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Abstract

We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in
the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of
nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface
area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points
of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly
available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad
hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly
treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to
rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of
fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the
Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates
it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-
Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method
on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which
corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the
corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range
workstation.
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Introduction

Many scientific disciplines that study systems at the nano- and

meso- scales, e.g. biophysics, nanotechnology, and material

sciences, often represent matter as a continuum rather than in

its full atomistic detail. These continuum models make frequent

use of surfaces to separate regions that can be described as

homogeneous with respect to some property of interest. An

example of this can be found in computational biophysics, where

an electrostatic continuum description of charged molecular

systems in aqueous solution is often performed to estimate the

reaction of both the solute and the solvent to the local electric

field. This can lead to deep insights into the nature of biological

phenomena such as molecular recognition [1]. In this and in

many other contexts, it is highly desirable to have a physically

grounded surface definition that also permits a fast and accurate

implementation.

If we focus on this type of application, we observe that several

models have been used to define a proper molecular surface that

separates high (solvent) from low (solute) dielectric regions. This

information can be then fed, for instance, to a Poisson-Boltzmann

solver, consistently with the Debye-Hueckel theory of weakly

interacting electrostatic systems. Among these models, the simplest

are the Van der Waals Surface (VdWS) and the Solvent Accessible

Surface (SAS). The most commonly adopted is the Connolly-

Richards [2] Solvent Excluded Surface (SES), which was first

implemented by Connolly [3] in 1983. Finally, the minimal

molecular surface results from the minimization of a specific

functional [4]. Two other definitions come from the computer

graphics field and have been created chiefly for visualization

purposes. These are the Gaussian surface [5] (also known in the

Graphics community as the Blobby surface) and the Skin surface

[6–10]. Some of their strengths and weaknesses have already been

reported in [11] and are briefly summarized here.

The VdWS is defined as the union of the spherical atoms that

represent a molecule. One value of this surface is that the

corresponding area can be analytically calculated as well as its

gradient with respect to atom coordinates. One limit that it shares

with other definitions is the creation of small interstices in-

accessible to water that can, if not cured, be erroneously assigned

to the high dielectric region. The SES fills those small voids and

surface invaginations of the VdWS, which are so small that the

entrance of a spherical water probe is obstructed. This definition is

particularly physically sound and also widely used because it

connects the concept of accessibility to the size of a water

molecule. Suitable algorithms for calculating the SES area and its

derivatives are also available [12]. As discussed elsewhere, this

definition does not lead to the creation of unphysical voids [11]. In
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contrast to both the implicit Gaussian surface [5] and the Skin

surface [6], one of the issues with the SES is that its area is

noncontinuous with respect to atom positions [11,13]. As with the

VdWS, however, the former two create unphysical voids and

tunnels. The Gaussian surface has the further disadvantage that

changing its intrinsic parameter, the blobbyness, to modulate its

concave regions and voids has unwanted repercussions on the

convex parts [11].

Several existing algorithms adopt different ad hoc solutions to

build the above-mentioned surfaces. They often achieve good

performance at the price of low flexibility. The MSMS package

[14] is one of the most used and most efficient. In this package, the

SES is computed in two steps. First, the Reduced Surface (which is

a sort of skeleton) is built. Then, after every patch of the surface is

identified, the triangulation is performed. In the first phase, only

the skeleton is computed. Predefined templates are then used to

obtain the final triangulation. This approach is thus particularly

fast. Other approaches expressly designed for the SES (LSMS

[15], DelPhi [16], MEAD [17]) perform the computation using

a 3D grid. Recently, an elegant approach was proposed by Xu

et al. [18], where specialized operators based on the distance

transform enable the triangulation of VdWS, SAS, and SES via the

Marching Cubes algorithm [19]; a similar approach is discussed

by Kim et al. [20].

Two conclusions can be drawn from these premises. The first is

that it is difficult and possibly ill-advised to search for the absolute

molecular surface definition. This is because different models can

be superior in different contexts. Second, being tailored to

a specific surface definition limits the flexibility and hinders the

creation of a general standardized framework that could help

explore and compare novel models. For these reasons, it is

desirable to devise an approach potentially able to cope with

existing as well as new possible molecular surface definitions and,

more generally, with arbitrarily defined complex surfaces, while at

the same time providing an implementation which is computa-

tionally efficient for practical applications.

In this paper, we propose a framework for processing an

arbitrarily defined surface under the only hypothesis that it is

closed and under the fairly reasonable assumption that a surface/

ray intersection algorithm is available or can be designed. All of

the previously mentioned surface definitions, for instance, meet

these requirements and can be processed by this technique. It is

hard to think of a physical model that does not fulfill them. By

closed, we mean that the surface is manifold. This property is met

by all the surfaces enclosing a given space region. It includes

peculiar geometries such as the surface of a torus, which can be

correctly processed with our approach. It excludes, for example,

a triangulated surface that has some missing triangles.

At present, our framework includes: i) a build-up part, where the

shape of the surface is calculated, analytically if possible, ii) a ray-

casting part, where grid-consistent rays are cast, corresponding

intersections with the surface are collected, and enclosed volume is

estimated, iii) a cavity detection part, where identified cavities are

possibly removed according to their volume or shape, iv) a Marching

Cubes part, where the surface is triangulated consistently with

previous cavity detection/removal and the corresponding surface

area is calculated, and v) a projection part, where a subset of the

grid points are projected onto the surface. During step ii), a specific

ray casting can be performed to color an underlying grid for any

kind of purpose, such as PDE solution. For sake of clarity,

throughout the paper we will refer to steps i), ii) and iv) as surfacing

and to steps ii) and iv) as triangulation.

In order to prove the effectiveness of our approach, we

implemented our algorithms in a C++ portable software suite of

tools, which we called NanoShaper, and tested it on a set of

relevant biological applications. Our implementation of the

framework is endowed with all of the above-mentioned function-

alities. It builds the most widely adopted molecular surface

definitions for biomolecular systems, either analytically, for the

VdWS, the SAS, the SES, and the Skin surface, or numerically for

the Gaussian surface. It can import a digitalized closed surface in

mesh format (e.g. MSMS.vert and.face files, Geomview.off,

and.ply format) in case the user wants to make a grid-consistent

re-triangulation or other processing tasks. Triangulated mesh is

exported in the GeomView format. In NanoShaper, all computa-

tions are done in double precision and, in the build-up part, the

full patch trimming information is always derived. The ray-casting

part has been parallelized on cpu-based shared memory

architectures via multithreading. NanoShaper output can be used

for visualization and further computation purposes, including, but

not limited to, Finite Difference schemes, Finite Element Methods

(after further tetrahedrization), and Boundary Element Methods.

In order to test this functionality, we also realized a pluggable

version and integrated it with the DelPhi [16,21] Poisson-

Boltzmann equation solver so as to calculate the electrostatic

component of the solvation free energy of macromolecules in

solution.

Methods

Inspecting a Manifold Surface via Ray Casting
Ray casting is a well-known and powerful tool in the graphics

community. One advantage of ray casting is that the surface/ray

intersection can often be computed analytically without any

discretization of the scene. Recent works show how inherently

parallel and possibly stochastic approaches can be used to estimate

the molecular surface area [22,23]. In particular, the recent work

of Phillips et al. showed how ray casting can be used to analyze the

internal region of a closed surface [23]. The basic idea consists in

subdividing the space in a 3D cubic grid and then shooting rays

either regularly or randomly from one side in order to explore the

system. Elaborating on this idea, we cast a regular set of rays and

calculate their intersections with the surface. To avoid confusion,

we point out that in this work we employ volumetric ray casting. In

this procedure, all the intersections of a ray and the target are

calculated, not just those that are visible by the observer. Our rays

have a further peculiarity: each of them follows a coordinate

direction so as to provide grid-consistent information. The

intersections are calculated analytically when possible, i.e. when

an analytical expression is available of the various patches that

constitute the surface. Assuming that the grid encloses the entire

system, these rays both start and end outside the surface, and

forcedly make an even number of intersections with the surface

itself. We exploit this fact to generate a sort of checksum, to verify

whether an intersection has been missed due to numerical

inaccuracy. The intersections identify points that lay virtually

exactly on the surface and that can be used for triangulation and

successive area estimation. Moreover, the obtained information is

used to get volume estimation by a proper discretization of the

corresponding triple integral and, in cavity detection, by means of

a floodfill algorithm [23]. As will be detailed later, in [23], the

surface area estimation is sensitive to the particular direction of the

rays. The presented framework overcomes this limitation. This is

because our rays are cast in three orthogonal directions so as to

capture the whole surface topology and details. We organize the

rays’ direction and origin to obtain a coloring of the grid that

allows, for instance, the solution of a Partial Differential Equation

(PDE) within a finite difference scheme without any further

A Ray-Casting-Based Algorithm to Analyze Surfaces
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processing. Precision and numerical robustness of the method are

guaranteed by the introduction of an analytical version of the

Marching Cubes (MC) algorithm [19], and by the use of the

Computational Geometry Algorithms open-source Library

(CGAL) to compute geometrical primitives such as the Weighted

Delaunay Tetrahedralization, which allows the treatment of

singular geometric configurations where other implementations,

which rely on floating point numbers only, may fail. As a final

note, the algorithm is inherently and easily parallelizable because

rays are independent of one another. The overall flowchart is

given in Figure 1. In the following section, we describe how we

build the molecular surfaces and then discuss the ray-casting

algorithm.

Molecular Surface Construction
Here, we describe the algorithms that we devised to build the

most widely used molecular surface definitions, and that have been

implemented in NanoShaper. More details and corresponding

figures are reported in the Supporting Information (SI).

The Connolly-Richards solvent excluded surface, VdWS

and SAS. The SES consists of several components. The main

component can be imagined as the surface delimited by a spherical

probe rolling over the solute. The others correspond to the internal

cavities where the same rolling process occurs. Convex regions of

the SES generate spherical patches while concave regions lead to

patches that are portions of either spherical or toroidal surfaces.

We use alpha shapes theory [24] to build a topologically correct

SES. Details on how to compute patch equations, trimming

spheres, and trimming planes can be found in [25,26]. We used

CGAL to compute the Weighted Delaunay Tetrahedralization

and the alpha shape. To achieve both a fast and reliable

computation, we used the exact predicates and inexact construction

kernels of CGAL during both the Weighted Delaunay Tetrahe-

dralization and the alpha shape computation. This setting uses

adaptively floating and fixed point arithmetic. It allows a good

tradeoff between accuracy and speed. To treat degenerate

configurations, we randomly perturb atom positions on each

coordinate with a maximum value of 10{4Å. This value was

chosen because it is the largest nonsignificant digit in the PDB

format [27]. While the ray-sphere intersection can easily be

computed, the ray-torus intersection is worked out by explicitly

solving the corresponding polynomial root-finding problem. For

this, we used a Sturm sequences root solver [28].

With the same algorithm, the VdWS and the SAS can also be

computed. This is because the first corresponds to the SES with

null probe radius, and the second is the VdWS of the system when

all of the radii have been increased by the probe radius value.

The gaussian surface. Defined as the isosurface of a scalar

field, it can be expressed as the sum of atom-centered gaussians:

S : ~fx[R3 : G(x)~1g, G(x)~
Xna
i~1

e
B

Ex{ciE
2

r2
i

{1

� �
ð1Þ

where ri is the radius of the i-th atom, na is the number of atoms, x
is the current point on the surface, c(xi) is the i{th atom center,

and B is a parameter (the blobbyness) that controls the surface

roughness as the probe radius does in the SES surface [3].

The Gaussian surface is easy to implement because the main

computation is the evaluation of a Gaussian kernel function. The

surface is differentiable, and free of self-intersections and

singularities. Moreover, a Gaussian atomic density representation

has some grounds from the physical point of view since it recalls

the spherical atomic orbitals. The behavior of this surface has been

discussed in [11], and high performance GPU implementations

were developed in [29] and [30].

To manage this surface, the following steps are performed:

scalar field computation, Marching Cubes triangulation, and ray

casting. In principle, the last step is not necessary. This is because,

given the scalar field, a coloring of the grid is already available. We

perform this last step only if we need to modify the triangulation of

the mesh to make it grid-conforming or to compute the volume

enclosed by the surface. In the current implementation, in order to

speed up the calculations, the scalar field is computed in an atom-

centered fashion, employing a cut-off of 6Å.

The skin surface. The Skin surface was formally defined in

[6]. The salient features of this surface are:

N It can be decomposed in a finite set of trimmed quadric

surfaces.

N There exist fast combinatorial algorithms (i.e. the Weighted

Delaunay Tetrahedralization) to build it.

N Pathological configurations leading to discontinuity of the

normal vector are extremely limited.

N Its area is continuous with respect to atom positions and radii.

The Skin surface can be built starting from a set of weighted

points S:

S~fpi~(xi,wi), xi[R3, i~1,:::,nag ð2Þ

and a shrink factor s[(0,1�. When representing a molecule, the

points xi are the atom centers, na is the number of atoms, and wi

are the weights. The weights wi are defined as:

wi~
r2i
s

ð3Þ

where ri is the i-th atomic radius. More details as well as a graphic

example are given in the SI.

Although they share some of their mathematical foundations,

computing the Skin surface is more expensive than computing the

SES. This fact has already been observed in [31] and it is

confirmed and heuristically explained here. Indeed, computing the

Skin surface requires first the computation of a regular Delaunay

Tetrahedralization, whose computational cost is O(n log n) where

n in this case is the number of atoms. After this step, the

computation of the so-called mixed complex (see SI) and the patches

are required. Finally, either a volumetric or a mesh representation

must be created.

Ray Casting for Triangulation and Analysis
As can be seen in Figure 1, the first step consists in building the

description of the surface (e.g. the set of patches) according to, for

instance, one of the previously discussed algorithms. This can be

done analytically, by computing a set of equations and trimming

solids, for the Skin surface and the SES, VdWS, and SAS. It has to

be done numerically if, as with the Gaussian surface, the surface is

defined as the isocontour of a scalar field.

Once the surface patches are obtained, the ray casting is

performed. A box with sides parallel to the coordinate plane is

created around the system, and a first group of rays, which we call

Grid Rays, are cast from each point of the 2D grids created on

three orthogonal faces of the box (see Figure 2). Shooting from the

three directions provides the in/out information not only at the

grid cubes’ center, but also at the center of their faces, as is often

A Ray-Casting-Based Algorithm to Analyze Surfaces
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required by discretized PDEs. In addition to provisioning the

construction of the volumetric map to be used directly for equation

solution, this phase is instrumental for cavity detection/removal

and for volume estimation. Evidently, surfaces that are already

triangulated can also be ray-traced with the strategy just described.

In order to intersect rays and triangles, we used the routine

described in [32], which proved to be fast and reliable.

While computing surface/ray intersections, it would save a lot of

computations to know a priori which patches that the ray will

encounter. For this reason, together with the baseline 3D grid,

three auxiliary and possibly less dense 2D grids, one for each

coordinate plane, are used to collect the information needed to

rapidly retrieve the patches during ray traversal of the grid. This

acceleration data structure is built before doing ray casting. It

employs a bounding box for each surface patch to generate lists of

pointers at a superset of the patches that will be encountered

during ray traversal. More details are given in SI.

Volume estimation. We perform volume estimation accord-

ing to the procedure detailed in [23]. We take advantage of the

fact that our ray casting is done in the three orthogonal directions

to see whether averaging the values obtained over the three

corresponding discretizations of the following integral will improve

the accuracy of volume estimation:

V~

ð
BoundingBox

x(x,y,z)dxdydz ð4Þ

where x(x,y,z) is a suitable indicator function whose value is 1

inside the volume and 0 elsewhere. Results show that the one-

directional procedure already provides a good accuracy level, and

that three-direction averaging is not needed.

Grid consistent triangulation and area estimation. A

second group of rays, which we call Edge Rays, are also cast along

the grid cube edges. These rays are cast in order to categorize the

vertices of the grid cubes and to collect the ray/surface

intersections along grid edges (see Figure 3).

The final outcome of this phase is a grid that is populated with

all the surface information needed by the Marching Cubes

triangulation tables [19], with the additional advantage that all the

computed intersections can be analytical. In fact, in the original

Marching Cubes algorithm, one computes a scalar function on

a grid and then performs an iso-extraction process by employing

a set of pre-defined triangulation tables. Marching Cubes deduces

the positions of the vertices of the triangulation by an interpolation

method, usually the linear one. In other words, in order to apply

the Marching Cubes triangulation rules, one needs a scalar map

and an iso-value to estimate the position of each vertex by

interpolation. In our scheme, ray casting is used to generate the

in/out information that can be used as a scalar map. The vertex

positions are not deduced by interpolation along the edges, but are

given by the (possibly analytical) intersections of the surface with

the rays. For this reason, our method could be termed ‘Analytical

Intersections Marching Cubes’. This is because each vertex of the

triangulation is obtained not by interpolation but by directly

sampling the surface. It thus belongs to the surface up to numerical

inaccuracy. Interestingly, both Marching Cubes and ray casting

are rendering methods used to triangulate and visualize surfaces.

Within our protocol, they are not treated as alternatives. Instead,

they cooperate to produce an accurate, simple, and parallel

triangulation algorithm. In the end, we retain the accuracy of ray

casting to get the intersections, and we retain Marching Cubes’

ability to triangulate the surface in order to get a usable mesh of

the model. The reader could argue that shooting the Edge Rays is

not needed to get a triangulation, because Grid Rays can already

collect all the needed information. This is correct up to the

observation that, in order to get triangles that are not cut by the

grid cubes, one has to re-triangulate internally to each grid cube.

Thanks to Edge Rays, we do not need this second step. In several

numerical applications, such as PDEs numerical solution, it is

important to have a simple method to estimate the area of the

surface restricted to a grid cube. This grid-consistent triangulation

method, directly and without any post-processing, makes this

Figure 1. Surfacing Steps. On the left are the steps involved in the
surfacing pipeline. On the right are the corresponding outcomes. 1) The
surface is computed or externally loaded, 2) the surface is ray-cast, 3)
cavities are detected and possibly removed, 4) the surface is
triangulated.
doi:10.1371/journal.pone.0059744.g001

Figure 2. Ray-casting procedure. Rays are cast from each co-
ordinate plane. In this 2D sketch, a coordinate plane is represented by
a black line. For rays, orange segments correspond to the internal
region. In black is the triangulation deduced from ray-surface
intersections.
doi:10.1371/journal.pone.0059744.g002
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possible. The surface area of each grid cube can be estimated by

easily summing up the areas of each triangle in each grid cube.

If one wants to trade accuracy for speed, we can envision a faster

and more memory-efficient variant of this method. We will refer to

it as ‘Bisecting Marching Cubes’. Here, only Grid Rays are cast. The

information concerning cube vertices is inferred by the neighbor-

ing grid cube centers. In this way, the virtually exact information

on the vertices is lost but the ray-casting cost is reduced to one

third. Memory requirements are also significantly reduced. This is

because vertex arrays are no longer allocated. Vertices are rather

created on the fly as is usual in the Marching Cubes algorithm.

At the end of any of the described triangulation routines,

a laplacian smoothing (low pass mesh filter) can be applied in

order to improve the mesh quality. One of the issues that may

occur during ray casting is that, due to numerical inaccuracy in the

intersection routine, some patches are missed or some intersections

are inaccurate so that the total number of intersections per ray is

odd. In visualization, this leads to a possibly minimal imperfection

in the frame. However, this cannot be tolerated in numerical

applications, as the PDE solution we are considering in this work.

To address this issue (occurring, for instance, when triangles are

almost degenerate), we adopt a checksum criterion followed by an

ad hoc procedure. When a ray is cast, the total number of

intersections is always checked. When there is evidence of an

anomaly (an odd number of intersections), the ray is recast by

employing the same little (1:e{3) random perturbation to both

the starting and end points of the original casting path. If, after

nmax trials, currently 100, the problem is still present, then the last

stable traced path is copied to the current one. In this albeit

extremely rare case, the surface is assumed to be locally constant,

minimizing the distortion due to the inaccuracy. In practice, as

detailed in the results, we observed only a few cases of such

instabilities. These were always due to bad triangles or degenerate

patches, which were successfully cured with this protocol.

Cavity identification and filtering. As anticipated, our

triangulation is also consistent with cavity detection and removal.

Indeed, we perform cavity detection on the center of the grid

cubes by using a floodfill procedure [23]. At the same time, we

estimate the volume of each cavity. In many cases, there is the

need to eliminate, i.e. to fill, the cavities that are smaller than

a given threshold, e.g. if their volume is smaller than that of a water

molecule. Here, this is done by simply toggling the status of grid

points in that cavity from external to internal. Cavity removal can

sometimes lead to inconsistent configurations, more details

concerning this occurrence and how we cope with it are given

in the SI.

Performing MC after cavity removal leads to a mesh that is

consistent with the system after cavity filtration. This prevents

doing any successive fixing of the mesh. This functionality can be

particularly useful for complex surfaces such as the Skin or for

implicitly defined surfaces where spurious and unforeseen in-

terstices can appear [11].

Results

We first validate our implementation of the described methods

by checking the stability and robustness of volume estimation, area

estimation, and cavity identification. This is done at different grid

resolutions and using different surface definitions. We then adopt

several different figures of merit to compare our framework with

the most representative alternatives available in the scientific

community. Namely, we consider timing, memory consumption,

generality and sensitivity to geometric pathological configurations.

Finally, we compare our SES building routine, grid coloring and

projection on the surface with the internal routines of DelPhi,

a popular, Finite-Difference-based, Poisson-Boltzmann solver

[16,21].

All computations were performed on an 8-core AMD Opteron

2350 (year 2008) workstation with 8 GB of RAM.

Validation of the Approach
The aim of this section is to test the stability and robustness of

NanoShaper when changing grid resolution and surface definition.

Figures of merit are robustness with respect to numerical

instability, cavity identification and treatment as well as volume

and area estimation. For these latter tasks, we specifically consider

the Fatty Acid Amide Hydrolase (FAAH), a protein that plays a key

role in endogenous pain control and presents quite a number of

cavities as well as a narrow and bifurcated site where it exerts its

function.

Ray-casting numerical instability management. To eval-

uate the numerical effects of coplanarity between rays and surface

Figure 3. Ray casting on the surface. In (1), rays are cast along the centers of the grid cubes to get the inside/outside information. Then (2), Edge
Rays are cast and analytical intersections with the surface are calculated, inferring the inside/outside status of the vertices of each cube. Finally (3), the
triangulation is performed employing the Marching Cubes triangulation maps.
doi:10.1371/journal.pone.0059744.g003
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patches and those due to degenerate patches/triangles, we

computed and ray-cast the triangulated meshes produced by

MSMS over the first 1000 entries of the PDB repository. We used

a scale of 2:0 grids per Å and we verified that in 1:2% of the cases

at least one triangle of the mesh is either coplanar or degenerate.

Even in these cases, and using the described random ray re-casting

method, our method generated a proper triangulation, so as to

always meet the checksum test.

Cavity detection. In this group of experiments, we analyzed

the behavior of the cavity detector with respect to grid resolution,

using FAAH as a test case. Results indicate that the Skin presents

a high number of small cavities that can, however, be reliably

detected and are stable with respect to scale changes (see Figure 4).

In turn, the Gaussian surface with parameter B~{2:5 is rich in

narrow tunnels. At low resolution, these produce a significant

number of false positive voids, which gradually reduce as scale

increases. Just as a note, if we change the blobbyness to B~{1:5,

the number of cavities reduces and a more stable behavior is

obtained at the price of a deformed surface in its convex regions

too. This is consistent with the work of other groups, e.g. [33], that

used a value of B able to prevent unwanted voids and tunnels even

if the resulting shape was suboptimal, namely too blobby to mimic

a physically sound solvent/solute interface. There is no need to

filter the SES for cavities smaller than a water molecule; this is

already granted by the SES definition. Therefore, the actual

number of cavities expected for FAAH is around 20. All the others

are small interstices that should be eliminated.

Cavity detection obviously affects area estimation, since the area

of the cavities contributes to the overall surface area. Results in

Figure 5 show that, similarly to the case where cavities were

absent, a scale of 2:0 grids per Å is sufficient to achieve a good

estimation of the surface area. We also assessed how the surface

area is affected by cavity filtering. For every definition, we

performed two different cavity removals. First, we removed

cavities whose volume was less than 11:4 Å3 as an approximate

water molecule volume (in Figure 5; this is called filtered area).

Second, we removed all the cavities regardless of their volume. As

expected, SES area does not change when filtering cavities smaller

than a water molecule because such cavities are already filled

according to the SES definition.

Volume estimation. We first evaluate the sensitivity of the

FAAH estimated volume with respect to grid resolution. With Skin

surface and SES, the volume was evaluated directly by performing

ray casting after computing the surface patches. To test the

processing of imported meshed surfaces, we used the mesh

produced by the MSMS program (probe radius ~1:4Å and

hdensity = density = 10Å indicating an accurate triangulation) and

the Gaussian surface.

Figure 6 shows the obtained results. The most stable behavior is

exhibited by Skin surface and SES. A scale of 2.0 grids per Å

seems enough to provide a reliable estimation of the volume.

These results also indicate that the method is generally stable with

respect to grid resolution for all the definitions. Among them, the

least stable is the Gaussian surface (for a discussion on the

properties of different molecular surfaces see [11]).

Let us now consider the effect of cavities on volume estimation.

By default, MSMS calculates only the the main component of the

SES and the corresponding volume. In Figure 6, this is called

MSMS volume. If one considers all the SES components and does

not fill any cavity, one gets the actual SES volume. In Figure 6, this

is termed NanoShaper SES Volume and is the default volume value

given by NanoShaper. To have a fair comparison, we also used

NanoShaper to calculate the equivalent of the MSMS volume.

Therefore, we performed cavity detection and summed the

volume of each cavity to the NanoShaper SES Volume, we termed

the result NanoShaper SES filled cavities volume. As a further

verification, we observed that the volume estimated by ray-casting

the MSMS mesh using NanoShaper is in excellent agreement

(within 0:02%) with that calculated by MSMS itself on the same

mesh.

Comparison with Other Surfacing Algorithms
Build-up. The aim of this section is to analyze in detail the

timing performance of the surface build-up part of the entire

surfacing process. Our benchmark consisted of the same set of

molecules used in [31] and [25]. In the first columns of Table 1,

we compare our results to those obtained in [31] and [25] for the

SES. Our comparison both reports the obtained execution time

and its adjusted version when taking into account the different

hardware used: the ratio between the two architectures has been

estimated as 0:65 according to the Passmark CPU benchmark

[34]. As a result, the SES timings we obtain are similar or only

slightly longer. In contrast, the timings for the Skin surface are

smaller than in [31], as can be seen in the last two columns of

Table 1. In particular, always adjusting for the hardware

difference, in the biggest case 3G71, we are roughly 3x faster

than the corresponding (single-threaded) run. For these tests we

used the same shrinking parameter from [31], namely s~0:3;

we observed that when changing this parameter to s~0:45 (that

we use by default) we obtained almost identical build-up

performances, while the number of patches signficantly increased.

These results are interesting because they have been obtained

under numerical stability warranties that are not provided in either

[31] or [25]. Moreover, we always completely clip our patches and

we use double precision in all floating point operations.

Ray casting. We measured the speed of the ray-casting

routine for meshed surfaces by comparing our approach to that of

Phillips et al. [23] on the alcohol dehydrogenase protein (PDB

code 1A4U). As in [23], we computed the MSMS mesh and then

we ray-cast it to get the volume. With similar settings, a grid of 209

as in [23] (which corresponds to a scale of 2:5 grids per Å), and on

our hardware (which is slightly slower than that used in [23]) we

obtained an execution time of 1:5s, which matches that obtained

in [23]. If we additionally triangulate the surface (that is, casting

Figure 4. Cavity detection. Cavity detection for NanoShaper-built
Gaussian, Skin, and SES.
doi:10.1371/journal.pone.0059744.g004
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Edge Rays plus performing Marching Cubes), the execution time

increases by 3:0s, reaching a total of 4:5s.
Joint build-up and triangulation. A separate analysis of

build-up and triangulation phases turned out to be unviable when

considering other software tools as it would have required

a reverse-engineering attempt. Therefore, in this section we will

compare the construction and triangulation of several molecular

surfaces in terms of execution time, required memory, flexibility,

robustness, and accuracy in area and volume estimation. We will

provide separate figures in terms of different phases for

NanoShaper only. In particular, we first compare our Skin surface

to that obtained by the CGAL Skin surface module [35] in terms

of time and memory performance. Then, our SES surfacing is

compared with both EDTsurf [18] and MSMS [14] in terms of

accuracy, memory consumption, and execution time. EDTSurf

and MSMS are two publicly available tools that not only

triangulate but also compute surface area and volume, and detect

cavities of the SES. Additionally, MSMS is able to analytically

compute SES area.

We put less emphasis on our Gaussian surface implementation

since it is not particularly optimized. We refer the reader to the

works [29,30] for high performance Gaussian surface computation

implementations.

As a further computational note, we report here the full time

needed to compute the surface, consisting in both building the

analytical description and performing the ray casting. In the

current version of NanoShaper, only ray casting exploits the multi-

threading, thus the parallel efficiency is limited by the build-up and

marching cubes steps. We only briefly mention that, for the SES

case and considering only ray casting, we obtained a very high

parallel efficiency. Thanks to hyperthreading, we reached up to

a 10x speed-up on our 8-core machine with respect to the single-

threaded version.

The experimental setup used to perform the comparisons is as

follows:

N We use the same radii used by EDTSurf in their experiments

[18]. To do this, we modified EDTSurf so that it exports the

radii. We used these latter to build the systems in NanoShaper

and MSMS.

N For EDTSurf and NanoShaper, which are grid-based, we set

the same scale. For MSMS, to achieve similar resolution, we

count the vertex density per unit of area obtained by

NanoShaper and we feed MSMS with it.

N MSMS, by default, computes only the outer component of the

SES. In contrast, EDTSurf and NanoShaper compute all of

them. We thus execute MSMS with the -all_components

option to force the computation of all the internal cavities. In

the case of the comparison with the CGAL Kruithof algorithm

for the Skin, the cavity detection is not performed because this

feature is not available in CGAL.

N For the tests, we use a probe radius of 1:4Å for the SES and

s~0:45 for the Skin surface.

N To perform scalability tests in terms of memory and execution

time, we chose one of the biggest PDB structures, namely the

fundamental unit of the human adenovirus capsid (PDB code

1VSZ), which, after hydrogen addition, is about 180,000

atoms in size. We subsequently cropped this molecule in

subsets of 1,5,15,30,60,90,120,150,180 thousand atoms, pre-

serving the original atomic order of the PDB file. To compare

the accuracy in the SES construction, we use Calmodulin,

FAAH, and the Fullerene buckyball. The first has a cavity-free

SES and allows the specific comparison concerning only the

main component. The second is a good system for testing how

cavities are treated since it has a long and narrow catalytic site.

The third is interesting because its highly symmetric geometry

constitutes a challenge for the algorithms.

Figure 5. Area estimation: surface definition comparison. FAAH protein surface area estimates in case of Skin (s~0:45), Gaussian B~{2:5,
and SES (probe radius ~1:4 Å), with changing grid resolution and enabling cavity removal.
doi:10.1371/journal.pone.0059744.g005
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N Execution times are measured as the total time needed to

perform a run by the various tools on our benchmark

workstation. For the sake of completeness, we note that, unless

otherwise stated, the ray-casting routine of NanoShaper was

run in multi-threading, while the remaining tasks have not yet

been parallelized.

Skin: NanoShaper vs the kruithof algorithm. The Skin

surface Kruithof algorithm in CGAL [9] is an elegant and precise

method for building and triangulating the Skin surface, and for

guaranteeing the correctness of its topology. In the first graph in

Figure 7, NanoShaper timing performance is analyzed with the

detailed time required to perform build-up, ray casting, and

marching cubes triangulation.

Using CGAL Kruithof algorithm on our workstation, we were

able to triangulate the Skin surface up to 4000 atoms. For this size,

the execution time was 62s, and memory usage was 6:2GB of

RAM, while NanoShaper took 7s and required 493MB. These

results can be explained by the way the mixed complex (see SI) is

managed: the Kruithof algorithm performs a tetrahedralization of

the entire mixed complex to get a topologically correct surface and

Figure 6. Volume estimation for the FAAH protein. Estimated
volume of the FAAH protein at varying grid resolutions and different
molecular surface definitions. The upper panel represents a detailed
comparison of the SES. Results show that NanoShaper SES after cavity
removal is approximately equal to the main component generated by
MSMS. In the lower panel for the Skin, we used a value of s = 0:45, for
the Gaussian a value of B ={2:5, and for the SES a probe radius of 1:4
Å.
doi:10.1371/journal.pone.0059744.g006

Table 1. SES and Skin surface: build-up time comparison in
seconds (NS stands for NanoShaper and Adj. for adjusted for
different architecture performance).

PDB
code Atoms

SES
[31]

SES
[25]

SES
NS/Adj.

Skin
[31]

Skin
NS/Adj.

1VIS 2531 0.10 0.08 ,1.0 0.45 ,1.0

1AF6 10517 0.45 0.36 ,1.0 2.11 ,1.0

1GKI 20150 0.88 0.77 ,1.0 4.18 2.0/1.3

1AON 58870 2.41 2.68 4.0/2.6 9.92 6.0/3.9

3G71 99174 4.49 – 8.0/5.2 18.51 10.0/6.5

Timings for NS have been measured at a resolution that is not accurate below
the second, while reported timings for the other approaches have been taken
from the respective publications.
doi:10.1371/journal.pone.0059744.t001

Figure 7. Skin surface: performance. Execution times and memory
usage are reported in the upper and lower panels, respectively. The
scale for each molecule was set accordingly to that assigned by EDTSurf
[18].
doi:10.1371/journal.pone.0059744.g007
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to recover what he calls ‘‘anchor points’’ (see [9]). In our grid-

based approach, we do not analyze all the details of the mixed

complex. Rather, it is the user that, by choosing the scale, decides

the level of detail needed for the surface. The quality of the

triangulation generated by NanoShaper, without any further

processing, is however comparable to that of the Skin Kruithof

algorithm. As an example, we present the triangulation of the

Barstar protein in Figure 8. By visual inspection, one can see that

the representation of the details is still accurate. These results have

been obtained using a scale of 2:0 grids per Å. At this scale, the

biophysically relevant features (which depend on the smallest

atomic radius, usually around 1:0 Å), are retained while potentially

smaller features are automatically smoothed.

To test the feasibility of our Skin approach for a big system, we

performed the construction and triangulation of the 1VSZ

adenovirus structure (180,000 atoms), obtaining, at scale = 2:0
grids per Å, the following figures: i) overall surfacing time: 234 s

(17 s for building, 88 s for ray-casting, 129 s for Marching Cubes),

ii) peak memory usage: 7.3GB. Incidentally, preliminary runs

performed using our development version of NanoShaper, where

we are testing the exploitation of more advanced data structures

such as the Octrees, show that the memory usage in this case falls

to 3:2GB.

SES: NanoShaper vs EDTSurf and MSMS. As reported in

Figure 9, on our benchmark molecules, NanoShaper is faster than

EDTSurf which, in turn, is faster than MSMS. For MSMS, there

are some missing fields. This is because, if MSMS at some point

fails in the process of building a component, either the main one or

a cavity, it starts again at a different initial position of the rolling

probe. If the failure repeats itself a number of times, MSMS exits.

Therefore, although the single calculation is very fast, the whole

process can take more time than for EDTSurf and NanoShaper,

and it can even not converge. In our tests, EDTSurf never failed

and proved to be, in general, a very fast algorithm. It does not

scale with the number of atoms but rather with grid size. This

explains why the execution time for EDTSurf is almost constant.

Indeed, in most of the cases, EDTSurf set up a grid of about

30063006300.

In terms of peak memory usage (see Figure 10), MSMS is the

less demanding, EDTSurf uses slightly more memory, and

NanoShaper, not surprisingly, uses a significantly larger amount

of memory. This is due to two factors: patches are kept in memory

and analytical intersections are stored using a 3D data structure to

allow fast access for the subsequent Marching Cubes step. By

employing a sparse 3D structure, such as an Octree, this figure

could be significantly reduced. However, the total amount of

required memory is still reasonable for a modern workstation.

To assess the numerical accuracy of both the computed area

and volume on the main component, we took the calmodulin

protein (PDB code 3CLN) as a reference system. We chose this

molecule since it has no cavities. We used different scale values,

namely 0:50, 1:00, 1:50, 2:00, 2:50, 3:00, 3:50, 4:00, 4:27 grids

per Å. The 4:27 value was chosen because it was the maximum

scale allowed by EDTSurf on 3CLN.

Resulting volumes are reported in Figure 11. For the area, we

report the percentage relative error with respect to the analytical

value computed by MSMS. Results indicate that MSMS and

NanoShaper are generally very accurate, both in terms of area and

volume, and that NanoShaper is slightly more accurate than

MSMS in computing the surface area. Compared to EDTSurf,

NanoShaper can get the same accuracy by employing roughly half

the scale. One reason could be that the points used for

triangulation in EDTSurf do not necessarily lie exactly on the

surface. This is due to the Vertex Connected Marching Cubes

(VCMC) method and to the fact that, a posteriori, the surface is

smoothed without imposing that property. Therefore, our speed-

up would be significantly higher if one would keep the accuracy

rather than the grid size as a reference figure. These arguments

still hold if we use the VCMC rather than the standard Marching

Cubes in EDTSurf. As seen in the case of volume calculation, we

Figure 8. Skin surface: mesh quality. Comparison of the mesh of
the Skin surface obtained by our algorithm (up) and CGAL (down) with
a small detail highlighted.
doi:10.1371/journal.pone.0059744.g008
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observe that a scale of 2:0 grids per Å provides accurate enough

results in the case of area estimation too.

A test was devoted to analyzing the behavior of the different

algorithms in the presence of cavities. To this end, we use the

FAAH protein. We requested EDTSurf, NanoShaper, and MSMS

to compute the number of cavities and their volume. For both

EDTSurf and NanoShaper, the scale was changed from 1:0 to 4:0
grids per Å by steps of 1:0 grid per Å. Results in Table 2 show that

EDTSurf and NanoShaper provide close results (4 and 6 cavities,

respectively) only when the scale is quite high (4:0 grids per Å). At

a lower scale, the number of cavities identified by EDTSurf

oscillates. NanoShaper shows a much more stable behavior with

respect to resolution. Table 3 gives the detail of the volume of each

cavity with varying grid resolutions for NanoShaper. The total

volume is stable, as is that of every single cavity.

As a further comparison, we consider the cavities obtained by

NanoShaper and EDTSurf at a scale of 4:0 grids per Å together

with MSMS: for NanoShaper and EDTSurf, we obtain 6 and 4

cavities with a total volume of 178.8Å3 and 162.4Å3 respectively,

while MSMS gives 11 cavities and a total volume of 893Å3.

Figure 9. SES: execution times. Performance comparison of the
total time needed to build, get cavities, and triangulate the SES for
NanoShaper, EDTSurf, and MSMS. Detailed times for NanoShaper are in
the lower panel.
doi:10.1371/journal.pone.0059744.g009

Figure 10. SES: memory requirements. Comparison of the peak
memory needed to build and triangulate the SES for NanoShaper,
EDTSurf, and MSMS.
doi:10.1371/journal.pone.0059744.g010

Figure 11. SES: area and volume estimation. Area and volume
estimation of the Calmodulin SES made by NanoShaper, EDTSurf, and
MSMS at different scale/vertex densities.
doi:10.1371/journal.pone.0059744.g011
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While the first two approaches show a certain degree of

consistency, the result of MSMS is a bit divergent. In particular,

MSMS detects a very big cavity, which is not recognized by the

other two programs. Our investigations revealed that this is

because, if a self-intersection (see [11]) occurs between the

component of a cavity and the main one, then it is not correctly

identified, or removed, by MSMS. As a consequence, MSMS

misinterprets it and concludes that there is a cavity. This is

because, in FAAH, a self-intersection occurs at the entrance of the

narrow, but still open, active site. This problem seems to be due to

the fact that, in MSMS, every cavity is triangulated independently

from both the external component and from those related to the

other cavities. The triangulation obtained by aggregating all the

triangulated components can, in some pathological cases, be

inconsistent. This fact is schematically illustrated in Figure 12. The

user must be aware of this possibility because often tunnels are

functional regions in a protein and should not be neglected.

As a final test, we computed the SES for the fullerene. Its

structure is composed of 60 carbon atoms that lie on the surface of

a sphere. This case is challenging from the geometric standpoint

because co-sphericity can be a source of numerical instability. The

radius of the carbon used was 1:96 Å, as given by EDTSurf. In

contrast to NanoShaper, neither EDTSurf nor MSMS are able to

correctly detect the internal cavity. Additionally, we observed that

EDTSurf detects a cavity if the probe radius is slightly reduced.

This does not occur for MSMS. In EDTSurf, the issue is purely

numerical. In MSMS, however, it seems to be structural. What

happens in this latter case is that, in fullerene, the atoms that

generate the surface of the cavity also generate the main

component of the SES. This occurrence seems to be excluded

by MSMS, hampering the cavity detection in this case. In-

terestingly, there can be initial MSMS conditions, namely when

the probe starts rolling from within the cavity, that lead to the

detection of that cavity. However, such initialization is not under

the direct control of the user in MSMS.

Surface area estimation. Here we compare our area

estimation method to what we term the ‘Incident Ray’ method

proposed in [23]. This latter infers the area from the angle h
formed by the incident ray and the normal vector at the surface.

Let A be the area of the plane where N rays are cast, and M be

the number of detected intersections, the estimated surface area is:

Area~A=N
XM
i~1

1=Dcos(hi)D ð5Þ

Due to the division by the cosine, a specific clamping is needed

to avoid division by zero errors. By Averaged Incident Ray, we

indicate the same method but averaged over three orthogonal

incident directions. Finally, by triangulation, we indicate our

method. In Figure 13 the results provided by these three methods

on the Skin surface area estimation for two proteins (also used in

[23]), PDB codes 1HF0 and 1QA7, are reported. We rotated the

systems 7 times around their centers by 45
0

and calculated the

area. As can be intuitively expected, the Ray-Casting method is

sensitive to molecule orientation. A smaller but still non-negligible

dependence is present in the Averaged Incident Ray method,

whereas our triangulation algorithm is almost completely in-

sensitive to rotations.

Application to the Solution of the Poisson-Boltzmann
Equation

To validate our method in the context of PDE solution, we

interfaced NanoShaper with the well-known DelPhi Poisson-

Boltzmann Equation (PBE) solver [21]. PBE rules the electrostatic

potential distribution of a system in a solvent with salt at the

thermodynamic equilibrium. The DelPhi code solves the PBE on

a grid adopting a Finite Difference scheme. It needs the in/out (i.e.

solute/solvent) information at the centers of the faces of the grid

cubes to assign the dielectric constant representing low and high

dielectric regions. To compute all the information needed by the

DelPhi engine, the projection of boundary grid points over the

surface is also needed [16]. These points correspond to grid cubes

that have different faces in different media. To speed up this

phase, we built an accelerating auxiliary 3D grid to detect the

nearest patches/triangles to a given grid point. The projection

allows a more precise calculation of the reaction field energy,

a fundamental quantity in this kind of calculation. The importance

of the projection resides in correctly placing the polarization

charge on the surface (see [16] for more details).

We first evaluated the stability of the reaction field energy with

respect to the scale parameter for the Barstar protein, a standard

benchmark for this kind of study. As reported in the SI, these tests

show that the surface generated by NanoShaper provides accurate

results at a resolution lower than the other methods. In another

test, we compared both the execution time and the reaction field

energy discrepancy between the implemented surface definitions

and the internally built DelPhi SES. In this case, triangulation is

not required, thus reported times are only about grid coloring and

boundary grid point projection. We used, as reference systems, the

proteins with the following PDB codes (the given number of atoms

is intended after protonation): 1CRN (648 atoms), 1VIS (5080

atoms), 1AFS (19266 atoms), 1GKI (39271 atoms), and 1VSZ

(180570 atoms). This latter is a good example of a very large

system that can be managed by both DelPhi and NanoShaper. All

the molecules were protonated with tleap [36] and the Amber99

Table 2. Comparison of cavities detection by NanoShaper
and EDTSurf when varying grid size.

NanoShaper EDTSurf

Scale

[Å{1] Ncav Vol [A3] Ncav Vol [A3]

1 6 173.0 3 477.0

2 6 179.2 0 –

3 6 178.3 4 132.0

4 6 178.8 4 162.4

doi:10.1371/journal.pone.0059744.t002

Table 3. Detail of the volume of the cavities obtained by
NanoShaper on FAAH.

Cav Index
Scale [Å{1]
1.0

Scale [Å{1]
2.0

Scale [Å{1]
3.0

Scale [Å{1]
4.0

0 19 21.62 21.48 21.47

1 14 12.37 11.74 11.92

2 41 39.62 39.78 39.73

3 39 42.62 42.00 42.20

4 26 30.25 30.41 30.52

5 34 32.75 32.85 32.91

doi:10.1371/journal.pone.0059744.t003
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force field was used to model radii and charges. As DelPhi settings,

we used a perfil of 80% a scale of 2:0 grids per Å (on the 1VSZ

structure, the scale was reduced to fit a 513 grid size), zero ionic

strength, and dipolar boundary conditions. On the surface side,

blobbyness was set to {2:5, the Skin parameter to 0:45, and the

SES probe radius was set to 1:4 Å. All cavities and voids produced

by the original surface definitions were maintained.

From the execution time point of view, results show (see

Figure 14) that the SES surface, both in DelPhi and in

NanoShaper, is the fastest. We note again that the current

Gaussian surface implementation could be further optimized.

Despite this, the execution times are still acceptable. For the SES

case, we note that our multithreaded version is always faster than

the DelPhi internal SES building routine. On the single-threaded

version, however, this is true only for molecules with more than

40,000 atoms. As expected from previous works [31], [11] the Skin

surface is slower than the SES. This is due not only to the quite

involved construction phase of the mixed complex, but also to the

augmented number of patches that have to be ray-cast. Our tests

indicate that the number of Skin patches computed by

NanoShaper is about 7 times the corresponding figure for the SES.

For the full 1VSZ structure we obtained the following execution

times: Skin 222s, Gaussian 288s, SES 43s, DelPhi 290s.

From the point of view of the physical model agreement (see

again Figure 14), the Gaussian surface shows the most significant

discrepancy with respect to the DelPhi SES energy. The Skin

surface tracks the energy of DelPhi SES quite well, with

a maximum error of 4:16%. The SES surface computed by

NanoShaper gives results extremely similar to those obtained by

the DelPhi SES with a maximum error of 0:8% and an average

error of 0:5%.

Discussion and Conclusions

In this work, we presented a general framework specifically

aimed at triangulating and processing surfaces of nano-sized

systems in solution. It is intended to be extremely flexible, in the

sense that virtually any surface definition can be supported,

provided that a surface/ray intersection algorithm can be devised

for it. The main functionalities considered in this framework are

grid-consistent triangulation, volume and area estimation, cavity

identification, and grid coloring for subsequent numerical solution

of partial differential equations. We also made an implementation

of this framework (called NanoShaper), which is able to build the

molecular surface according to the most widely used definitions.

We first validated our method by assessing its stability and

robustness with respect to resolution. Then, we compared our

approach to the most widely used and better performing

alternatives. Specifically, these were: the Krone and Lindow

techniques for building the SES [25,31], the Lindow approach for

building the Skin surface [31], the CGAL Kruithof algorithm [9]

for triangulating the Skin surface, and, finally, the EDTSurf

[18]and MSMS [14] methods for triangulating the SES.

Moreover, we integrated NanoShaper into the DelPhi Poisson-

Boltzmann solver and compared the electrostatic energies of some

molecules with those obtained by the original method [16].

Results show that the proposed framework is a viable solution

for triangulating an arbitrary closed surface and coloring a grid for

a successive PDE solution in a fast and accurate way.

From the robustness and accuracy standpoints, very good

figures were always achieved. The ray-casting method used in

NanoShaper is not iterative, therefore it reaches a solution

deterministically. Additionally, it computes the surfaces in full

respect of the underlying theoretical definitions and adopting

analytical calculations whenever possible.

As per generality, let us consider the method used in DelPhi

[16] for the SES. This method is inherently based on the

computation of distances and projections. It is thus highly efficient

when dealing with spheres, but its performance could deteriorate

when dealing with more complex surface patches. This observa-

tion is supported by the experience that the Authors had when

extending it to the Skin surface, for which a projection primitive

can be given [11]. In contrast, the present method is based on

intersections rather than projections, which results in higher

generality and larger numerical stability. Most of these concerns

apply also to EDTSurf [18], which relies on a distance-based

Figure 12. SES: MSMS false positive identification of a cavity. In this figure, a schematic illustration of how the MSMS algorithm can confuse
an accessible region with an internal cavity during the SES construction. The probe can roll both inside and outside. In MSMS, this task is performed in
two separate steps. If self-intersections occur at the entrance(s) of a given region, they may lead to the depicted situation and to the incorrect
detection of a cavity.
doi:10.1371/journal.pone.0059744.g012
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algorithm and on the fact that the fundamental primitive of the

SES is the sphere. The same argument holds for MSMS [14] and

the Akkiraju and Edelsbrunner SES triangulation algorithm [37].

Based on these observations, we expect that a numerically robust

generalization of these algorithms to other surface definitions

involving more complex patches would be far from trivial.

Table 4 summarizes the features of the triangulation/grid

coloring algorithms considered in this work. The proposed

triangulation algorithm generally succeeds in achieving a good

performance. It also exploits the multithreading feature of current

multicore CPUs in the ray-casting phase. In particular, our Skin

triangulation algorithm is more than one order of magnitude faster

than that of Kruithof [9] and has much lower memory

requirements. This is achieved by setting a grid resolution based

on the smallest atomic size and avoiding the triangulation of

surface details that would be irrelevant from the standpoint of the

physical model. Another alternative, the Cheng and Shi Skin

surface can be triangulated only for s~0:5 [7] whereas in

Kruithof’s and in our approach the user is free to choose the

desired shrinking constant.

Our SES presents a timing performance similar to that of EDT

[18] and MSMS [14] for triangulation and similar to [31] and [25]

for build-up over a common set of molecules ranging from 2,000

to 100,000 atoms. However, our Skin build-up is faster than the

single-threaded version shown in [31].

Our approach is inherently grid-based. One way to increase

speed and reduce memory requirement is thus by reducing the

scale. Using a scale of 2:0 grid per Å is usually reasonable from the

point of view of the physical model. At that scale, we were able to

build and triangulate the SES and Skin surfaces of a protein of

180,000 atoms on a standard workstation.

In NanoShaper, a non-optimized version of the Gaussian

surface was implemented: this surface has been proposed for

biophysical computations in [38]. A recent work of Juba and

Varshney [22] showed an effective algorithm to estimate its surface

area. In [22], the rays, called lines, are cast within a sphere that

encloses the molecule. The method in [22], similarly to ours, can

be used to measure the area of any manifold surface. In that

particular implementation, the Gaussian surface was used and the

Figure 13. Area estimation: methods comparison. Here, area
estimation methods are compared upon rotation of the 1HF0 and 1QA7
molecules.
doi:10.1371/journal.pone.0059744.g013

Figure 14. Pre-processing for PDE solution: execution times
and accuracy assessment. Comparison of execution times for grid
coloring and boundary grid points projection for NanoShaper surfaces
and DelPhi. A set of increasingly bigger molecules is used as
benchmark. In the lower panel, percentage energy difference of
different MS definitions and methods as compared to the DelPhi solver.
doi:10.1371/journal.pone.0059744.g014
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obtained results confirm the discrepancy between that surface and

the SES in terms of surface area (up to 17.92%). From the

algorithmic standpoint, ray casting is not used to triangulate in

either [23] or [22].

The ray-casting procedure is inherently parallel since each ray is

independent of the others. Therefore it could benefit from a GPU-

based implementation. In this regard, the timing results in

[20,22,25,31,39,40] are very encouraging. Ray casting (where

each ray stops at the first visible intersection) and marching cubes

routines have already been developed on this architecture

[25,30,31], and it would be intriguing to see the results of our

2D acceleration data structure on a GPU device. A possible pitfall

in naively moving our procedure to GPU could be the lack of

regularity, since different rays can have a very different number of

intersections, leading to an unbalanced workload. Alternatively,

the presented approach is very suitable for exploiting the features

of the Xeon Phi architecture. It would be very interesting to assess

the parallel scalability on this platform.

Our implementation is available at the web site www.

electrostaticszone.eu, together with several graphical Python

scripts and a Python binding which provides access to all the

NanoShaper classes.

Possible developments of this work are: the possibility of mixing

molecular systems with geometric objects in the perspective of

multiscale coarse-grained modeling, the implementation of a par-

allel Marching Cubes algorithm, the possibility of acquiring

surfaces from variegate experimental data, the possibility of tracing

cavity evolution in Molecular Dynamics trajectories, and the

reduction of the memory footprint by exploiting suitable data

structures such as Octrees, which is already under development

and is providing promising preliminary results.

Supporting Information

File S1 Mathematical details concerning the SES and
the Skin surface definition and construction. Some

algorithmic improvements aiming at increasing the performance

of NanoShaper: cure for the occurrence of inconsistent config-

urations after cavity removal; parallelization and acceleration grid.

Stability tests for reaction field calculation in the PBE solution.

Interactive figures illustrating the differences between the SES

built by MSMS and that built by NanoShaper.

(PDF)
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