Only the number of complexes in the largest community seems to

Figure 1. Schematic representation of the protein-complex bipartite network and its protein-mode projection. Schematic
representations of (a) the protein-complex bipartite network and (b) its protein-mode projection are shown. In the protein-mode projection, two
proteins are connected if they participate in forming at least one identical complex.
doi:10.1371/journal.pone.0060372.g001

Table 1. The summary of 10 community detection
simulations for SA and CSA.

CSA SA

Qmax 0.6905 (0.000) 0.6835(0.002)

Number of communities 24 (0) 27.2 (3.83)

(Pv0:05)Number of enriched functional
clusters

480 (0.0) 427.3 (21.4)

For each simulation, the best Q value (Qmax) obtained is recorded. Standard
deviations are shown in parentheses. It should be noted that all 10 CSA runs
provide the identical best solution with Qmax~0:6905.
doi:10.1371/journal.pone.0060372.t001

Figure 2. Modularities from the 20 best CSA and SA
simulations and the pairwise normalized mutual information.
Top panel shows the 20 best modularity values obtained by CSA (10 red
circles) and SA (10 blue squares). Note that the 10 best CSA solutions
are identical to each other with Q = 0.6905, while none of the 10 best SA
solutions are identical to each other; all have lower modularity values
than 0.6905.
doi:10.1371/journal.pone.0060372.g002
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deviate from the exponential distribution significantly. Previously,

it was observed that the degree distribution of nodes also follows

the exponential distribution [18]. This indicates that the

exponential distribution is also preserved in the coarser organiza-

tion of the network. As discussed in the previous study [18], the

exponential distribution is due to the nature of the experimental

method used, TAP-MS, which detects actual physical complexes

of proteins rather than collecting their binary interactions.

Generally, the power-law distribution implies the existence of

extreme cases, such as hub proteins with extremely large numbers

of partners. If a protein-protein interaction network is constructed

from binary interaction data, there is no theoretical limitation in

the number of interacting partners, which allows for the formation

of a hub node or a hub community. However, in the actual cellular

environment, the size of a community, the number of densely

inter-connected proteins or complexes, is limited by several

physical factors, which prevent the formation of extreme cases.

Limiting physical factors include the rate of protein transport, the

size of a cell, and the crowding effect of the cellular environment.

Network of Communities
To obtain a general picture of the yeast protein-complex

network, we constructed a reduced representation of the network,

the network of communities, as shown in Fig. 5. The full list of the

functional compositions of identified communities is provided as

supporting information (Table S1 and Table S2). The size of a

node represents the number of proteins in the community, and its

opacity represents the fraction of proteins sharing the most

observed function in the community, labeled at the center. The

width of the edge represents the total number of inter-community

links. The most strongly interacting communities, C3, C4, and C5,

are mainly involved with the translation processes, 12.01 ribosome

biogenesis and 11.04 RNA processing. We observe that most

functionally specialized communities are relatively small, and they

are connected with only one or a few other communities. For

example, C18, C19 and C22 are connected only to C1, and over

90% of member proteins in these communities are involved in the

process shown. These three communities are involved with cell

division processes: 42.04.05 microtubule cytoskeleton, 43.01.03.05

budding, cell polarity and filament formation and 10.03.04.05 chromosome

segregation/division. We find that these communities are distinctly

separated from the rest of the network since cell division is rather

specific compared to other metabolic processes in spatial and

temporal aspects. The other small and specific communities, C20,

C21, and C23, appear to play the role of the regulatory switch of

the transcription process. C20 is connected only to RNA

processing communities C4 and C5, and it is occupied by

34.11.03.07 sex-specific proteins. C21 interacts only with C4, and it

consists of proteins performing transcriptional control,

11.02.03.04. C23 is related with the ubiquitination process,

14.07.05, tagging unneeded proteins to be recycled, which is an

error correction step.

In 6 out of 24 communities, transport proteins are closely

coupled with proteins that require transport for proper function-

ing. The 20.09 transport routes annotation dominates 6 communities:

C1, C7, C8, C12, C14, and C15, but its composition fractions are

relatively low. The lowest and the highest fractions are 22% and

43%, observed in C1 and C7 respectively. Note that the largest

community C1 is the least concentrated in terms of its top function,

represented by the pale color of the node in Fig. 5. The second

most observed function (shown in parentheses), after 20.09

differentiates each community. C1 and C7 are mainly related

with metabolism processes, 01.05 C-compound and carbohydrate

metabolism. Additionally, 01.01 amino acid metabolism and 01.03

nucleotide/nucleoside/nucleobase metabolism annotations are observed in

C1 and C7, respectively. Many proteins from C8 and C12 are

involved with the post-translational modification, 14.07 protein

modification, which requires the transport of substrates such as

phosphates for phosphorylation and carbohydrates for glycosyla-

tion.

Protein Function Prediction on the Protein-complex
Network

Here, we propose two ways to incorporate community structure

information into protein function prediction, 1) simple screening

over neighbor-assisted predictions and 2) construction of a

Figure 3. Modularity versus the number of enriched functional clusters, and its dependence on P-value. (a) Best modularity values
obtained by 10 CSA simulations (red circle) and 10 SA simulations (blue squares) against the number of enriched functional clusters with the P-value
threshold of 0.05 are shown. It should be noted that 10 best solutions by CSA provide an identical solution implying that it may correspond to the
true optimal solution. (b) Log-log plot of P-value threshold and the number of enriched functional clusters are shown. The highest modularity
community structure obtained by CSA yields larger numbers of enriched functional clusters than those by SA regardless of the P-value threshold
used.
doi:10.1371/journal.pone.0060372.g003
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machine learning algorithm by the random forest (RF) method

[31], which utilizes the community structure of a network as input

features. The first scheme is based on the assumption that the

more a function of a target node’s neighbors is enriched in its

community, the more likely it is that the node possesses the

function. In this simple screening, the function prediction of a

node is performed by taking the intersection of a neighbor-assisted

prediction and screening by functional enrichment in terms of P-

value.

The second scheme employs RF, which takes advantage of

examples to capture hidden and nonlinear relationships between

the presence of a function on a node and its local/global properties

generated from the network topology. We compared our

community-assisted function prediction methods with two widely

used neighbor-assisted methods, the neighbor counting (NC)

method [24] and the Markov random field (MRF) method [25–

27]. To evaluate the performances of prediction methods, leave-

one-out cross validations were carried out. For each method, the

functions of each protein node are assumed to be unknown and

they are predicted out of all annotated functions from its direct

neighbors, iteratively.

Simple screening. Performances of prediction methods are

shown in Fig. 6 by using the Matthews correlation coefficient

(MCC), (a) and (c), and the precision-recall (PR) curve, (b) and (d).

The P-value threshold for screening was set to 0.05. MCC values

are measured along the thresholds of the neighbor-assisted

methods, i.e., the rank (Ntop) of observed functions in NC and

the probability (P) threshold for MRF. In the MCC plot, Fig. 6-(a)

and (c), the increase of Ntop and {log(P) values corresponds to

the increase of positive predictions, which leads to higher coverage

and lower accuracy predictions.

By screening with the meaningful functional clusters identified

from the CSA community structure, the MCC values of NC and

MRF improve throughout the variation of the threshold value,

except for the case of MRF with {log(P)~1. The average MCC

values of NC and MRF are 0.279 and 0.344, while the

corresponding values obtained by the combination of communities

from SA and CSA are 0.329, 0.367, and 0.369, 0.380, respectively.

From the PR curves, Fig. 6-(b) and (d), it is clear that the screening

helps to identify more accurate predictions, which shifts the

neighbor-assisted results (green squares) to higher accuracy regions

(red circles and blue crosses). In other words, the use of meaningful

functional clusters effectively reduces false positives. For example,

when we combine the best NC result of Ntop~2 with screening

using the optimal CSA community structure, the precision

improves by 29.0%, and the recall drops by only 15.4%. As the

threshold value increases, MCC values of the neighbor-assisted

methods decrease sharply, implying that they are efficient only for

predicting a small number of evident functions and not suitable for

an extensive prediction. However, together with the community

structure information, the quality of function prediction in terms of

the MCC value appears to be relatively well preserved or

deteriorates in a much slower manner. For the original NC

method, the MCC value linearly drops from 0.321 to 0.241 as Ntop

increases from 2 to 10. When combined with suboptimal

community structure information from SA, the overall quality

still improves, and the gap between the best MCC of 0.348 and the

worst MCC of 0.309 is reduced by half. With the optimal

community information from CSA, the MCC value increases until

Ntop~4 and decreases slowly thereafter.

MRF clearly outperforms NC as reported in previous studies

[32–34]. Starting from 0.401, the MCC value of the native MRF

method decreases dramatically to 0.335, and it forms a plateau

after {log(P)~5. However, when combined with the community

information, the quality of the prediction improves and stays

invariant under the variation of the parameter. In practice, this

invariance is quite advantageous since it allows one to choose

between precision and recall according to the situation without

sacrificing the prediction efficiency.

We have examined the case of {log(P)~1, where the MCC of

MRF is higher than that of MRF with screening. We find that this

result is mainly due to rather uniformly spread and highly

observed function annotations. More than 78% of the true

positives by MRF come from top 10 most observed functional

annotations. Since many of these functional annotations are not

significantly clustered at the community level identified in this

study, they are screened out when MRF predictions are combined

with the community structure information. This indicates that the

resolution of the obtained community structure may not be

suitable for describing the grouping of these annotations, and there

must be a relationship between the resolution in the community

detection and the resolution in the distribution of functions on the

network. Therefore, it is essential to find the proper resolution of a

community detection method to extract maximum information

about a particular function of interest; our focus in this work was

that we can obtain more information about hidden attributes of

nodes, function annotations in this work, when a community

Figure 4. Distributions of the number of complexes and
proteins in a community. Distributions in number of (a) complexes
and (b) proteins are shown. Here, Nmember corresponds to the number of
complex/protein nodes belonging to a community. Symbols corre-
spond to the cumulative distribution of complex/protein nodes. Lines
correspond to the exponential and the power-law fittings, and the data
fits better by exponential lines.
doi:10.1371/journal.pone.0060372.g004
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structure is considered, which can be determined with the proper

resolution for the attributes of interest.

Random forest. The AUC values and the maximum MCC

values obtained from RF and the neighbor-assisted methods are

listed in Table 2. In terms of the AUC value, RF outperforms the

neighbor-assisted methods. The best result is obtained when the

optimal community structure from CSA is used to generate input

features for RF. The AUC value of RF using the CSA result is

higher than that of MRF and NC by 11.1% and 62.1%

respectively. RF using CSA result shows the highest maximum

MCC value of 0.418 with (recall, precision) = (0.362, 0.493). PR

curves of the prediction results from neighbor-assisted methods

and RF are shown in Fig. 7. Note that the maximum recall is

observed at 0.774 not 1.0, which reflects the cases where none of a

protein node’s direct neighbors possess the functions of the node.

Overall, RF outperforms the neighbor-assisted methods tested

except in the high-precision, low-recall region of MRF. As

discussed above, MRF performs well for high-background and

widespread annotations that may not be properly featured by the

community structure, presumably due to the resolution limit of the

modularity. Therefore, the usage of the community structure

information may deteriorate the prediction quality for these

annotations. On the other hand, RF performs well for the

prediction of annotations, which are less populated but specifically

clustered in the network.

The Effect of Projection to a Protein-protein Interaction
Network

A weighted projection of a bipartite network is often considered

a fair substitute for the original bipartite network, presumably with

little information loss. To investigate the effect of the projection on

the performance of the function prediction methods, we

performed a simple screening analysis using the communities

identified from a weighted PPI network generated by the

Figure 5. Network between communities of the yeast protein-complex network. The size of each community node represents the number
of proteins in the community, and the opacity of the node represents the percentage of proteins with the most observed function in the community,
labeled at the center. The width of the edge corresponds to the number of inter-community links.
doi:10.1371/journal.pone.0060372.g005

Extracting Information from Community Structure
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projection of the full protein-complex network. The weight of an

edge between two proteins in the reduced network is assigned by

the number of common complexes shared by the two proteins.

The MCC plot of the simple screening using the NC method and

the communities from the projected network is shown as dashed

lines in Fig. 6-(a). The plot clearly shows that the degree of

prediction improvement with the projected network is significantly

less than with the bipartite network. The maximum and average

MCC values with the CSA result decreased from 0.380 and 0.367

to 0.338 and 0.304.

The less optimal performance with the projected network may

be attributed to the much larger number of assigned edges

between protein nodes. The average degree of protein nodes in the

bipartite network and the conventional protein-protein interaction

(PPI) network generated by the collection of binary interactions,

from [12] are 4.51 and 8.92, respectively. However, the

corresponding value of the projected network is 63.5. This large

difference in the average degree of protein nodes implies that the

projection of the protein-complex bipartite network can introduce

many false-positive interactions and the information of the original

bipartite network is somewhat diluted by the projection. This

suggests that communities detected from the bipartite network and

from its projected network can be significantly different from each

other, and care should be taken to choose an appropriate type of a

network to extract maximum information.

Improvement in Protein Function Prediction by
Community Information

Improvement in the protein function prediction with both

methods shows that there are multiple ways to utilize community

structure. The difference in performance between methods shows

Figure 6. Prediction results of two neighbor-assisted methods and their screening counterparts. Neighbor counting (NC) results (green
squares) are shown in (a) and (b), and Markov random field (MRF) results (green squares) are shown in (c) and (d). Corresponding simple screening
results using the P-value threshold of 0.05 are shown in red circles (CSA) and blue crosses (SA). The variation of Matthews correlation coefficient
(MCC) along with the number of predictions made by the neighbor assisted methods, (a) and (c), and the precision-recall plot, (b) and (d), are shown.
Dashed lines in (a) represent the results obtained by using the community information detected in the weighted projection of the bipartite-network.
Note that the simple screening result using the optimal community structure obtained by CSA improves the prediction quality for all cases tested
(except {log(P)~1 for MRF) in terms of the MCC measure.
doi:10.1371/journal.pone.0060372.g006

Table 2. Prediction efficiencies of random forest and two
neighbor-assisted methods.

Measure RF with CSA RF with SA MRF NC

AUC 0.300 0.293 0.270 0.185

MCCmax 0.418 0.401 0.406 0.321

Prediction efficiencies are measured by AUC (area under the PR curve) and the
maximum value of MCC (Matthews correlation coefficient) defined in Eq. 9.
Methods tested are NC (Neighbor counting), MRF (Markov random field), and
two random forest methods combined with community structures by CSA and
SA.
doi:10.1371/journal.pone.0060372.t002
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that there is a trade-off between performance and computational

cost. Our study can be a guideline to select a method, which is fit

for a desired purpose. The advantage of the new simple screening

method over the RF method is that it is faster and can readily be

performed with publicly available resources without additional

data handling. For a given community structure, the functional

enrichment of each community can be obtained from various

existing web-servers [35–37]. Taken together with our previous

study [12], the results of this study indicate that information mined

from a network is universally enhanced when community

structures are used, regardless of variations in the type of network

and the function annotation scheme.

It should be noted that the improvement of prediction quality in

both community-assisted schemes is more prominent when the

optimal community structure generated by CSA is used, rather

than the sub-optimal one from SA. Based on the PR data, the

optimal community structure information improves both the

precision and the recall of the function prediction. In conjunction

with the number of meaningful functional clusters, we have shown

(above) that the optimal community structure with the maximum

modularity reveals more functional information than sub-optimal

ones. Many previous studies, which utilize the community

structure of a biological network paid little attention to the quality

of the community structure. However, as shown in this study, the

amount of information extracted substantially depends on the

quality of the partitioning. Therefore, when performing the

community analysis of a biological network, it is essential to work

with the optimal community structure with maximum modularity.

For this purpose, CSA is the method of choice. In a previous study,

we have shown that CSA can obtain optimal community

structures of networks with up to 2,000 nodes within reasonable

computational time and much faster than SA [12,22]. For the

community detection of the yeast protein-complex network

investigated in this study, it took 3 hours with 8 processors on

average for a CSA simulation while it took 3 days with a single

processor for a SA simulation. The parallel implementation of

CSA allows one to deal with much larger networks, which are

inaccessible to SA.

It should be emphasized that our method improves the function

prediction efficiency without additional source of information. Many

existing function prediction studies have relied on utilizing

additional external information to improve the prediction, such

as the reliability of the link presumed by the experimental method

[32,33] or the ortholog information across the networks of several

species [38,39]. The current method can be combined with other

existing methods in a straightforward manner, which can lead to

additional improvement.

Materials and Methods

Bipartite Protein-complex Network and Function
Annotations

We have constructed a bipartite network consisting of

complexes and their component proteins generated from ge-

nome-wide characterization of protein complexes of the yeast

Saccharomyces cerevisiae [18,40]. The original set consists of 491

protein complexes and 1,491 component proteins. When island

nodes not connected to the main network are removed, the

network contains 476 protein complexes and 1,452 component

proteins. Community structure was determined by modularity

optimization approach with the modified modularity measure (see

below) for the bipartite network [41].

To perform function prediction on the network, we generated a

protein-mode projection, where two proteins are connected if both

of them participate in forming at least one identical complex.

Schematic representations of (a) the bipartite network and (b) its

protein-mode projection are shown in Fig. 1.

Throughout the function prediction calculations carried out in

this study, we used the MIPS FunCat annotations [21]. MIPS

FunCat annotations are organized in a hierarchical manner and

Figure 7. Precision-recall curves for various methods. Precision-recall curves for neighbor counting (NC), Markov random field (MRF) and the
current study (RFCSA) are shown in panel (a). MCC maximum values are indicated by arrows. MRF provides quite accurate prediction for the low recall
region (recallv0:23), which corresponds to true positive predictions for the top 10 highest background functions. In panel (b) RF using community
structure from SA (RFSA) is shown along with the CSA data.
doi:10.1371/journal.pone.0060372.g007
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each level is separated by a dot, e.g. 01 metabolism is a

representative at the most coarse level, and 01.01.03.02.01

biosynthesis of glutamate belongs to the most specific level of FunCat.

Among 1,360 MIPS function annotations, we focused on the

specific functional terms finer than the third level, with at least

three dots in the annotation, which results in 228 annotations. We

note that proteins without any known functional annotations were

excluded from the function prediction experiment.

Community Detection via Modularity Optimization
A modified modularity measure is used [41] to detect the

community structure of the bipartite network. Due to the explicit

dependence of the modularity on the null model, a randomly re-

wired network, Eq. 1 of the original modularity is modified as

Q~
X

c

lc

m
{

kcdc

m2

� �
, ð3Þ

where kc and dc are the sum of degrees of two types of nodes (i.e.,

proteins and complexes) in community c.

Here, we briefly review two modularity optimization algo-

rithms, simulated annealing (SA) and conformational space

annealing (CSA). SA is a stochastic optimization method. It is

rather slow but has been considered as the most accurate method

until now. Here, we followed the implementation of previous

studies [28,42]. Initially, the simulation starts at a high temper-

ature, T , to sample wide regions of the solution space and to avoid

getting trapped in local maxima. As the simulation proceeds, T is

slowly decreased to focus on sampling high modularity regions. At

a given T , a set of moves including n2 single-node moves and n
collective moves consisting of random merges and splits of

communities, is carried out, where n is the total number of nodes

in the network. For each trial move, if Q increases (from Qi to Qf ),

the move is always accepted. Otherwise, it is accepted with the

probability of exp
Qf {Qi

T

� �
. After a set of moves is tried, T is

reduced to aT , where a = 0.995.

CSA is a global optimization algorithm based on the genetic

algorithm (GA). CSA uses a population of candidate solutions,

which evolves toward better solutions through cross-over and

mutation followed by local optimization. In CSA, each solution is

assumed to represent a hyper-sphere in the solution space with the

radius of D. D determines the diversity of sampled solutions, and it

starts as a large value, which decreases as the search proceeds. D is

equivalent to T in SA. When D is large, candidate structures must

be far apart in solution space; as D shrinks, good candidate

solutions are further fine-tuned. The distance between two

community structures is measured in terms of normalized mutual

information (I ) [43]. For two given partitions of X and Y , I is

defined as

I(X ,Y )~
{2

P
x,y nx,ylog(nx,yn=nxny)P

x nxlog(nx=n)z
P

y nylog(ny=n)
, ð4Þ

where n is the total number of nodes, x/y refers to a community

from X/Y , nx/ny is the number of nodes in x=y, and nx,y is the

number of nodes shared between x and y. If X is identical to Y , it

is easy to show that I(X ,Y )~1.

For cross-over, we introduced two operators, a simple copy and

a divisive copy. In both operators, one community is randomly

selected from the source solution and it is transferred into the

target solution by changing community identifiers of nodes in the

target according to the selected community structure of the source.

The rationale of these operators is that the community index of an

individual vertex is only a dummy variable whereas a well-defined

community should be conserved and transferred into new

solutions. In the simple copy, the community identifier of the

selected community of the source is transferred to the target

unchanged. On the other hand, in the divisive copy, a new

community identifier not present in the target is given to the

selected community. Using only one kind of the two operators

results in getting trapped in local maxima and lower modularity

solutions.

For local optimization of a trial solution, a quench simulation,

which accepts only modularity improving moves, equivalent to SA

at T~0, was performed consisting of n individual node moves and

n=10 collective moves, random merge and split. For CSA

simulations, the first cycle of CSA starting with 50 random

solutions is carried out until the population reaches a deadlock in

terms of a relevant signal. When this happens, the second cycle is

performed with the population increased to 100 to sample other

regions of the solution space not properly searched in the first

cycle. Generally, the size of the final population should be set to a

rather large number as the complexity of the problem grows. In

this study, it is set to 100. Recently, we compared the performance

of CSA to that of SA [22]. The result shows that CSA consistently

finds higher modularity community structures using fewer

computational resources than SA. More detailed descriptions

and benchmark results of the algorithm can be found elsewhere

[22,44–46].

Due to the stochastic nature of the two methods, we have

performed 10 independent modularity optimization runs for each

method. As discussed in the Result section, all 10 CSA runs

provide an identical community structure as the best solution

whereas the 10 SA runs yield various suboptimal solutions. Among

the 10 best solutions from SA, the highest modularity community

structure is used for protein function prediction.

Protein Function Prediction
Protein function prediction via neighbor-assisted

methods. In this study, two widely used neighbor-assisted

protein function prediction methods are utilized, a) Neighbor

counting (NC) [24] and b) Markov random field (MRF) [25–27]. In

NC, Ntop most observed functions among direct neighbors of the

target protein are predicted as its functions. In the original

implementation, Ntop~3 was used. Here we have evaluated the

performance by varying Ntop from 1 to 10. MRF is a probabilistic

method, and it relies on the Markovian assumption that the

function of a protein depends only on the states of its direct

neighbors. In MRF, the probability P that a protein v is associated

with a function of its neighbors is defined as

P~logit
log( f

1{f
)zbN(v,1)

za N(v,1){N(v,0)ð Þ{N(v,0)

 !
, ð5Þ

where logit(x) is the logistic function of 1=(1zexp({x)). f is the

background fraction of the function under consideration. N(v,1)
and N(v,0) denote the number of direct neighbors with and

without the function, respectively. a and b are free parameters,

and in this study, we followed the implementation of Karaoz et al.

[26] where a~0 and b~1 is used. By varying the probability P,

the balance between precision and recall can be adjusted with

lower P values resulting in higher precision and lower recall

prediction.

Protein function prediction by screening neighbor-

assisted predictions. In this study, we propose a simple
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screening scheme over neighbor-assisted predictions. For each

prediction by a neighbor-assisted method, the function’s hypergeo-

metric P-value, the probability of observing at least k proteins with

the function from the community of size m, is measured as

p~1{
Xk{1

i~0

Nf

i

� �
n{Nf

m{i

� �
n

m

� � , ð6Þ

where n is the number of proteins in the network, Nf is the

number of proteins with the function in the network, and k is the

number of protein with the function in the community. Low P-

values indicate that it is unlikely that k separate proteins all

associated with an identical function belong to the current

community by chance. P-value can be used as an indicator to

identify, which results from neighbor-assisted predictions are more

reliable. Using a P-value threshold of 0.05, neighbor-assisted

predictions with pw0:05 are screened out. Note that the result is

rather insensitive to the variation of the P-value threshold.

Protein function prediction by random forest. To cap-

ture nonlinear relationships between the presence of a particular

function annotation on a protein node and its local/global

properties from the network topology, we employed the random

forest (RF) machine learning algorithm and performed the leave-

one-out cross validation with MIPS function annotations [12]. We

deleted each target node individually from the network and

attempt to predict its functions using the network information of

the remaining 1,490 proteins and their function annotations, an

RF consisting of 500 classification trees was trained to maximize

the function prediction of the remaining 1,490 proteins. The

trained machine was then used to predict the functions of the

target protein. This procedure was repeated iteratively for all

1,491 proteins.

For each node i, we considered each function F from its

neighbors as a candidate function for i, and we wanted to design a

machine to decide the adequacy of F . For each i, we calculated 11

features, 5 using only neighbor information, 5 by combining

community information with the neighbor information, and one

employing background information only, the fraction of proteins

with function F . The first 5 features were 1) number of neighbors

with F , 2) difference between the numbers of neighbors with and

without F , 3) fraction of neighbors with F , 4) rank of F frequency

among all functions from neighbors, and 5) P-value of F
calculated from neighbors against all nodes. The next 5 features

are calculated from neighbors and ci, the community to which i

belongs; 6) number of neighbors in ci, 7) ratio of 6) to all

neighbors, 8) fraction of 6) with F , 9) P-value of F calculated from

ci against all nodes, and 10) P-value of F based on 6) against ci.

Evaluation of Protein Function Prediction
Prediction efficiency can be measured by precision P and recall

R, which are defined as:

P~
TP

TPzFP
ð7Þ

R~
TP

TPzFN
, ð8Þ

where TP and FP denote true and false positives and FN denotes

false negatives.

The screening scheme inevitably leads to a smaller number of

predictions than the original neighbor-based methods, which

results in lower recall. However, if screening by community

structure information provides significantly better prediction

accuracy, and this would compensate for the loss of recall.

Another prediction quality measure used in this study is the

Matthews correlation coefficient (MCC) [47], defined as:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p , ð9Þ

where TN denotes true negatives. MCC measures the correlation

coefficient between prediction and observation, and it returns +1

for perfect prediction, 0 for a random prediction, and 21 for

perfect disagreement.
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