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Abstract
Many neurodegenerative diseases demonstrate abnormal mitochondrial morphology and
biochemical dysfunction. Alterations are often systemic rather than brain-limited. Mitochondrial
dysfunction may arise as a consequence of abnormal mitochondrial DNA, mutated nuclear
proteins that interact directly or indirectly with mitochondria, or through unknown causes. In most
cases it is unclear where mitochondria sit in relation to the overall disease cascades that ultimately
causes neuronal dysfunction and death, and there is still controversy regarding the question of
whether mitochondrial dysfunction is a necessary step in neurodegeneration. In this chapter we
highlight and catalogue mitochondrial perturbations in some of the major neurodegenerative
diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), and Huntington’s disease (HD). We consider data that suggest mitochondria may
be critically involved in neurodegenerative disease neurodegeneration cascades.
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1. The quintessential neurodegenerative diseases
Neurodegenerative diseases are characterized by gradually progressive, selective loss of
anatomically or physiologically related neuronal systems. The clinical syndromes associated
with particular neuroanatomical patterns of cell dysfunction and loss are typically
categorized by whether they initially affect cognition, movement, strength, coordination,
sensation, vision, or autonomic control. Prototypical examples include AD, PD, ALS, and
HD. HD is strictly an autosomal dominant disorder. With AD, PD, and ALS most cases are
age-related and show sporadic epidemiology, although rare Mendelian variants do occur. As
life expectancy continues to advance in developed countries the incidence of these disorders
increases and will continue to do so.

Mitochondrial dysfunction is a common theme in these diseases. Mitochondria are known to
play a central role in many cell functions including ATP generation, intracellular Ca2+

homeostasis, reactive oxygen species (ROS) formation, and apoptosis. Neurons are
particularly dependent on mitochondria because of their high energy demands. It seems
reasonable to hypothesize neurons are relatively intolerant of mitochondrial dysfunction.
This assumption is supported by the fact that maternally inherited diseases with known
homoplasmic or near-homoplasmic mitochondrial DNA (mtDNA) mutations tend to affect
the central nervous system and muscle, the body’s two most aerobic tissues.
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2. Alzheimer’s Disease
AD is the most common neurodegenerative disease and the most frequent cause of
dementia. By far the greatest risk factor for AD is ageing, and approximately one in ten
persons over 65 and nearly half of those over 85 have AD (Antuono and Beyer, 1999). With
such high prevalence rates among the oldest old it is difficult to not consider AD pathology
from outside the context of aging itself (Swerdlow, 2007a).

AD can be divided into early versus late onset forms as well as sporadic and autosomal-
dominant variants. Autosomal dominant AD represents the minority of AD cases and
typically presents before the age of 65. It is caused by mutations in genes encoding for either
the amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin (PS2), and these
mutations appear to alter processing of APP towards the 42 amino acid beta amyloid (Aβ)
derivative (Scheuner et al., 1996). Aβ is the major constituent of amyloid plaques observed
in particular brain regions of AD patients, including neocortex, hippocampus, and other
subcortical regions essential for cognitive function. In 1992 the “amyloid cascade
hypothesis” was proposed (Hardy and Higgins, 1992). This hypothesis states altered
processing of APP or changes in Aβ stability result in a chronic imbalance between Aβ
production and clearance. Gradual accumulation of aggregated Aβ initiates a complex,
multistep process that includes gliosis, inflammatory changes, neuritic/synaptic change,
neurofibrillary tangles, reductions in neurotransmitters, and finally neurodegeneration and
neuronal cell death.

However, it is not quite clear how Aβ might induce neurodegeneration. One possible
mechanism is that Aβ interferes with mitochondrial function. When maintained in the
presence of Aβ, isolated mitochondria show diminished respiratory capacity in general, and
specifically inhibition of several key enzymes including cytochrome oxidase, α-
ketoglutarate dehydrogenase, and pyruvate dehydrogenase (Pereira et al., 1998; Canevari et
al., 1999; Casley et al., 2002). Brief exposure of cultured rat hippocampal neurons to sub-
lethal Aβ concentrations resulted in rapid and severe impairment of mitochondrial transport
without inducing apparent cell death (Rui et al., 2006). At concentrations insufficient to kill
cells, Aβ appears to induce an increase in mitochondrial DNA (mtDNA) levels and reduces
the number of normal appearing mitochondria (Diana et al., 2008). Cells depleted of
endogenous mtDNA (ρ0) cells, which lack functional electron transport chains (ETC), are
impervious to Aβ (Cardoso et al., 2001). A further study reports a positive correlation
between levels of soluble Aβ and hydrogen peroxide in brain mitochondria isolated from
APP transgenic mice (Manczak et al., 2006), which supports the view that mutant APP or
soluble Aβ impairs mitochondrial metabolism. Physical associations between mitochondria
and APP as well as between mitochondria and Aβ have been reported in transgenic mice
(Manczak et al., 2006). Aβ binds to a mitochondrial protein called Aβ-binding alcohol
dehydrogenase (ABAD), and it has been demonstrated that blocking the interaction of Aβ
and ABAD can suppress Aβ-induced apoptosis and free-radical generation in neurons
(Lustbader et al., 2004). These physical associations have also been supported by human AD
studies (Lustbader et al., 2004; Anandatheerthavarada et al., 2003; Crouch et al., 2005;
Caspersen et al., 2005; Devi et al., 2006). Physical associations between PS1 and
mitochondria are also reported (Hansson et al., 2004).

Besides functional changes, extensive literature indicates mitochondrial structural dynamics
are also altered in AD patients. Quantitative ultrastructural morphometric analysis shows
that compared to age-matched control group brains AD brains contain a significantly lower
percentage of normal mitochondria (de la Monte et al., 2000) and a significantly higher
percentage of mitochondria with broken cristae (Hirai et al., 2001). Also, in fibroblasts from
sporadic AD patients mitochondria are longer, with two or more mitochondria often joined
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together, while those of age-matched normal human fibroblasts are much shorter and appear
sausage-shaped or rounded (Wang et al., 2008a). Similar morphological changes are also
found in neurons over-expressing wild-type APP. APP over-expressing cells actually show
mitochondria with heterogeneous morphologies; approximately 50% of cells contain
fragmented, punctiform mitochondria and the mitochondria in some cells show elongated,
net-like structures (Wang et al., 2008b).

It is known that the activities of several mitochondrial enzymes including complex IV
(cytochrome c oxidase; COX), pyruvate dehydrogenase complex, and α-ketoglutarate
dehydrogenase complex are reduced in AD (Swerdlow and Kish, 2002). COX is the last
enzyme in the respiratory ETC of mitochondria and receives electrons from cytochrome c. It
contains several metal prosthetic sites and 13 protein subunits of which ten are encoded by
nuclear and three by mtDNA genes. In 1990, deficient COX activity was found in platelets
of AD patients. A similar finding was made in AD brains in 1992 (Parker et al., 1990a; Kish
et al., 1992). Subsequently, the finding of reduced COX activity in AD patients has been
replicated in platelets (Parker et al., 1994; Bosetti et al., 2002; Cardoso et al., 2004a),
fibroblasts (Curti et al., 1997), focal brain regions (Bosetti et al., 2002), and large parts of
the brain (Mutisya et al., 1994; Wong-Riley et al., 1997). These reports indicate
mitochondrial dysfunction occurs in AD and that AD mitochondrial dysfunction is systemic
rather than brain-limited.

COX reduction has also been reported at all stages of the disease, including mild cognitive
impairment (MCI) (Swerdlow and Kish, 2002; Valla et al., 2006). APP transgenic mice also
develop early signs of mitochondrial perturbation; expression of mitochondrial genes is
altered when these mice are only two months old, which precedes by months the appearance
of cognitive signs (Manczak et al., 2006).

Cytoplasmic hybrid (cybrid) studies suggest mtDNA is at least partly responsible for the
reduced activity of COX in AD patients (Swerdlow et al., 1997). A diagram that provides an
overview of the cybrid technique is shown in Figure 1. When platelet mtDNA from AD
patients is expressed within neuronal cell lines grown in culture (cytoplasmic hybrid cell
lines, or cybrids), the resulting cells continue to manifest reduced COX activity and this
specific biochemical defect persists over time in the cybrid lines (Swerdlow et al., 1997;
Swerdlow, 2007b). It also has been observed that AD cybrid cell lines containing AD
subject mitochondria/mtDNA overproduce free radicals, accumulate Aβ, and have decreased
ATP levels (Swerdlow, 2007b; Khan et al., 2000; Cardoso et al., 2004b). Since three of the
13 COX subunits are encoded by mtDNA, this phenomenon suggests mtDNA differs
between AD patients and control subjects, and indirectly supports the view that mtDNA
contributes to the AD-associated COX activity reduction.

It remains unclear how mtDNA from AD subjects specifically differs from that of control
subjects. Several studies show oxidative modification of both nuclear DNA and mtDNA are
increased in AD brains (Gabbita et al., 1998; Mecocci et al., 1994; Wang et al., 2005).
Levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) are widely considered to reflect levels of
oxidative stress (Valavanidis et al., 2009), and mtDNA 8-OHdG is increased in AD patient
cortical brain regions (Mecocci et al., 1994). It is known that mtDNA with large mtDNA
deletions (including a 4977 base-pair deletion that involves mtDNA cytochrome oxidase
subunit genes) preferentially accumulates in human AD brains compared to control aged
brain (Corral-Debrinski et al., 1994; Hambleta and Castora, 1997) and the frequency of
point mutations are also higher in several brain regions including parietal gyrus,
hippocampus, and cerebellum of AD subjects (Chang et al., 2000). Although AD mtDNA
sequences contain a higher number of substitutions in tRNA genes, without a corresponding
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biochemical analysis it is hard to know whether these mtDNA mutations constitute a major
etiological factor in sporadic AD (Elson et al., 2006).

Mitochondrial genes contain frequent polymorphic variations, and mtDNA gene products
function in the context of nuclear-encoded proteins that also contain polymorphic variations.
It is possible that polymorphism-defined ETC subunit combinations do not function
identically. If so, this could explain why epidemiologic associations between mtDNA
polymorphisms and AD risk are difficult to establish (Swerdlow and Kish, 2002).

Although clear mtDNA features contributing to the pathogenesis of AD are still not known,
the possibility that maternal mitochondrial inheritance may influence disease risk and
pathology has been considered. While several studies actually conclude there is no evidence
of a maternal effect in AD, or even that there is predominant paternal transmission
(Ehrenkrantz et al., 1999; Payami and Hoffbuhr, 1993), other epidemiological studies find
maternal inheritance strongly influences AD risk (Duara et al., 1993; Edland et al., 1996).
Among AD patients with one affected parent, the ratio of mothers to fathers affected is 3:1.
For cases in which affected proband relations include one affected parent and at least
sibling, the mother to father ratio increases to 9:1 (Edland et al., 1996). Recently, a genetic
study indentified new possible regions of linkage on chromosome 10 and 12 only among
families with maternal transmission of late-onset AD (Bassett et al., 2002). Brain imaging
techniques also provide evidence of maternal transmission of AD risk. Positron emission
tomography (PET) imaging, when using 2-[18F] fluoro-2-deoxy-D-glucose (FDG) as the
tracer, can be used to determine the cerebral metabolic rate of glucose (CMRglc). It has been
demonstrated that in AD patients, CMRglc is reduced in several neuroanatomic areas
including the parietotemporal, posterior cingulate, and to a smaller extent frontal cortex and
medial temporal lobe regions (Mosconi, 2005). These reductions occur years before AD
symptom onset. One FDG-PET study reported that cognitively intact subjects (aged from
46–80) with AD mothers but not AD fathers had AD-like patterns of CMRglc reduction even
after accounting for other possible AD risk factors (Mosconi et al., 2007; Mosconi et al.,
2009).

The amyloid cascade hypothesis, which assumes AD is always a primary amyloidosis, has
dominated thinking in the AD research field for decades but other etiologic hypotheses have
been formulated. The “mitochondrial cascade hypothesis” was proposed in 2004 (Swerdlow
and Khan, 2004). In the mitochondrial cascade hypothesis, mitochondria sit at the apex of
AD histopathology and neurodegeneration. It assumes AD mitochondrial dysfunction drives
amyloidosis, tau phosphorylation, and cell cycle re-entry (Swerdlow and Khan, 2009;
Swerdlow, 2007c). As mentioned above, since AD mitochondrial dysfunction is systemic
altered mitochondrial function in AD cannot simply represent a consequence of
neurodegeneration. Although many investigators believe that mitochondrial dysfunction is a
downstream event in the development of AD and may play a minor role in the disease, the
results of several studies including cell culture and transgenic mouse studies support that
brain mitochondrial bioenergetic defects (such as oxidative damage, COX activity, oxygen
consumption, and H2O2 production) precedes or drives Aβ production/deposition and
plaque formation (Khan et al., 2000; Manczak et al., 2006; Praticò et al., 2001; Yao et al.,
2009). The mitochondrial cascade hypothesis also takes aging phenomena into account. It
postulates inheritance determines mitochondrial baseline function and durability, which in
turn influences how mitochondria change with age. It is presumed more durable
mitochondria adequately function for more decades than less durable mitochondria. When
mitochondrial change reaches a threshold and bioenergetic homeostasis can no longer be
maintained, AD histopathology and symptoms may ensue (Swerdlow, 2007c).
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In summary, mounting evidence indicates altered mitochondrial function associates with
AD. If mitochondrial dysfunction is critical for the initiation and progression of AD, the
susceptibility of mitochondrial to environmental and genetic risk factors should play a role
in the development of AD and mitochondria need to be considered in late-onset, sporadic
AD prevention and treatment development efforts.

3. Parkinson’s Disease
PD is the most common neurodegenerative movement disorder. It affects ~1% of the
population above the age of 60 (Abou-Sleiman et al., 2006) and 1–3% of those over 80 years
of age (Tanner and Goldman, 1996). PD is clinically characterized by rigidity, resting
tremor, bradykinesia and postural instability. The key symptoms and signs arise from a
preferential loss of dopaminergic neurons of the substantia nigra pars compacta, although
early neurodegenration also occurs in other discrete brainstem and basal forebrain nuclei.
Another hallmark is that surviving nigral neurons may contain Lewy bodies,
intracytoplasmic inclusions that are mainly composed of fibrillar α-synuclein protein
(Spillantini et al., 1997). The presence of nigral Lewy Bodies establishes the histological
diagnosis of PD.

Like AD, PD is clinically partitioned into early versus late onset variants and Mendelian
versus non-Mendelian forms. With advancing age the percentage of cases caused by
Mendelian gene mutations declines. Most PD (~90%) is sporadic and does not show
Mendelian inheritance (Trimmer and Bennett, 2009).

Mitochondrial dysfunction has long been implicated in the pathogenesis of PD. Evidence
first emerged in the 1980’s that drug abusers developed an acute and irreversible
parkinsonian syndrome after using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
The active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+), is transported
intracellularly by the dopamine transporter (DAT). Perhaps because of DAT uptake it
accumulates in dopaminergic neurons and inhibits complex I (Nicklas et al., 1985). MPP+-
induced complex I inhibition further leads to increased free radical production/oxidative
stress, decreased ATP production, increased intracellular calcium concentration,
excitotoxicity, nitric oxide-related cellular damage, and ultimately the death of
dopaminergic neurons (Beal, 1998; Hantraye et al., 1996; Mizuno et al., 1988; Ng et al.,
1996; Sheehan et al., 1997; Smith et al., 1994; Ali et al., 1994). MPTP has been extensively
for PD cell culture and animal modeling.

In 1989, several groups reported that Complex I activity was reduced in the substantia nigra,
platelets, and skeletal muscle of patients with idiopathic PD (Parker et al., 1989; Schapira et
al., 1989; Bindoff et al., 1989). Since then altered complex I activity was also reported in
fibroblasts and frontal cortex (Mytilineou et al., 1994; Parker et al., 2008 ). It has been
hypothesized that this PD systemic complex I activity may be a consequence of exposure to
exogenous inhibitors, systemic endogenous production of an inhibitory factor, or mtDNA-
encoding of Complex I subunits (Swerdlow, 2000). Data supporting all of these possibilities
are published. For example, the complex I inhibitor rotenone has been used to model PD in
rats. Rats administered rotenone develop a PD-like syndrome characterized by loss of
substantia nigra neurons and the formation of α-synuclein-rich inclusion bodies (Betarbet et
al., 2000; Cannon et al., 2009).

Several nuclear gene mutations associated with autosomal dominant and recessive forms of
Mendelian PD have also been identified (Table 1). Examples of such genes are α-synuclein,
Parkin, phosphate and tensin homologue-induced kinase 1 (PINK1), DJ1, leucine-rich repeat
kinase 2 (LRRK2), and Htr A serine peptidase 2 (HTRA2). Genetically modified organisms
based on knock-out, over-expression, or mutant versions of these genes have since been
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generated for purposes of PD animal modeling. Interestingly, many of these nuclear genes
also implicate a role for mitochondria in PD pathogenesis.

In transgenic mice over-expressing α-synuclein, mitochondrial function is impaired,
oxidative stress increases, and in the face of complex I inhibitors the threshold for nigral
degeneration is reduced (Song et al., 2004). In another study of mice that over-express
mutant α-synuclein, α–synuclein immunostaining suggested this protein directly affects
mitochondria (Martin et al., 2006).

Parkin, a ubiquitin ligase, is believed to protect neuron mitochondria (Palacino et al., 2004).
It has been reported in drosophila and mouse models that parkin deficiency or mutations
lead to increased oxidative stress and mitochondrial impairment (Palacino et al., 2004; Pesah
et al., 2004). It is important to note that mitochondrial dysfunction and oxidative stress also
affect parkin function and exacerbate the consequences of parkin mutations (Chung et al.,
2004).

PINK1, a mitochondria-localized kinase, appears to protect against cell death (Silvestri et
al., 2005). This protective effect is abrogated by PD-related mutations that disable its kinase
function (Petit et al., 2005). PINK deficiency increases the sensitivity of mitochondria to
rotenone and induces degeneration of dopaminergic neurons in drosophila (Yang et al.,
2006). These reports and others provide strong evidence that mitochondrial dysfunction
plays an important role in the pathogenesis of Mendelian PD, and are consistent with an
important role for mitochondrial function in sporadic PD.

As mentioned above, reduced complex I activity is a systemic event in PD. Complex I is a
large multimeric enzyme containing 46 known protein subunits. At least seven of these
subunits are encoded by genes on mtDNA. Because mtDNA makes such an important
contribution to the structure and function of complex I and mtDNA abnormalities can
produce sporadic disease, in 1989 it was hypothesized that mtDNA alteration might
constitute a key risk factor for the development of idiopathic PD (Parker et al., 1989). An
early study found levels of the common mtDNA deletion were increased in PD brains, but
this study did not use age-matched controls (Ikebe et al., 1990). Other studies using DNA
isolated from brain homogenates found that relative to age-matched controls, mtDNA
deletions were not increased (Schapira et al., 1990; Lestienne et al., 1991). More recently it
was shown that mtDNA deletion burdens increase with advancing age and are further
increased in nigral neurons from PD subjects (Bender et al., 2006; Kraytsberg et al., 2006).

Multiple groups have used the cybrid technique to show transfer of mitochondria and
mtDNA from sporadic PD subject platelets produces cell lines with persistently reduced
complex I activity(Swerdlow et al., 1996a; Gu et al., 1998; Esteves et al., 2008; Esteves et
al., 2010). PD cybrid cell lines also have increased reactive oxygen species production,
reduced mitochondrial calcium storage, less ATP production, depolarized mitochondria, and
higher caspase 3 activity. PD cybrid cell lines generate Lewybody-like inclusions without
the need from exogenous protein expression or toxin-mediated inhibition of mitochondrial
or proteasomal function (Trimmer et al., 2004). Mitochondrial respiration and pathways
influenced by aerobic metabolism are also altered in PD cybrid cell lines. A recent study
reported PD cybrid mitochondria have an increased proton leak and decreased respiratory
reserve capacity. In these cybrid cell lines levels of the transcriptional co-activator PGC1-α,
which coordinates mitochondrial biogenesis, were reduced (Esteves et al., 2010).

Although the actual mtDNA alterations that account for these findings are still unknown,
these results strongly suggest mtDNA contributes to reduced complex I activity in sporadic
PD. This mtDNA contribution could derive from inherited or somatic mtDNA mutations.
Several lines of investigation support a role for mtDNA inheritance. Epidemiologic studies
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suggest for non-Mendelian cases who nevertheless have a PD-affected parent, the affected
parent is more likely to be the mother (Wooten et al., 1997; Swerdlow et al., 2001).
Mitochondrial haplogroup and polymorphism association studies demonstrate mtDNA
variations alter PD risk as well (Swerdlow, 2000; van der Walt et al., 2003). The systemic
nature of the PD complex I defect, in conjunction with the fact that expression of PD subject
platelet mtDNA probably accounts for the results of PD cybrid studies, also suggests
mtDNA inheritance is more likely to play a key role than somatic mutation acquisition
(Swerdlow, 2009).

As discussed above, the use of PD tissues and a number of experimental PD models has
contributed to our recognition and understanding of how mitochondria are important to PD
pathogenesis. In vivo human studies also contribute to this knowledge base. Proton and
phosphorus magnetic resonance spectroscopy (1H and 31P MRS) are powerful, noninvasive
techniques that facilitate quantitative in vivo measurements of metabolism pathway
intermediates. 31P MRS allows quantitative measurements of high energy phosphates such
as adenosine triphosphate and phosphocreatine, and can be used to provide an indication of
brain energy stores (Henchcliffe et al., 2008). One study using these techniques found high-
energy phosphates were reduced in the putamen and midbrain of both early and advanced
PD patient groups (Hattingen et al., 2009).

Most would agree mitochondria play an important role in PD pathogenesis. Abundant
evidence supports this view. Although identifying the actual mtDNA features that associate
with sporadic PD warrants further investigation, at this point targeting mitochondrial
function in PD treatment development efforts is well-justified.

4. Amyotrophic lateral sclerosis
ALS is a neurodegenerative disease that primarily affects strength. It is characterized by
upper and lower motor neuron degeneration. Weakness and muscle atrophy usually begin
asymmetrically and distally in a single limb, spreads within the neuro-axis to involve
contiguous muscle groups innervated by nearby motor neurons, and eventually also affects
more rostral motor neurons. Approximately 10% of ALS cases are familial and the rest are
sporadic. Similar to AD and PD, the incidence of ALS increases with increasing age, and the
older the age of onset the less likely Mendelian inheritance is responsible. Among familial
cases, the most common mutations occur in the copper-zinc superoxide dismutase (SOD1)
gene on chromosome 21. SOD1 mutations account for about 20% of the familial cases and
2% of all cases. More recently, mutations in two RNA processing proteins, TDP-43 and
FUS/TLW(Kabashi et al., 2008; Sreedharan et al., 2008; Vance et al., 2009; Kwiatkowski et
al., 2009), have also been found in kindreds with familial ALS variants.

Mitochondrial alterations have been described in sporadic ALS as well as in models of
familial ALS. Mitochondrial morphological changes, such as bizarre giant mitochondria and
spiny or stubby mitochondria, are found at greater than normal frequencies (Hirano et al.,
1984; Masui et al., 1985; Nakano et al., 1987). Abnormal mitochondria accumulate in the
axon hillock and initial segment of axons (Sasaki and Iwata, 1996). Changes are observed in
both neural and non-neural tissues (Swerdlow et al., 2000). Changes in mitochondrial
electron transport chain activities have been noted by several groups using biopsies from
patients with ALS and animal models of ALS. While the overall results of many different
studies support the overall view that mitochondria and mitochondrial function are altered in
ALS, particular results from these studies are not homogeneous. In one study, complex I
activity was increased in postmortem brain tissue from a patient with familial ALS (Bowling
et al., 1993). Reduced complex IV activity was shown in patients with sporadic ALS (Fujita
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et al., 1996). Complex I and II–III deficiencies were observed in patients with familial ALS
due to SOD1 mutations and also in an SOD1 transgenic mouse model (Browne et al., 1998).

When the cybrid technique was used to study the function of mitochondria obtained from
ALS subject platelets, ALS cybrids produced on a neuroblastoma nuclear background
showed a significant reduction in complex I activity and non-significant trends towards
reduced complex III and IV activities (Swerdlow et al., 1996b; Swerdlow et al., 1998). In
another study that used spinal cord tissue from patients with ALS, it was reported that
activity of citrate synthase, which is often used as a marker of mitochondrial mass, was
significantly lower than it was in control subjects. Along with the decreased activities of
respiratory chain complexes I + III, II+ III, and IV this paper reported, low citrate synthase
activity suggests there is a loss of mitochondria from spinal cords of ALS patients
(Wiedemann et al., 2002).

Cell ROS levels may increase when mitochondrial respiration is impaired, although ROS
itself may impair mitochondrial function (Bacman et al., 2006). There is certainly abundant
evidence that indicates oxidative stress in increased in ALS. In sporadic ALS cases both
lipid and protein oxidation are enhanced in spinal cord motor neurons and glia (Shibata et
al., 2001). Also, the percentage of oxidized CoQ10 in sporadic ALS subject cerebrospinal
fluid exceeds that of age-matched controls and positively correlates with illness duration
(Murata et al., 2008). Markers of immune system activation are significantly elevated in
ALS postmortem CNS tissue (Simpson et al., 2004), and increased blood ROS and lactate
production levels suggests a close relationship between mitochondrial function and
oxidative stress in ALS (Siciliano et al., 2002). Some propose oxidation-induced DNA
damage contributes to sporadic ALS pathogenesis (Murata et al., 2008).

As to whether alterations in mtDNA are associated with ALS, diminished levels of mtDNA
were observed in skeletal muscle of patients with sporadic ALS (Vielhaber et al., 2000).
Mitochondrial DNA haplogroups also appear to influence ALS risk (Mancuso et al., 2004).
Other studies suggest levels of the 4977-base pair mtDNA common deletion are elevated in
sporadic ALS (Ro et al., 2003; Dhaliwal and Grewal, 2000). Since correlation does not
establish causality, though, further investigation is needed to determine whether mtDNA
somatic mutations play a causal role in sporadic ALS or are merely a byproduct of upstream
events.

Most ALS laboratory modeling is accomplished using transgenic rodents that express an
ALS-associated SOD1 mutation. The SOD1 gene was the first gene recognized to cause
autosomal dominant ALS, and more than 100 different mutations have been mapped to it
(Bacman et al., 2006). SOD1 protein functions as a ubiquitous antioxidant enzyme that
catalyzes the dismutation of superoxide radicals to hydrogen peroxide, which can be
converted to molecular oxygen by additional antioxidant enzymes such as catalase and
glutathione peroxidase. It localizes predominantly to the cytoplasm, but both wild type and
mutant SOD1 protein have been found in the intermembrane space, matrix and outer
membrane of mitochondria of ALS-affected tissues (Higgins et al., 2002; Velde et al., 2008;
Vijayvergiya et al., 2005; Liu et al., 2004). It is postulated that mutant SOD1 accumulates
and aggregates in the outer mitochondrial membrane, that this impairs mitochondrial protein
import, and disrupting mitochondrial protein import perturbs mitochondrial function (Liu et
al., 2004).

Extensive mitochondrial fragmentation occurs in cell models of mutant SOD1
overexpression (Raimondi et al., 2006; Menzies et al., 2002). Mitochondrial vacuolation is
another abnormal morphologic feature characteristic of SOD1 ALS models. This is seen in
spinal motor neurons from these mice, and it occurs in conjunction with expansion of the
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intermembrane space and the mitochondrial outer membrane (Higgins et al., 2003). A
transient explosive increase in vacuoles is observed in mutant SOD1-expressing transgenic
mice just prior to motor neuron demise (Kong and Xu, 1998), which suggests mitochondrial
dysfunction may trigger ALS cell death cascades.

SOD1-induced mitochondrial membrane damage discharges the mitochondrial membrane
potential, impairs mitochondrial respiration, and reduces the ability of mitochondria to
buffer cytosolic calcium (Borthwick et al., 1999; Jung et al., 2002; Carri et al., 1997). In
SOD1 mice these changes precede the onset of motor signs (Damiano et al., 2006).

Substantial evidence suggests mitochondrial dysfunction plays a crucial role in ALS motor
neuron degeneration. Where mitochondrial dysfunction sits in the ALS pathologic cascade is
unclear and where mitochondria sit in the degeneration cascade hierarchy Mendelian and
sporadic ALS may differ. In the Mendelian forms mitochondrial dysfunction certainly must
occur downstream of the causative mutation, but even in Mendelian ALS mitochondrial
dysfunction may play a fairly upstream role. In sporadic ALS it is possible that
mitochondrial dysfunction occupies the apex of the ALS pathology pyramid, but this
remains unproven (Beal, 1995).

5. Huntington’s Disease
HD is a degenerative movement disorder clinically characterized by choreiform movements,
psychiatric disturbances, and dementia. Symptoms may develop in childhood or young
adulthood but usually manifest in middle age. Clinical changes reflect neuron dysfunction
and loss that preferentially affects GABAergic medium spiny striatal neurons (Vonsattel and
DiFiglia, 1998). The disease becomes less neuroanatomically specific during later stages as
it extends to other brain regions. HD is strictly an autosomal dominant disorder and it is
caused by a CAG triplet repeat expansion (>35 CAGs) in the first exon of the Huntingtin
(HTT) gene on chromosome 4 (Huntington’s Disease Collaborative Research Group, 1993).

Impaired cell energy production and metabolism in HD were recognized before the
responsible gene mutation was identified. Energy metabolism-related deficits were predicted
in the early 1980’s following observations of excessive weight loss and deficient brain FDG
uptake on PET (Sanberg et al., 1981; Kuhl et al., 1982). In the early 1990’s proton nuclear
magnetic resonance spectroscopy further revealed increased lactate in the cortex and basal
ganglia of HD subjects (Jenkins et al., 1993).

Several electron transport chain enzyme activities are deficient in HD tissues. Complex II,
III and IV activities are significantly reduced in HD subject brains (Gu et al., 1996; Browne
et al., 1997). Additional data suggest the complex II defect is particularly relevant to the
demise of neuron populations affected in HD (Benchoua et al., 2006). Complex II inhibitors
have successfully been used to model HD; systemic administration of the complex II
inhibitors 3-nitropropionic acid and malonate to rodents and primates recreates an HD-like
pattern of neurodegeneration and an HD-consistent behavioral phenotype (Beal et al., 1993;
Brouillet et al., 1995). Surprisingly, though, for two non-brain tissues (platelets and muscle)
complex I activity is reduced but complex II, III, and IV activities are not (Arenas et al.,
1998; Parker et al., 1990b).

Since HTT polyglutamine repeat expansion is the primary cause of HD, the question arises
as to how and why mitochondrial dysfunction arises in HD. This could conceivably result
from direct or indirect effects that HTT may have on mitochondria. Another question that
requires consideration is whether mitochondrial dysfunction plays an important intermediary
role in HD dysfunction and neurodegeneration cascades. These questions have been studied
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using transgenic mice that express all or part of the mutant huntingtin gene, but despite
considerable efforts decisive conclusions remain elusive.

Available data do indicate polyglutamine-expanded HTT directly associates with
mitochondria. A study of mice expressing a 72 glutamine-long expansion found brain
mitochondria had lower mitochondrial membrane potentials and depolarized at lower
calcium exposures than did mitochondria from control mouse brains. These biochemical
defects preceded the onset of structural and behavioral abnormalities by months (Panov et
al., 2002). This study further found that when normal mitochondria were incubating with a
fusion protein containing an abnormally long polyglutamine repeat, the mitochondria
developed calcium handling deficits consistent with those seen in human HD subject tissues
and HD transgenic animal models. A different study also found mitochondria from HD
transgenic mice were overly sensitive to calcium-induced mitochondria permeability
transitions. This phenomena was also observed in normal mitochondria exposed to mutant
HTT (Choo et al., 2004).

Other data indicate mutant HTT may indirectly influence mitochondrial function by altering
mitochondria-relevant transcription events. HTT appears to interact with several
transcription factors, including p53, CREB-binding protein, Sp1, and PGC1- α (Bae et al.,
2005; Sugars and Rubinsztein, 2003; Weydt et al., 2006; Cui et al., 2006). p53 is a tumor
suppressor protein that also regulates genes involved in mitochondrial function and
oxidative stress. A recent study reported mutant HTT binds p53, upregulates nuclear p53
levels and transcriptional activity, and through these effects causes mitochondrial membrane
depolarization. p53 suppression prevented mitochondrial depolarization and HTT-induced
cytotoxicity(Bae et al., 2005). PGC-1α is a transcription coactivator that regulates
mitochondrial biogenesis and metabolic pathways relevant to cell bioenergetics. PGC-1α
knock-out mice have an HD-like phenotype (Lin et al., 2004), and reduced expression of
PGC-1α target genes is seen in HD patient and HD transgenic mouse striatum (Weydt et al.,
2006). Crossing PGC-1α knock-out mice with HD transgenic mice exacerbates striatal
neurodegeneration and motor abnormalities, while lentivirus-mediated delivery of PGC-1α
to the striatum is neuroprotective in HD transgenic mice (Cui et al., 2006).

Resveratrol, an activator of the sirtuin Sir2 homolog 1 (SIRT1) may also protect against
mutant HTT-induced metabolic dysfunction (Parker et al., 2005). SIRT1 deacetylates and
activates PGC-1α (Nemoto et al., 2005; Rodgers et al., 2005). PGC-1α activation is under
consideration for its potential as an HD therapeutic target.

6. Conclusions
Depicting the hierarchical cascades that drive and mediate neuron dysfunction and death in
neurodegenerative diseases is extremely complex (Figure 2). Identifying individual
pathologies is easier than defining how they interact. Strong evidence acquired over decades
shows mitochondrial abnormalities occur in persons with various neurodegenerative
diseases, and further shows distinct mitochondrial abnormalities are characteristic of
particular disorders. This is the case for very rare neurodegenerative diseases and also for
very common age-related disorders such as AD and PD. It has been considered for some
time that mitochondria might play a quite upstream role in sporadic neurodegenerations. It is
now also known that a remarkable number of proteins that cause neurodegeneration in their
mutant forms interact with mitochondria or affect mitochondrial function. It is important that
studies of the mitochondria-neurodegeneration nexus continue for many reasons. Such
studies could yield insights into and treatments for diseases that devastate millions of
people.
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Figure 1. The cybrid technique
The black circles represent nuclei in parental cells. The ovals represent mitochondria. The
black dots within the ovals represent mitochondrial DNA.
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Figure 2.
Attempt to summarize relationships between mitochondria and other characteristic
neurodegeneration features.
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Table 1

Interactions between mitochondria and proteins encoded by genes that are mutated in Mendelian Parkinson’s
Disease.

Locus Gene product Inheritance & comments Direct or indirect interaction with mitochondria

PARK1/4 α-Synuclein AD Mutant α-synuclein sensitizes neurons to oxidative stress and
damage.

PARK2 Parkin AR, most common cause of recessive
juvenile PD

Parkin mutations lead to increased oxidative stress and in turn
mitochondrial dysfunction can affect parkin function.

PARK6 PINK1 AR, second most common cause of
recessive juvenile PD

A mitochondria-localized kinase; its deficiency sensitizes
mitochondria to rotenone and induces degeneration of
dopaminergic neurons.

PARK7 DJ-1 AR A possible redox sensor; binds to mitochondrial complex I and
maintain its activity.

PARK8 LRRK2 AD, most common cause of dominant PD Associates with the outer mitochondrial membrane and can bind
parkin.

PARK13 OMI/HTRA2 * AD?
A mitochondrial protease; acts downstream of PINK1; loss of
HtrA2 results in the accumulation of unfolded proteins in the
mitochondria and increased production of ROS.

AD=autosomal dominant; AR=autosomal recessive.

*
Not uniformly accepted.

Adv Exp Med Biol. Author manuscript; available in PMC 2013 April 06.


