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Abstract
It is increasingly appreciated that phenotypic stochasticity plays fundamental roles in biological
systems at the cellular level and that a variety of mechanisms generates phenotypic
interconversion over a broad range of time scales. The ensuing dynamic heterogeneity can be used
to understand biological and clinical processes involving diverse phenotypes in different cell
populations. The same principles can be applied, not only to populations composed of cells, but
also to populations composed of molecules, tissues, and multicellular organisms. Stochastic units
generating dynamic heterogeneity can be integrated across various length scales. We propose that
a graphical tool we have developed, called a metronomogram, will allow us to identify factors that
suitably influence the restoration of homeostatic heterogeneity so as to modulate the consequences
of dynamic heterogeneity for desired outcomes.
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1. Introduction
In Liao et al. A, we developed a conceptual tool for understanding and utilizing dynamic
heterogeneity in cancer therapy. Collisions between biomolecular components reshuffling in
an ongoing way can generate stochasticity at the subcellular level. These stochastic
fluctuations in mRNA and protein level can result in the generation of heterogeneity within
a cell population, as well as reversible transitions between multiple states. This phenotypic
interconversion tends to restore a population to its previous composition after it has been
depleted of specific members. We called this tendency homeostatic heterogeneity. We used
these insights to develop a tool (metronomogram) to help understand how to optimize
therapeutic dosing schedules on a patient-individualized basis when targeting cells
undergoing back and forth transitions between phenotypes of relative drug-sensitivity and
drug-resistance. For simplicity, we made examples in Liao et al. A specific in three ways. (i)
The sources of stochastic phenotypic fluctuations were non-genetic fluctuations in mRNA
and protein levels. (ii) We used transitions between drug-sensitive and drug-resistant cells as
our primary example of phenotypic interconversion. (iii) Our analysis assumed that
stochastic fluctuations occurred within individual cells.

The purpose of this paper is to emphasize that an understanding of dynamic heterogeneity
and its biological and clinical consequences is not restricted to these specific examples. In
section 2, we describe a collection of unifying categories of mechanisms that can generate
phenotypic stochasticity. Non-genetic proteomic fluctuation is only one example in this list.
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These examples span a broad range of time scales for phenotypic interconversion. In section
3, we demonstrate that the concepts of dynamic heterogeneity and the metronomogram can
be used to understand phenotypes besides those directly related to drug-resistance. We
discuss phenotypic transitions in biofilms, metastasis and dissemination of tumor cells, and
oncogene overexpression. Notably, stochastic fluctuations need not be contained within
individual cells. Section 4 provides an example in which the phenotypically interconverting
units are individual organisms. Section 5 discusses examples of multicellular systems where
the “stochastic units” of interest undergoing phenotypic interconversion may be an
integrated collection of cell clusters or tissues or individuals rather than individual cells.
Because cells in multicellular communities are connected by a variety of signaling loops, the
stochastic fluctuations in one cell can spill over to modulate the phenotypes of other cells in
the microenvironment. In other words, stochastic fluctuations can be integrated across
various scales of length and population number.

Generalizing our understanding of dynamic heterogeneity in these ways expands the number
of mechanisms and molecular targets we can potentially manipulate to control population
heterogeneity and population numbers. In section 6, we use the metronomogram to propose
a strategy for uncovering factors that modulate the time scales of phenotypic interconversion
in a “proliferation-independent” fashion. This particular form of manipulation would allow a
system to move between the regions above and below the diagonal of the metronomogram.
In this way, the consequences of dynamic heterogeneity for a population can be changed
from extinction to long-term survival or vice versa. This strategy suggests an alternative to
the “whack-a-mole” approach to cancer treatment. Rather than engineering a therapeutic
modality (drug, surgery, radiation, etc.) and schedule to address each potential molecular
target that might present itself in the tumor cell population, one could, instead, coax the
tumor cell population to schedule the dynamics of its phenotypic fluctuations so that a
proposed therapeutic schedule becomes effective. The biologic agents used for such kinetic
manipulation need not themselves be traditional cytotoxic or cytostatic chemotherapeutic
drugs.

2. Multiple mechanisms can generate phenotypic stochasticity
In Liao et al. A, we offered a perspective on the origins of stochasticity by discussing
biochemical reactions taking place in individual cells. These examples are not exclusive.
Instead, they are members of a broader collection of physical mechanisms that can
dynamically generate heterogeneity in the phenotypes of a population of cells. While
specific models vary in molecular detail, many mechanisms for the generation of
stochasticity can be understood in terms of the small collection of unifying categories that
we now describe using Figure 1.

2.1. Stochastic encounters with (extrinsic) soluble factors
In Liao et al. A, we described variation in phenotype owing to fluctuations in the
abundances of molecular species within individual cells. However, variation in perceived
phenotype can also be the result of fluctuations in the abundances of molecular species
extrinsic to individual cells. In the example of exposure to a drug in Figure 1(a), some cells
survive and other cells are killed during a finite duration of exposure to the drug as a
consequence of cell-extrinsic stochasticity in drug delivery at the microscopic scale.
Tortuous vasculature, heterogeneous blood flow, hypoxia, extracellular acidosis, and high
interstitial fluid pressure all challenge homogeneous delivery of drug to tumor cells. As
those molecules of drug that do access the tumor undergo Brownian motion, temporary local
gaps appear allowing some cells to “slip through” unscathed, at least until the next cloud of
drug molecules arrives with a spatial arrangement likely to differ at the microscopic scale.
The extracellular fluid can be stirred and washed by mechanisms independent of the cell
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cycle, so the timescales over which apparently drug-resistant cells can become apparently
drug sensitive are potentially “instantaneous.” The mathematical expression of this concept
is the famous pharmacologic exp(−kt) law of cell kill [1]. This “law” predicts that cell-death
increases arbitrarily with increasing drug concentration given in a fixed time period. In other
words, the concept that “more is better” underlying maximum-tolerated dosing strategies
referred to in Liao et al. A can be rationalized by assuming that fluctuations between
apparent states of drug-sensitivity and drug-resistance are exclusively effected by
fluctuations in delivery. As we have described, drug-sensitivity and –resistance are effected
by fluctuations other than that of drug exposure. These considerations are not exclusive to
drug therapy. A similar view of stochasticity applies to the chance encounters between cells
and other soluble signaling factors such as hormones or growth factors.

2.2. Proteomic fluctuations
Figure 1(b) refers to the concept that fluctuations in abundances of molecular species result
from stochastic variation in the time intervals between biochemical reactions inside
individual cells. This was the primary model in Liao et al. A. As we will explain, time scales
for such cell-intrinsic fluctuations can be similar in magnitude to time scales for cell
division. Thus, some of these “proteomic” fluctuations, or examples of “non-genetic
individuality” as they are sometimes called, can be characterized by time scales measured in
days or weeks.

2.2.1. Time scale analysis for proteomic fluctuations—To illustrate these points,
we provide three examples of mechanisms that can relate the time scales for the generation
of heterogeneity to the time scales for population expansion (Figure 2). We use these
examples to develop qualitative estimates of orders of magnitude. In physicists’ language,
we are performing “back-of-the-envelope” calculations.

The first example we will describe involves the dilution of proteins owing to cell division.
Sigal et al. described the dynamics of the dissipation of fluctuations in single-cell protein
levels using an autocorrelation function [2]. In their supplemental theory, the authors
calculated the “mixing time” for this auto-correlation function for a simple “birth-death”
model of protein translation and degradation. In their example, the time scale for cell-
division defined the time scale for protein “memory.” We provide a heuristic for
understanding this result in Figure 2(a). At the left, a cell happens to contain 8 copies of a
protein inherited from a just-completed mitotic event. In the next snapshot, transcription and
translation occur, adding 8 more proteins to the proteomic atmosphere. The cell then enters
mitosis, with half of the 16 copies of protein lost to the sister cell not shown. The cell under
study again has only 8 copies of protein immediately following this mitotic event. In this
cell, biochemistry is stochastic, and whereas the cell has just replenished its proteome with 8
new copies of protein, only 6 new copies of protein will next be generated. For simplicity,
we assume in this example that proteins are partitioned precisely during mitosis. This means
that 7 of 14 proteins are lost to the sister cell not shown. When the primary mechanism of
protein loss is cell division, a proteome that starts out by chance rich, or alternatively, poor,
in a particular protein can remain in such an outlier state for roughly a generation before
mitosis reduces the copy numbers of cytosolic constituents by a factor of two. Proteins
newly synthesized after mitosis are then added alongside these remnant populations of
proteins. The molecular composition of the cell now reflects an average of the protein
production rates before and after mitosis. This “averaging” process partially dilutes away
those fluctuations generated preceding mitosis. The cell-division time provides an order of
magnitude for the memory time of the cell. More sophisticated gene regulatory network
architectures, i.e. relying on feedback loops, can prolong the protein-level memories of cells,
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and rapid protein degradation, intervening between cell division events, can hasten the loss
of proteomic memory.

We provide a second example involving “partitioning” noise. Huh and Paulsson have
remarked that fluctuations in the levels of biological molecules could result from
partitioning of molecules between daughter cells according to a binomial (coin-toss) process
during mitosis [3]. In Figure 2(b), a cell initially containing 8 copies of a protein divides.
The individual copies of protein randomly circulate throughout the increasingly hourglass-
shaped cell. At the moment when the daughters separate, there might by chance be 2 copies
of protein in the upper daughter and 6 in its sister. Even if the duration of the cell cycle and
the rates of transcription and translation were precisely reproducible over generations,
partitioning noise would introduce fluctuations into the proteome on a time scale of once a
generation. This is beautifully illustrated in the unequal partitioning of double minute
chromosomes (DMs) which carry amplified copies of the DHFR gene and confer drug
resistance [4]. The examples in Figure 2(a) and (b) are similar. Both ideas are based on (i) an
assumption that stochasticity is present and (ii) an assumption that there is a time scale at
which proteins (or organelles) from one mother cell are assorted between two daughters.
The underlying stochastic events in each differ, but both perspectives lead to the same time
scale for proteomic fluctuations. Indeed, Huh and Paulsson explained that their perspective
of partitioning noise could quantitatively accommodate experimental measurements
previously rationalized in terms of stochastic gene transcription.

In a third example, we discuss the consequences of protein-level fluctuations during the cell
cycle. Various protein levels are upregulated and downregulated as the cell moves through
the phases of the cell cycle. Any proteins that are highly upregulated during one phase and
essentially shut off during another must periodically pass through an intermediate band of
small, but finite copy numbers as shaded in Figure 2(c). During these times, the relative
magnitude of stochastic fluctuations may be large relative to expected average values. Such
small protein copy numbers would be achieved temporarily both while the protein level
decreased and while the protein level subsequently increased, providing any downstream
molecular networks access to a random number generator, i.e. access to a “roll of dice,” at
least twice during each cell cycle. Recent experimental work in synthetic biology suggests
that biological circuitry may have evolved in order to introduce cyclic noise in this way. The
competence circuit of the bacterium B. subtilis has been modeled as an excitable system
with a self-activating protein ComK that inhibits ComS, which itself activates ComK. When
the cell enters a “cycle” of excitation, the level of ComS collapses. The average durations
and likelihoods of entering competence for this circuit are reproduced in a synthetic circuit
topology that, in contrast, causes the regulatory partner of ComK to increase following
excitation. Why, then, does the native circuit rely on a protein-level collapse? Çağatay et al.
have suggested that the collapse of ComS levels provides a source of molecular noise that
leads to variability in competence duration and thus an evolutionary advantage in fluctuating
environments [5]. In another example, Spudich et al. have hypothesized that a cyclic
decrease in the levels of some proteins could underlie the highly variable duration of the G1-
phase of the cell cycle and result in rapid asynchronization of initially synchronized cell
populations [6]. Some phenotypes are cell-cycle specific. For example, increased sensitivity
to some chemotherapeutic agents requires exiting G1. Randomness in the duration of G1
would manifest as randomness in the time that elapses before a cell acquires any such
phenotype. In the supplemental materials, we discuss the consequences of this view for the
scheduling of doses of cell-cycle-specific agents using the metronomogram. It may prove
fruitful to continue studying oscillatory and excitable motifs in circuits that regulate cell
cycle to determine the prevalence of topologies that cyclically reduce the abundance of
proteins to copy numbers near unity.
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2.2.2. Experimental examples—The preceding heuristic discussions suggest that some
fluctuations in protein levels may be associated with time scales similar to the cell-division
time. In fact, some time scales for the generation of phenotypic heterogeneity are similar to
time scales for proliferation as seen in a variety of experimental examples.

In the study by Sigal et al., the “mixing” times τm for 20 proteins were measured in
individual cells from a human lung-cancer cell line [2]. The proteins were involved in
diverse functions including apoptosis, transcriptional regulation, chromatin remodeling, and
cold response. Thus, it may be unsurprising that the mixing times varied. Interestingly,
however, the variation that was reported covered a range from τm = 0.8 to 2.6 generations.
The time scale for proteomic fluctuations and the time scale for cell replication shared the
same order of magnitude.

In another example, Chang et al. investigated the generation of phenotypic heterogeneity in
populations of “EML” progenitors in the hemapoietic system of the mouse. Purified
subpopulations with low, intermediate, and high levels of the marker Sca-1 were obtained
from an initially broad distribution. The repopulation of the initial distribution from these
purified subpopulations was visible within days, with saturation occurring by about 2 weeks
[7]. In this example, re-establishment of heterogeneity in Sca-1 levels corresponded to re-
establishment of heterogeneity in time rates for realizing different cell fates. In additional
examples, rapid return toward homeostatic heterogeneity (well underway within 3 days) has
also been observed in studies of cancer “stem” cells in mammary cell lines [8], [9]. Taken
together, these reports suggest that various cell populations can achieve time scales for
phenotypic fluctuation of the same order of magnitude as the time scales for cell replication,
consistent with the heuristic examples from the previous subsection.

We have just considered conceptual and experimental examples suggesting that time scales
for cell replication and phenotypic conversion can often be similar. In the supplemental
materials, we use this observation, along with equations (1) and (2) from Liao et al. A, to
show that high-frequency dosing may in some cases be beneficial. It also should be noted
that time scales for exhibiting stochastic fluctuations can sometimes greatly exceed the time
scales for cell replication, as is illustrated in Section 2.3.

2.3. Genetic alterations
In the examples above (Figure 1(a)and (b)), we discussed non-genetic sources of cell-cell
heterogeneity in drug-response. The mathematical discussion in this paper and Liao et al. A
are agnostic to the molecular origins of phenotypic heterogeneity, so the same conceptual
lens can be applied to heterogeneity produced through genetic or epigenetic variation.

For example, gene amplification is reversible and can occur over months and even years
(Figure 1(c)) [10], [11]. When present within a homogeneously staining region (HSR)
carried on an autosome, the gene copy number fluctuates up and down through mechanisms
like homologous recombination and deletion. Furthermore, we also illustrated how increased
gene copy numbers carried on fragments of chromatin called “double minute” (DM)
chromosomes could also exhibit heterogeneity based on unequal partitioning of these DM
chromosomes during mitosis. DM chromosomes lack a centromere and thus lack a
mechanism to partition equally at mitosis. The time scales for these two mechanisms is
different and these characteristics have been studied as stable drug resistance (when DHFR
genes are carried on HSRs) and unstable drug resistance (when the genes are carried on
DMs).

Of the mechanisms contributing to drug resistance outlined in Figure 1, genetic point
mutations are probably the least likely to reverse and most commonly known (Figure 1(d)).
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Previous authors have outlined a variety of potential clinical strategies for treating patients
in the presence of mutations. As described in Liao et al. A, these strategies include targeting
the protein products of mutated genes, exploiting the fitness costs of mutations conferring
drug resistance, and identifying cell populations in the microenvironment that retain drug-
sensitivity even when the epithelial subpopulation acquires a mutation that confers
resistance. We proposed that an understanding of homeostatic heterogeneity would improve
our ability to pursue these strategies beneficially.

Additional strategies include prevention of mutation and the use of ecological predation. A
frequent goal of computational dose-scheduling studies is to optimize the dosing schedule to
minimize the risk of acquiring a mutation that confers resistance [12]. This is often
attempted by minimizing the size of the proliferative population for as long as possible.
Alternatively, Silva et al. have suggested allowing a drug-sensitive cell population to survive
so that it can compete with or control a subpopulation harboring a resistance mutation [13].
For both of these strategies, an understanding of the kinetics of phenotypic interconversion
will be necessary, either to most effectively deplete the target population before it acquires a
mutation or to avoid completely eradicating a useful cellular subpopulation.

The mechanisms we have described in Figure 1 lead to phenotypic interconversion over a
wide variety of time scales, as indicated by the wedge in Figure 1(e). Extrinsic stochasticity
in the delivery of soluble factors can occur rapidly compared to the cell-cycle time, or
“instantaneously.” Proteomic fluctuations and alterations in gene copy number span
intermediate time scales ranging from days, to weeks, to months, and years, while point
mutations are potentially permanent. In addition to the variation in time scales seen among
mechanisms, there is also variety in the time scales that a given mechanism can generate. To
understand why, we use Figure 3 to address a simplification from Liao et al. A. While we
previously considered the toy model in which transitions occurred between a pair of
phenotypes (Figure 3(a)), many phenotypes can be represented by a continuous spectrum or
graded series of discrete states (Figure 3(b)). Suppose that the rate coefficients connecting
states 1 and 2 to each other are identical to the rate coefficients connecting states 2 and 3,
states 3 and 4, etc. Even in this situation, a variety of time scales can be associated with the
system by considering transitions between different pairs of phenotypic states. The time
scales for converting from state 1 to 5 and vice versa are slow compared to the time scales
for interconversion between states 1 and 2 because no transitions directly connect states 1
and 5. For a cell in state 1 to reach state 5, it must first pass through state 2. Previous
experimental studies have explored this relationship and connected these various phenotypic
states to clinical consequence [14], [10].

The topology of the connections between phenotypic states is potentially more complicated
than illustrated in Figure 3(b). Rather than being represented as a line, the network of
phenotypic states may be more accurately characterized as a 2- or even higher-dimensional
(Figure 3(c)). This provides a large number of ways to connect pairs of cell states, and thus a
variety of time scales over which such conversions can occur.

3. Dynamic heterogeneity can be used to understand diverse biological and
clinical processes

We developed the metronomogram in Liao et al. A to study the example of drug kill in a
population of interconverting drug-resistant and drug-sensitive cells. However, the
mathematical concepts and the broader perspective of phenotypic stochasticity described in
Liao et al. A can also be applied to populations of cells undergoing interconversion between
other phenotypes. We offer examples with cell adhesion in biofilms, adhesion and
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proliferative dormancy in metastasis, and tumorigenic phenotypes in oncogene-
overexpressing cells.

3.1. Biofilm adhesion and dispersion
We provide an example of phenotypic transitions in biofilms in Figure 4(a). Individual cells
in biofilms of the fungus C. neoformans switch between a “smooth” state and a “wrinkled”
state [15]. The smooth state more strongly adheres to substrates. If a goal of a biofilm in a
natural environment is to colonize distant niches, phenotypic conversion from the adherent
to less-adherent state could produce “seeds” to be washed away, perhaps by occasional
rainfall. Depending on environmental conditions, dispersing the entire biofilm at once might
be unlikely to establish a colony. A more successful strategy may be to maintain a
proliferating biofilm at the primary site from which a small non-adherent population can be
periodically dispersed. In this case, the survival of the primary biofilm, and thus its ability to
shed non-adherent cells long term, depends on exploring the lower half of the
metronomogram (the area under the diagonal in Figure 4(b)). The survival of the biofilm
occurs when the generation of adhesion heterogeneity is slower than population expansion.
Otherwise the biofilm shrinks as it is repeatedly washed away. In analogous financial terms,
resisting the temptation to immediately squander a principal can reward the investor with the
ability to live off interest long term.

3.2. Metastasis and dissemination of tumor cells
It has been proposed that primitive multicellular ecologies, i.e. biofilms, offer a model for
malignant tissues [16], [17]. Based on these insights, it may prove fruitful to extend the
above discussion of biofilms to understand the dissemination of cells from primary tumors.
Consistent with this possibility, previous authors have interpreted the inefficiency of
metastasis formation in terms of the statistics of rare random events [18]. It has been
suggested that the vast majority of disseminated cells may be metastatically unfit. However,
by sheer numbers, some of these unfit cells nevertheless beat the odds and establish
expanding colonies. Hence, the establishment of secondary colonies may be increased by
maintaining a proliferating population at the primary site. It is known that cancer cells can
undergo an “epithelial-to-mesenchymal” transition (EMT) toward more mesenchymal states
with decreased adhesion to neighboring cells [19]. EMT is conventionally regarded as a
deterministic response to external signals. While this can be interpreted as deterministic
modulation by the environment of deterministic processes within cells, it is important to
consider ways through which stochasticity can also contribute to EMT. Our group has
reported evidence that the EMT phenotype is influenced by environmental signals which
increase the probability for stochastic events in individual cells [20]. Additionally, the
environment can provide, not only deterministic modulation of stochastic events in cells, but
also a source of stochasticity itself. Local fluctuations in external signal concentration, as
described in section 2.1, are examples of sources of noise that are referred to as gene
“extrinsic” [21], [22]. Just as in our discussion of biofilms, primary tumor cell populations
may need to “stay below the diagonal of the metronomogram” in order to increase the
likelihood of establishing secondary colonies. In principle, this could be achieved by
limiting the rate of EMT or by generating transitions in the opposite direction. In fact, the
reverse “mesenchymal-epithelial-transition” (MET) occurs and has been considered as a
possible prerequisite for disseminated cells to settle down into distant metastatic sites. In
light of the current discussion, MET may also provide a cell population with a way to
maintain an established primary tumor. A possible direction for continued investigation
would be to evaluate the effects of hastening the loss of adhesion on the survival of the
primary tumor and the establishment of metastatic lesions.
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An experimental study of “tumor self-seeding” by Kim et al. suggests another situation in
which staying “below the diagonal” could confer a survival benefit to a tumor cell
population [23]. In this study, temporary dissemination and then re-infiltration by tumor
cells can confer increased primary tumor growth and recruitment of supportive stroma.
Retaining a portion of the primary tumor in situ provides homing signals for the circulating
subpopulation.

Metastasis and tumor cell dissemination provide additional potential opportunities to apply
the concept of homeostatic heterogeneity. Deakin et al. reported on phenotypic switching
between an amoeboid mode of cell movement allowing movement through existing gaps in
extracellular matrix and a mesenchymal mode involving proteolysis of extracellular proteins
[24]. The authors suggest that phenotypic interconversion between these states, rather than
permanent residence in either one state alone, increases invasiveness and establishment of
metastases. In another example, Heyn et al. have suggested that some solitary disseminated
cells may remain in a nonproliferative state before developing into late metastatic colonies
[25]. Even when the dissemination of cells from a primary tumor occurs in a short-term
burst, the timings of attempts to establish metastases may effectively be spaced out by
stochastic variation in the durations that single cells remain in such “dormant” states. This
may allow a disseminated population to sample a variety of time periods when it is not
possible to determine which intervals of time would be conducive to establishing a
metastatic colony. The term “dynamic heterogeneity” has been historically associated with
the spontaneous interconversion of cells between highly-metastatic and non-metastatic
phenotypes at rates much higher than “generally associated with point mutations and
deletions” [26].

3.3. Oncogene overexpression: HER2 expression in cancer cells
In a third example, we consider the possibility of fluctuations in the single-cell levels of in
HER2 (erbB2) surface receptor. HER2 is well-known as the target of the monoclonal
antibody Trastuzumab [27]. However, its biologic role was known before it was selected as
a drug target. Overexpression of HER2 with breast cancer cells is associated with aggressive
cellular phenotypes including increased cell proliferation and survival, decreased
dependence on estrogen for proliferation, poorer differentiation, increased invasiveness and
motility, and increased angiogenesis [28], [29]. HER2 overexpression also correlates with
decreased survival at the patient level [30].

Overexpression of the receptor is found in approximately 20–30% of human breast
carcinomas, with 90–95% of these cases corresponding to amplification of the wild-type
gene [29], [31] and a minority corresponding to transcriptional and translational mechanisms
in the absence of gene amplification [27]. As we have discussed, both gene amplification
and transcriptional and translational mechanisms can underlie phenotypic stochasticity and
reversible transitions between phenotypes. Savelyeva et al. have noted the possibility that
amplification “varies among members of the tumor cell populations” [31].
Immunohistochemistry also shows cell-cell variation in staining for the receptor [32].

Because increases in HER2 are associated with more aggressive phenotypes, it may be
natural to recognize phenotypic conversion to HER2-overexpressing states as beneficial for
the survival of tumor cells. However, phenotypic transitions that lower HER2 expression
may also provide a survival benefit. HER2 overexpressing cells respond to heregulin ligand
with biphasic growth [33]. Modest concentrations of heregulin increase proliferation and
colony formation in vitro, but high concentrations inhibit growth. This inhibition is only
seen in cells with HER2 overexpression. By contributing to a homeostatic heterogeneity that
contains a low-HER2 subpopulation, phenotypic interconversion between relatively low-
and high-HER2 level states may reserve a subpopulation of low-HER2 cells prepared to
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continue expanding even during pulses of heregulin that inhibit expansion of high-HER2
cells. Indeed, immunohistochemistry of heregulin shows spatial heterogeneity of ligand
staining, consistent with the idea that the levels of heregulin in the microenvironments of
single cells can vary [32]. Patients with lymphoid infiltration have a better prognosis if they
are HER2 positive instead of HER2 negative, suggesting that HER2 may be targeted by the
immune system [30]. Conversion of high-HER2 cells to transient states of low HER2
expression may allow some cells to escape immune clearance. As discussed in the examples
for biofilms and metastasis, excessive motility may also counterintuitively impose a survival
disadvantage for a multicellular colony. The ability to convert some cells with high-HER2 to
a state with lower HER2 expression may rein in motile cells to prevent the tumor from
“evaporating” from a primary site with established stromal support. The example of HER2
overexpression provides a reminder that it may be overly simplistic to assume that only one
direction of phenotypic conversion provides a survival advantage for a cell population.
Survival advantage may be provided by virtue of a combination of directions of phenotypic
interconversion.

4. The stochastic units generating dynamic heterogeneity can be found at
many population scales
4.1. Social modulation of task switching rates in harvester ants

In the three examples we provided above, we considered the consequences of dynamic
heterogeneity for populations of cells. As we noted in Liao et al. A, these concepts apply to
populations composed of molecules, cells, individuals, etc. In a fourth example, we discuss
dynamic heterogeneity within populations composed of multicellular organisms. In
ecological studies, various species of harvester ants can convert between phenotypes at
different levels. “Task switching” can occur between states including patrolling, nest
maintenance, foraging, and midden work (cleaning up debris) [34], [35]. The rates of
transitions depend on the initial and final single-ant phenotype under consideration. In the
species P. barbatus, the conversion of midden ants to foraging ants and the conversion of
ants performing nest maintenance to patrolling ants are unidirectional. However, phenotypic
conversion occurs both from patrolling to foraging and in the reverse direction. Phenotypic
conversion also proceeds at a finer scale. Not all “foragers” in P. barbatus forage every day.
Ants in the “inactive” state remain in the nest [36].

How might phenotypic switching provide a survival benefit to a population of ants? The
dispersal of foragers can provide the benefit of acquiring food. However, the act of foraging
outside of the nest also risks loss of ants to wind and predation. To remain “under the
diagonal” in the metronomogram, the rate of converting to the actively foraging state must
not be excessive. Because environmental conditions change, a conversion rate that barely
avoids extinction in one situation could, in other cases, be unnecessarily cautious, forfeiting
the efficient acquisition of food. This suggests that a species that adjusts the rates of
phenotypic switching according to dynamic environmental conditions enjoys a survival
advantage over a species with more primitive, non-social phenotypic switching. In fact, the
rates at which individual members of P. barbatus convert from the inactive foraging state to
the active foraging state is modulated non-linearly by the time-frequency of encounters with
patrollers [36]. Low frequencies of encounters (up to once every 45 seconds) could indicate
that patrollers have been swept away, suggesting that foragers should remain inactive. High
frequencies of encounters (i.e. once every second) may indicate that all of the patrollers have
hurried back to the nest to evade a threat and that under these circumstances the foragers
should also remain inactive. Intermediate frequencies (i.e. once every 10 seconds) may
indicate relative safety and signal that the foragers should activate foraging. These are the
frequencies for which the rate of converting to the actively foraging state peaks.
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In this discussion, social modulation of phenotypic conversion rates can confer a survival
benefit, but populations of ants displaying phenotypic conversion in the absence of social
modulation might also survive, though with less efficient collection of food. One may ask
whether switching between active and inactive foraging states evolved at the same time as
social mechanisms for modulating interconversion rates, or whether, instead, primitive
switching evolved first, to be subsequently refined by the addition of social control. This is
an example of how the concepts described in Liao et al. A can point to directions for
research, not only in the clinical treatment of human disease, but also in ecology and
evolutionary biology.

5. The stochastic units generating dynamic heterogeneity can be integrated
In the Markov model illustrated using roulettes in figure 2(d) of Liao et al. A, stochastic
fluctuations are depicted as though they occur independently in different cells. One cell’s
spin of a wheel of fortune is not affected by the spins of other wheels at the same time, and
vice versa. In other words, stochasticity is cell intrinsic (Figure 5(a)). However, this
perspective is likely to be often an oversimplification. Just because a cell is depicted in a
cartoon as a well-defined container does not mean that it is “statistically” isolated.

Molecular fluctuations may propagate through clusters of cells connected by paracrine
signaling (Figure 5(b)). Kim et al. have described a paracrine signaling loop in Wnt1-
induced mouse mammary tumors where luminal cells provide Wnt1 signaling for basal cells
presenting the Lrp5 receptor [37]. In principle, transient fluctuations in Wnt1 signaling
secreted by the luminal subpopulation could manifest cell-extrinsic effects, including
transient losses in tumor-initiating capability. In a study of human embryonic stem cells
(hESCs), Bendall et al. proposed a model in which hESCs differentiated into a fibroblast-
like population (hdFs). The hdFs in turn secrete signaling factors, such as IGF-II, that
sustain the hESCs in a self-renewing, pluripotent state [38]. In these two examples, a
transient loss of signaling from one cell type could result in a loss of stem-like phenotypes in
another cell type, causing the system to “differentiate out.”

Fordyce et al. have shown that DNA damage stress in primary human mammary epithelial
cells increases the secretion of Activin A, which can increase the levels of Activin A in
surrounding cells [39]. Human mammary epithelial cells (HMEC) respond by secreting
molecules (prostaglandins) that increase the motility of surrounding epithelial cells. Thus
fluctuations in Activin A may ripple outward in a bed of stationary cells, as well as be
carried along by newly mobilized vehicles (Figure 5(c)). In the presence of cell-cell
signaling and cell motility, the fundamental “stochastically fluctuating units” most relevant
to consider for therapy may be cell communities in a tissue, rather than individual cells in a
population.

For the particular case of metronomic therapy, this perspective offers a direction for
increasing our understanding of the role of the microenvironment. As discussed in Liao et al.
A, rationales that have historically been associated with high-frequency therapeutic dosing
schedules have included targeting “non-epithelial” populations and processes such as
angiogenesis, carcinoma-associated fibroblasts, and immune modulation. Our current
discussion suggests going beyond simply regarding stromal cells as secondary targets for
metronomic therapy. We propose that combinations of the constituents of the
microenvironment and the frank carcinoma may need to be regarded together as the basic,
cohesive units, in which stochastic fluctuations appear, propagate, and integrate.
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6. Manipulating populations undergoing dynamic heterogeneity
To conclude, in this section, we outline a strategy whereby we can understand the effects of
manipulating the components of a system displaying dynamic heterogeneity. Our purpose is
to modulate the consequences of dynamic heterogeneity for a designed outcome.

6.1. Proliferation-independent vs. proliferation-dependent modulation of the time scales of
restoring homeostatic heterogeneity

For our discussion, we will discuss the particular example of periodic drug kill, though the
insights developed can be applied to mechanisms that cell populations could have evolved to
control their own duration of survival.

Previous authors have suggested that the generation of phenotypic heterogeneity is itself a
target for therapy [40]. Because phenotypic interconversion can maintain a drug-resistant
subpopulation, Sharma et al. have suggested blocking interconversion [41]. In a study of
TRAIL-induced apoptosis, Spencer et al. suggested “reducing the impact of cell-to-cell
variability … through co-drugging” [42]. However, because phenotypic interconversion can
also generate drug-sensitivity, we would ask whether, as an alternative, accelerating the
generation of phenotypic heterogeneity could be beneficial. Because the finite time scale for
the generation of heterogeneity in drug-sensitivity can impose a bottleneck on the speed with
which we deplete the target cell population (Liao et al. A), we should find strategies for
accelerating the acquisition of drug-sensitivity. In this subsection, we describe the potential
use of the metronomogram to evaluate the ability of a second biologic agent to hasten the
acquisition of sensitivity to a cytotoxic drug. The approach we will describe is an example
of an emerging strategy: the use of agents that might themselves be neither cytotoxic nor
cytostatic, but which may, nevertheless, improve the efficacy of more traditional cytostatic
and cytotoxic drugs along with which they are delivered.

To accomplish the goal stated above, we must seek a particular kind of acceleration of the
generation of sensitivity to cytotoxic drug. Specifically, we seek biologic agents that
increase the drug-sensitive fraction generated in a given time interval without a concomitant
increase in population expansion. To clarify our goal, we illustrate hypothetical
measurements in Figure 6. We use Figure 6(a) to provide an example of the kind of
dynamical behavior our analysis is designed to reject. Figure 6(b) provides an example of
the kind of dynamical behavior we seek.

Figure 6(a) illustrates an example of a biologic agent that produces “proliferation-
dependent” acceleration of the acquisition of drug-sensitivity. Curve 1 represents the
effectiveness of various administration frequencies for a cytotoxic drug applied at a
particular dose. Circle 2 represents one dosing frequency. Upon the addition of a second
biologic agent, the same dosing frequency now corresponds to circle 5. The biologic agent
under investigation indeed produces an increase in the drug-sensitive fraction fS generated in
the given interdose period Δt. The displacement from circle 2 to 5 has a vertical component
(arrow 3). However, the displacement also has a horizontal component (arrow 4), which
represents an increase in the raw population number generated in the time interval Δt. In this
example, the acceleration of the generation of drug-sensitivity is not worth the concomitant
acceleration in population expansion. The horizontal movement is sufficient to push circle 5
into the region below the diagonal, where the target cell population is expected to expand.
Circle 5 has merely explored another position of the curve to which circle 2 already
belonged. Circle 5 does not move to a different curve. This can result when the rate
coefficients in (1) and (2) from Liao et al. A are uniformly multiplied by the same scale
factor. This changes the values of laboratory clock time to which different points on curve 1
correspond, but the shape of the parametric plot on the metronomogram is unchanged. This
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mathematical picture is consistent with the hypothesis that the biologic agent accelerates the
acquisition of sensitivity to drug by virtue of increasing the number of proliferation events.
This increases the number of opportunities for stochastic transitions between states of drug-
sensitivity and drug-resistance. However, the efficiency with which a given number of
proliferation events generates transitions to the drug-sensitive state is unchanged. This is
why we call this category of acceleration of the acquisition of drug-sensitivity
“proliferation-dependent.”

Figure 6(b) is a second example in which a different biologic agent provides, instead,
“proliferation-independent” acceleration of the acquisition of drug-sensitivity. Curve 6
represents the efficacy of a variety of dosing frequencies for a cytotoxic drug applied at a
particular dose. Circle 7 represents one dosing frequency. Upon administration of the
biologic agent, the dosing frequency that previously corresponded to circle 7 now
corresponds to circle 8. The biologic agent maps curve 6 below to curve 9 above. The
absence of horizontal movement indicates that the biologic agent has not caused an increase
in population expansion. We seek vertical movement because it increases the range of drug-
dosing frequencies that lie above the fS = fP diagonal. A larger proportion of curve 9, as
compared to curve 6, resides in the region fS > fP. When evaluating candidate biologic
agents to be combined with cytotoxic drugs, we seek the vertical motion in Figure 6(b). This
is in contrast to the proliferation-dependent motion in Figure 6(a), where an increase in
proliferation negates the acceleration of the acquisition of drug-sensitivity.

6.2. Different factors modulate the kinetics of the generation of heterogeneity in
proliferation-dependent and proliferation-independent ways

The idea of “proliferation-independent” and “proliferation-dependent” acceleration of
phenotypic conversion has been applied in regenerative biology. In a study of the generation
of induced pluripotent stem cells (iPSCs) from differentiated cells in a murine Nanog-GFP
system, Hanna et al. found that some candidate molecular manipulations (p21KD, p53KD,
Lin28OE) accelerated the generation of iPSCs relative to laboratory clock time by virtue of
accelerating proliferation [43]. In contrast, overexpression of Nanog accelerated iPSC
generation significantly through an increase in the probability of acquiring pluripotency
during each cell division. This is proliferation-independent acceleration.

Candidate methods to identify effective agents to accelerate phenotypic conversion could
use screening strategies [44], as well as analysis of the effect of stress signaling factors
which indicate a more unpredictable environment. For example, the cytokine IL-6 increases
the rate of conversion from non-stem to “stem-like” cancer cells, as described by Iliopoulos
et al. [8]. Combined use of agents that target degradation and synthesis of mRNA and
protein provide an additional approach. This strategy can be described using the particular
example of translational bursts [45]. By decreasing the average copy number of mRNA
while increasing the average rate of translation, the distribution of single-cell protein levels
can be widened while maintaining the same mean value. The same idea could be applied in
other molecular cascades. Identification of agents through these strategies will allow
modulation of dynamic heterogeneity that can then be deconstructed through a mathematical
analysis.

7. Summary
In sections 2–5, we explored a variety of mechanisms that can generate phenotypic
stochasticity, a variety of phenotypes for which phenotypic interconversion can be
biologically and clinically consequential, and ranges of population scales and integration
over which stochastic fluctuations can arise and propagate. Finally, we outlined strategies
for optimizing modulation of dynamic heterogeneity. Detailed study of examples like these
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will undoubtedly elucidate molecules and pathways that participate in the return of a
population of units to homeostatic heterogeneity and provide clinical utility.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Regeneration of phenotypic heterogeneity occurs according to different mechanisms and
different timescales. (a) Stochastic delivery of therapeutic agent. (b) Proteomic fluctuations.
(c) Large-scale genetic alterations. (d) Point mutation. (e) From the almost “instantaneous”
apparent drug resistance that results from extrinsic exposure to drug to the extended time
scale of years observed with gene amplification or other chromosomal changes, the rates of
interconversion span a remarkable range of time scales. Some have postulated that this is not
by chance but allows a contingency plan for a wide range of challenges.
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Figure 2.
Mechanisms by which timescales for the generation of phenotypic heterogeneity may be
similar to timescales for population expansion. (a) Periodic dilution. (b) Partition noise
during cell division. (c) Periodic decrease in mRNA and protein levels.
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Figure 3.
Topologies of transitions that connect interconverting phenotypes. The dynamics of systems
in molecular abundance space are often represented by the motions of weights sliding
around potential energy surfaces at roughly terminal velocity in an ambient medium, with
thermal excitation. (a) Reversible transitions proceed back and forth between a pair of states
in a bistable system. This corresponds to two energy valleys. (b) Transitions can occur in
stepwise fashion along a continuous spectrum or graded discrete collection of states. (c)
Higher-dimensional topologies introduce the possibility of connecting an initial state, i, to a
final state, f, through multiple paths (i.e. green path going around energy peak and red path
passing through intermediate valley). The typical time required to move from state i to state
f along these two paths may differ.
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Figure 4.
Simplified model for phenotypic switching and survival in biofilm communities. (a) Single
cells of the fungus C. neoformans phenotypically switch in biofilms between simplified
adherent and non-adherent states. Dispersing non-adherent cells can result in seeding new
colonies, but can also result in failure to seed and cell death. (b) Excessively rapid
generation of non-adherent cells corresponds to locations above the diagonal (fS > fP) in the
metronomogram, corresponding to eventual extinction of the primary biofilm. If the
generation of non-adherent cells is slow compared to cell population expansion, the
dynamics of the population are described by positions in the metronomogram below the
diagonal (fS < fP), corresponding to expansion of the population of the primary biofilm
colony.
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Figure 5.
Stochastic fluctuations can be integrated at various scales. (a) Some fluctuations in the
abundances of some molecules may be localized to individual cells. These fluctuations are
cell-intrinsic. (b) Local signaling may propagate the effects of fluctuations in molecular
levels in small clusters of cells. (c) A phenotypic fluctuation originating in a single cell may
cause fluctuations in the phenotypes of other cells in the tissue at large. Molecular signals
may be relayed by non-motile cells, as well as be carried to distant sites by motile cells.
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Figure 6.
Using a metronomogram to identify therapies that accelerate the generation of drug-
sensitivity in a proliferation-independent fashion. (a) “Proliferation-dependent” acceleration.
(b) “Proliferation-independent” acceleration.
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