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Growth and remodelling impact the network topology of complex systems, yet a general theory explaining
how new links arise between existing nodes has been lacking, and little is known about the topological
properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution
of a network might be predicted by mere topological features. We show how a link/community-based
strategy triggers substantial prediction improvements because it accounts for the singular topology of
several real networks organised in multiple local communities - a tendency here named local-community-
paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise
heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems
seem designed for global delivery of information and processing via multiple local modules. Conversely,
non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems
in which information/energy storage is crucial.

D
igging into the properties of complex networks is fundamental for the definition of general paradigms of
complex systems, in which complexity is distinctively generated by the topological integration of many
interacting parts. The Erdős–Rényi (ER) model, was proposed in 1959 to analyse an idealised random

network, as characterised by a fixed number of nodes and by a uniform probability that two nodes are randomly
connected1. Nearly four decades later, in 1998, Watts and Strogatz (WS) deepened our insight into the relation-
ship between random processes and the rise of topological properties in real networks2. The WS model (also
named small-world network) untangled how regular networks - with a fixed number of nodes and edges - react if
an increasing number of edges are randomly rewired with uniform probability2. A WS network presents signifi-
cantly higher clustering and comparable mean geodesic distance than a random graph of the same size and mean
node-degree2. In particular, the mean geodesic distance in a WS network is ‘small’ relative to the network size - at
most a logarithmic function of the total number of nodes in the network3 - and we now know that several real
networks follow this paradigm.

Only one year later, while investigating the topological evolution of real networks, Barabási and Albert (BA)
shed new light on complex network processes4. Voicing the assumption of an open network, the BA model
(consistent with a previous study of de Solla Price5 on scientific citation networks) explained how the scale-
invariance of many real networks originates from a specific growth process, in which a new node tends with
higher probability to be linked to those nodes (network hubs) that already have a large number of neighbours.
This paradigm, named preferential attachment (PA)4, together with the underlying idea of popularity6 is just one
facet of node attractiveness in growing networks, another important aspect being similarity6.

However, topological evolution when exclusively new links are added to the network has yet to be congruously
formalised, and it connects with a practical and front-line issue, namely the link-prediction problem7. Many
applications have to predict new links in large and sparse complex networks merely with the knowledge of
network topology, and new solutions could impact both science and engineering positively. Meanwhile,
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link-prediction reflects the extent to which the evolution of a network
might be modelled on the basis of topological features intrinsic to the
network itself7,8.

Here, we inspect three central questions that stem naturally from
the state of the art: 1) how can the prediction of new links on the
exclusive basis of network topology (topological link-prediction) be
improved? 2) is it possible to define a network paradigm that enables
the prediction of new links in many real networks, on the assumption
that their topologies are shaped in accordance with a single, general
link-growing process (as postulated in the paradigm)? 3) is it possible
to conjecture any connection between a topological network para-
digm and a class of physical systems?

Results
A local community approach to link-prediction. A myriad of
complicated techniques for topological link-prediction with two or
more parameters to tune have been proposed7,9,10, even inspired by
concepts that originate from statistical mechanics and theory of
disordered systems. Nevertheless, such elegant techniques are at
the moment mere proof of concepts rather than concrete methods
to apply on real problems. Apart from the problem to tune the
parameters in an unsupervised framework, the greatest obstacle is
their prohibitive computational time, which in practice relegates
their application to toy networks of very small dimensions (few
hundreds of nodes), in comparison to the giant networks used in
real problems. For these reasons, in order to answer the first question,
we preferred to focus our attention on efficient and parameter-free
Node-Neighbourhood-based approaches7, which are commonly
employed in both research and application, and whose design is
inspired by the main patterns characterising the topology of com-
plex networks7,11. Node-Neighbourhood-based approaches assign a
likelihood score to each pair of non-connected nodes (candidate-
links), and then produce a ranked list in decreasing order to
‘advocate’ candidate interactions. The common neighbours (CN)
index11 is the progenitor of these methods and follows the natural
intuition that the likelihood that two nodes x and y interact increases
if their sets of first-node-neighbours C xð Þ and C yð Þ overlap
substantially: CN~ C xð Þ

T
C yð Þð Þj j. The other indices are often a

variation or generalisation of CN7: Jaccard’s index (JC) is a
normalisation of CN12, Adamic & Adar (AA)13 and Resource
Allocation (RA)14 give more importance to CNs with low degree,
while Preferential Attachment (PA)11 is the degree product of
nodes x and y (for the formulae see Table 1 and for details see
Supplementary Information (SI) section IIIA). In contrast to the
existing methodologies, which are focused on groups of common
nodes and their node neighbours, we here embrace a strategic shift
from nodes to links that represents a new way to treat complex
networks15. In particular, Ahn et al. reconceived communities as
groups of links rather than as mere groups of nodes, and proposed
a link-based approach for graph-partition that outperforms node-
based techniques15. However, the potential of the link/community
viewpoint is still largely unexplored, and we sensed that this strategy
might also be successful for the design of novel link-prediction
indices; our interest is to introduce a new philosophy in the formu-
lation of parameter-free/neighbourhood-based indices, advocating a
shift in perspective from nodes to links, and in particular from nodes
to community links.

The CAR index (see Fig. 1 for definition and examples, and SI
section IIID) stems from the fusion of the old node-based and new
link-based perspectives. CAR suggests that two nodes are more likely
to link together if their common-first-neighbours are members of a
strongly inner-linked cohort, named a local-community (LC), and
the LC’s internal links are called local-community-links (LCL, see
Fig. 1). A consequence of this formulation is that, in respect to CN,
CAR offers more discriminative resolution between candidate-links
characterised by the same number of common-first-neighbours
(Fig. 1), and this boosting in resolution is clearly derived by the use
of the link/community perspective, which is introduced adopting
LCL in the CAR formula (for details see Fig. 1 and SI section IIID).
To demonstrate that the formulation of CAR is not a banal trick, but
the precise introduction of a link/community strategy in designing
neighbourhood-based indices, we propose for each of the above
mentioned classical methods a CAR-based variant. If LCL is seen as
an index enhancer, it can be plugged into PA, AA, RA and JC indices
so that these techniques also shift to the link/community perspective
and in the rest of the article we will extensively prove the value of this

Table 1 | Table of formulae for the classical and CAR-based neighbourhood techniques

Type Name of the Index Formulation

Classical Common Neighbours (CN) CN x,yð Þ~ C xð Þ
T
C yð Þj j~ix~iy

Preferential Attachment (PA) PA x,yð Þ~ C xð Þj j: C yð Þj j~ exzixð Þ: eyziy
� �

~exeyzexCN x,yð ÞzeyCN x,yð ÞzCN x,yð Þ2

Adamic & Adar (AA) AA x,yð Þ~
X

s[C xð Þ
T

C yð Þ

1
log2 C sð Þj jð Þ

Resource Allocation (RA) RA x,yð Þ~
X

s[C xð Þ
T

C yð Þ

1
C sð Þj j

Jaccard (JC) JC x,yð Þ~ C xð Þ
T
C yð Þj j

C xð Þ
T
C yð Þj j~

CN x,yð Þ
C xÞ

T
C yð Þð jj

CAR-based CAR CAR x,yð Þ~CN x,yð Þ:LCL x,yð Þ~CN x,yð Þ:
X

s[C xð Þ
T

C yð Þ

c sð Þj j
2

CPA CPA x,yð Þ~exeyzexCAR x,yð ÞzeyCAR x,yð ÞzCAR x,yð Þ2

CAA CAA x,yð Þ~
X

s[C xð Þ
T

C yð Þ

c sð Þj j
log2 C sð Þj jð Þ

CRA CRA x,yð Þ~
X

s[C xð Þ
T

C yð Þ

c sð Þj j
C sð Þj j

CJC CJC x,yð Þ~ CAR x,yð Þ
C xð Þ

T
C yð Þj j

x and y are network nodes; s is a common neighbour node of x and y;C xð Þ refers to the set of neighbours of x; C xð Þj j refers to the cardinality of setC xð Þ, which is equivalent to the degree of x; c(s) refers to the
sub-set of neighbours of s that are also common neighbours of x and y, thus c(s) is the local community degree of s; ex refers to the external degree of x, computed considering the neighbours of x that are not
common neighbours of x and y; ix refers to the internal degree of x that is equivalent to the number of common neighbours shared by x and y. For the Matlab code to compute all the indices in the table see SI,
section IIID.
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idea. Table 1 provides the formula of the considered classical indices
and their respective CAR-based variations, for details on their
derivation please refer to SI section IIID, where we also provide a
demonstration, which, under the assumption of very sparse net-
works, proves that CAR and CAA give the same ranking, evidence
that we confirm also experimentally by simulations on real networks
(SI section IIID and Fig. S2).

Link-prediction in brain connectomes. To test the performance of
CAR’s indices against the classical indices, we propose an innovative
benchmark problem that originates from the neurosciences. The
notion of connectome16 suggests that the brain circuitry can be
outlined as a network of neurons connected by links, which are
synapses. Several neuroscientific studies have demonstrated that
certain forms of learning consist of synaptic modifications17, while
the number of neurons remains basically unaltered18. A first
model of this process was proposed in 1949 by Hebb and subse-
quently used in Hopfield’s model of associative memory18. The
Hebbian learning theory assumes that different engrams (memory
traces) are memorised by the differing neurons’ cohorts that are co-
activated within a given synaptic network. It is also termed cell-
assembly hypothesis18, because these neuron-assemblies are shaped
during engram formation by a re-tuning of the strengths of all the
adjacent synapses extant in the network. Recent studies18, however,
demonstrated that learning new motor or sensory tasks is associated
with the development of new and non-overlapping sets of persistent
synapses. Ziv et al. commented on these findings by suggesting that

synapse-assemblies, rather than cell-assemblies, might be viewed as
the elementary entities of stored memories18, which in turn amounts
to a link/community reinterpretation of learning and memory
processes in neuroplasticity. We thought to test this synapse-
assemblies hypothesis in a computational framework, where the
formation of new synapses during learning might also be
influenced by the local-synapse-communities extant in the net-
work. Consequently, we proposed to use the topological prediction
of new links in a brain-connectome to model the part of the growth
and remodelling process that is conditioned by the connectome
topology during synaptic formation.

Figs. 2a and 2b show the prediction power of CAR’s indices versus
that of the classical node-neighbourhood-based indices. We consid-
ered the first and (to date) only available in-vivo single neuron con-
nectome (obtained by means of in vivo two-photon calcium imaging
in combination with large-scale electron microscopy) that reports
mouse primary visual cortex (layers 1, 2/3 and upper 4) synaptic
connections between neurons19. The evaluation was performed by
destroying uniformly at random a certain percentage of synapses and
by re-predicting them with the indices’ ranking (details are in the
Methods section and in the SI, section IV). CAR’s indices proved to
be the best methods and performed significantly better (p-value ,

0.05) than the classical node-based models such as CN in the destruc-
tion and re-prediction of up to 50% of the original connectome
synapses (Fig. 2a–b). Interestingly, the 50% deletion level seems to
be a critical value. Synaptic deletion beyond this limit induced a
strong reduction in performance in all indices; nevertheless CPA

Figure 1 | CAR index. When a link or a node directly interacts with a seed node, it belongs to the first-level-neighbourhood and conveys first-level

topological information. Conversely, a link or a node that interacts with the first-level-neighbourhood conveys second-level information. Second-level

information is valuable and its use can significantly improve topological link-prediction, but unfortunately it is also very noisy, and for this reason

difficult to integrate with the first-level information. CAR is designed to capture and filter meaningful second-level information by exploiting common-

first-neighbours. The topological information conveyed by the internal links between common-first-neighbours is valuable second-level information.

Indeed, the more the common-first-neighbours reciprocally interact, the more they represent a local-community, which in turn encompasses the two

seed nodes and thus increases their candidate-link likelihood. Here we introduce the idea that the likelihood of a candidate-link is a function of both the

number of common-first-neighbours (as in the CN index) and of the number of links between them (local-community links), as expressed in the formula

of CAR. The two explicative examples clarify how CAR increases discriminative resolution between candidate-links with the same number of common-

first-neighbours.

www.nature.com/scientificreports
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Figure 2 | Random deletion followed by topological link re-prediction in brain connectomes, social and ecological networks. (a) In-vivo single neuron

connectome: mouse visual cortex neuro-synaptic connections. Sets of links (synapses) from the mouse connectome were progressively removed

uniformly at random. Each prediction technique assigned a score to the missing synapses and this score was used to sort a list of candidate synapses. Upon

removal of n links from the network, the same number was taken from the top of the candidate list; by comparing the candidate set with the removed set,

we assessed the technique’s precision. Since this process was repeated 1000 times for each sparsification level (ranging from 10% to 90% of removed

synapses), in practice mean precision and standard error were considered at each stage. To assess deviation from the mean random-predictor performance,

the Prediction-Power was computed in decibel (dB): 10: log10

PrecisionPrediction Technique

PrecisionRandom Predictor
; thus, considering the different levels of sparsification, a

Prediction-Power-Curve was generated and the area under this curve (AUPPC) was adopted as a comprehensive measure of performance (see Methods

section and SI, section IV). Notice that the progressive removal of links from the original topology made the average LCP-corr drop down to the point

where it is almost 0. (b) Since deletion of more than 50% synapses caused node isolation and the disappearance of local communities, the AUPPC for the

plots in panel (a) was computed considering only half of the experimental range (10% to 50%). CAR-based indices provided an average AUPPC of more

than 50, and the performance of the best approach (CPA), represented a 186% improvement over the lowest performing technique (PA). JC was not

reported. (c) The performance of CAR-based and classical predictors was also studied over 8 different networks when 10% of the links were removed

1000 times uniformly at random (which ensures community preservation and a fair benchmarking, see average LCP-corr values ,L. below each plot).

The difference in performance between the CAR-based (in red) and the classical techniques (in black) was statistically significant every time the studied

network exhibited a LCP structure (see p-values, below each plot computed as a permutation test with 1000 sampling realizations).

www.nature.com/scientificreports
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(which is the CAR-based variant of PA) and PA were notably the
only indices whose prediction remained stable in the given condition
- with CPA performing also as the best index overall. This finding
suggests that for synaptic deletion greater than 50%, a significant
quantity of connectome nodes is also deleted causing network dis-
connection into different components and network clustering coeff-
icient reduction. The consequence is a general drop in performance
for all the non-PA based indices20 that, as a result, assign a score of
zero to candidate links whose seed nodes are located in different
components. On the contrary PA formulation is based on the prod-
uct of the seed nodes’ degrees only, thus its performance is less affect-
ed. By definition, this result also corroborates the reliability of the
analysed connectome and of the experimental approach used to
detect it. Additionally, the result confirms that the design of our
computational experiment was correct, and illustrates, as expected,
that initial link-growth is dominated by a self-organising process of
node-preferential-attachment4.

Furthermore, we considered two different in-silico connectomes,
the Macaque cortical connectome and the C. elegans frontal ganglia
connectome, which previous studies had assembled in order to
merge partial information obtained from disparate literature and
database sources21. Here, in particular, we concentrated our attention
on the predictors’ performances when random deletion of only 10%
of links is applied, to ensure that the community structure (if present)
is still preserved, and in order to objectively compare the proposed
community-based indices versus the classical ones (details on the
procedures used for these and all the comparisons of Fig. 2c are in
the Methods section and in the SI, section IV). Although CAR’s
indices performed largely better than random predictors in these
two simulations too (Fig. 2c), their superiority over the classical
indices was diminished but still statistically significant in the
Macaque connectome, and comparable to the classical methods in
the C. elegans connectome. This finding may be due to: i) the unre-
liability and paucity of the two different connectomes, which do not
directly derive from in-vivo investigations; ii) the absence of suf-
ficient topological information that is generated by the neuroplasti-
city process of learning. In particular, the Macaque cortical
connectome (aka corticocortical network) is incomplete and differs
in anatomical scale: the links are long-range-projections between
cortical areas and subareas within one hemisphere of the primate
brain21. Although the C. elegans frontal ganglia connectome is recon-
structed at the synaptic level, in-silico merging causes it to be simi-
larly unreliable. Significantly, it has recently been emphasised how
published wiring diagrams for C. elegans are neither accurate nor
complete and self-consistent22. Nevertheless, the process of synaptic
formation (or, to be precise, at least that part of the process that
depends on connectome topology) between existing neurons seems
to be more accurately predicted by our local-community-based
models than by PA and the other classical neighbourhood-based
approaches, and this is the first substantial result we have obtained
for link-prediction in computational network biology. A straight-
forward implication of this finding might open up new avenues in
computational learning models, in which the Hebbian theory might
be complemented by an epitopological learning theory, whereby
engram formation stems from the growth of additional synapses
within local-communities of pre-existing synapses. A second
important implication is that our local-community-based interpreta-
tion of synaptic learning could also be a computational evidence to
support the recently proposed unifying hypothesis on the autistic
brain called Intense World Syndrome (IWS), which sustains that
the core pathology of the autistic brain is hyper-reactivity and
hyper-plasticity of local neuronal circuits23. Markram et al. advocate
that such excessive neuronal processing and plasticity in circum-
scribed circuits lead to excessive neuronal learning: hyper-
perception, hyper-attention, and hyper-memory, which may lie at
the heart of most autistic symptoms23. Thus, we speculate that our

local-community-based interpretation of synaptic learning might be
also adopted as part of a computational model to simulate some of
the basic mechanisms that are assumed by the IWS to explain how
the autistic person is an individual with far above average capabilities
(due to enhanced perception, attention and memory)23.

Link-prediction in social and ecological networks. The CAR’s
indices were in general significantly better than classical ones also
when applied to diverse kinds of complex networks such as the
human/animal social networks (Fig. 2c). Only the food webs repre-
sented a case apart. For the food web of Tuesday Lake (excluding the
performance of PA) the CAR-based indices were the only ones that
performed better than random, and in general significantly better
than the classical indices. For the food web of Grassland species
(excluding the performance of JC) we registered a paradoxical
behaviour, since it is the only network where the performance of
classical methods is significantly better than CAR-based indices
(the topological motivation of this result will be further investi-
gated in the next section). There is, nevertheless, an explanation
for these opposite behaviours based on the structure, characteris-
tics and members of these two ecosystems. While the Tuesday
Lake is regarded as one of the most complete and organised webs
in the field of ecology24,25, the Grassland web is considered highly
unsaturated26. Moreover, the Grassland web has a linear structure
that in ecology is known as the cascade model: a serial trophic
organisation, where the bigger organism eats the smaller. In
contrast, the Tuesday Lake web has a pyramidal organisation that
differs from the cascade model in the distribution of links between
basal, intermediate, and top communities of species25. Thus, the
Grassland web has a highly sparse and almost linear connectivity,
which makes it hard for local communities to emerge; on the
contrary, the Tuesday Lake web has a more densely connected and
organised structure, which is actually related with the presence of
local communities at different levels of the pyramidal organization.

As a further investigation, we compared CAR’s indices with
two sophisticated statistical inference techniques: the Hierarchical
Random Graph27 and the Stochastic Block Model28 - see SI section
IIIC for details. The comparison followed the same procedure
showed in Fig. 2c, and we did not detect any remarkable increase
in performance of these advanced algorithms in comparison to the
family of CAR-based community indices (see SI, Fig. S1). Details on
the methods and results of this last comparison are in SI, section IV.

Link-prediction in protein interactomes. A second aspect of the
link-prediction problem regards the inference of missing interac-
tions from an observed network7. In varying disciplines, a network
is constructed on the basis of experiments, and for at least two
reasons some links might not be observable: i) by nature, the links
are not directly detectable; ii) the experiments and/or the execution
time are very expensive. The problem of observability affects systems
biology, a discipline in which the topological prediction of novel
interactions in protein networks (interactomes) is particularly
useful, especially and specifically when other types of information,
such as biological prior knowledge, are not available29. This problem
differs from the original formulation (link-prediction in network
evolution over time) discussed above, and the class of link-
prediction indices (named bio-inspired indices, SI, section IIIB)
currently employed in systems biology derives from methods
invented to infer similar attributes between adjacent protein
nodes29: the Interaction Generality (IG1) Index30 originates from
phenomenological evidences in experimental protein interaction
detection; the Czekanowski-Dice Dissimilarity (CDD, as well as its
adjusted version ACDD)31,32 and the Functional Similarity Weight
(FSW)33 stem from methods for protein functional prediction in
interactomes; and ISOMAP (ISO)29,34 is based on high-dimensional
properties and embedding of protein networks. The strategy used for
evaluation differs too29, and a candidate protein interaction is judged

www.nature.com/scientificreports
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to be correctly predicted if the association between the two linked
proteins has relevance in the Gene Ontology (GO) categories
(Methods sections and SI, section V). Typically, a level of precision
(on the basis of significant association in GO) is recursively evaluated
for sets of increasing size of the best first-ranked candidate
interactions (Methods section and SI, section V). A precision curve
is obtained, and the area under this curve (AUP) is a measure of
performance. Yeast networks are the preferred benchmark, because
of the large amount of information available for yeast in terms of
both detected interactions and GO associations15,29. We accordingly
re-analysed three different, independently produced, yeast networks
that had been used in previous studies for performance testing (SI,
sections V; and Table S3 in section IX). CAR and CAR-based indices
not only substantially outperformed the other methods in the three
networks (they are the only indices to attain AUP always equal or
higher than 0.85, Fig. 3b–d), but also proved to be the most efficient,
in that it simultaneously provided consistent robustness (Fig. 3e,f
and SI Table S1) and the lowest maximum-computational time
(SI Table S1).

We besides investigated the extent to which the topological link-
prediction could be practically useful. To this end, we proposed an
in-silico validation (SI, section VI), and tested the 100 best ranked
interactions, both for CAR and for FSW (reference method for the
bio-inspired indices), with the STRING database35. Considered to be
the most complete and reliable database of protein-protein interac-
tions (PPIs), STRING integrates multiple sources of information and
provides a confidence score for each interaction35. Once again, CAR
confirmed the benefit of using a link/community strategy, and per-
formed impressively during this validation test, both in each single
network evaluation (SI, section VI, Fig. S4a-c) and in the general
evaluation of robustness (Fig. 3f).

Summarizing, we observe that in general using the CAR-trick to
convert the classical methods to the new link-community perspec-
tive, generates in several complex networks a significant increase in
link prediction performance, suggesting that a new family of com-
munity-based link predictors is here proposed. In addition, we notice
that whenever the community structure of the network (if present) is
preserved, it can be exploited to achieve more accurate predictions
using the new CAR-based family of link predictors.

The local community paradigm (LCP) in real networks. A
necessary condition for the application of CAR’s indices is that,
during its growth, the network in question evolves in accordance
with a general process, one of whose distinctive features is the
development of diverse, overlapping and hierarchically organised
local-communities15. We defined this form of topological self-
organisation as a local-community-paradigm (LCP), and we there-
fore propose the LCP-decomposition-plot (LCP-DP) to visualise and
investigate the effect of LCP on network topology. The LCP-DP is a
form of network-decomposition because each real link in the
network is plotted in a bi-dimensional space according both to its
number of CNs (reported on the x-axis) and to the respective number
of LCLs (number of links between the common-first-neighbours,
reported on the y-axis). More specifically, given that the number of
LCL is a squared function of the CNs (SI, section VIII), we found it
more convenient to report the square root of LCL on the y-axis, so as
to linearize the visualisation. The result of this decomposition is a
plot that offers a link-based visualisation of the analysed network
and provides information on the presence and size of its local-
communities.

Fig. 4a shows the LCP-DP for the three previously employed yeast
PPI networks. Surprisingly, we discovered that Network3 differs
from the other two, whose LCP-DP patterns resemble each other
(Fig 4a). In particular, the maximal local-community size for
Network3 is around 20 CNs, while for the other two networks the
maximal local-community size is about 60 CNs. Considering that all

the networks have a comparable number of nodes and links, and that
the maximal size of local-communities in Network3 is 1/3 of that in
the other networks, we can conclude that Network3 is more strongly
characterised by small-local-communities. The fact that multiple
small-local-communities in a large and sparse network most prob-
ably do not overlap with each other explains why all the indices
(CAR-based, classical and bio-inspired) performed in a comparable
manner and with better results in Network3 (Fig. 3d) than in the
other two networks (Fig. 3b–c), where instead the CAR-based per-
formed significantly better than the others. Following a similar
rationale, we observe that the C. elegans connectome (Fig. 4b, left
panel), although larger (more nodes) and sparser (less links) than the
Macaque connectome (Fig. 4b, right panel), is more strongly char-
acterised by small-local-communities (Fig. 4b, left panel), and this
explains why the performances of the CAR-based and classical in-
dices were not significantly different, and were overall higher in this
connectome than in the others (almost all the indices were between
12.5 and 13.5 dB, Fig. 2c). From the topological similarity between
Network3 and the C. elegans connetome, evidenced by using the
LCP-DP, we can now infer that a very sparse and clustered network
topology, characterised by the presence of multiple small-local-
communities that do not overlap with each other, improves link
prediction in general and minimise the difference between CAR-
based and classical indices. Conversely, in the extreme and opposite
case of very densely connected networks, the occurrence of large and
indistinct communities - which most likely overlap reciprocally and
envelop the small-local-communities - erases the community dis-
tinction that is fundamental for the efficiency of CAR and of predic-
tion methods in general. This is easily demonstrable because the
more a network tends to the ideal case of a fully-connected network,
the more it converges towards a unique and large single-community.
On the other hand, in Fig. 4c we clearly demonstrate that when we
randomly sparsify the networks in question (sparsification is a pro-
cedure that enables the performance testing in relation to unpredict-
able random variations in the original network topologies) CAR,
whenever the network community structure is preserved, is more
efficient and robust than the other indices in prediction of candidate
protein interactions (for details on this computational experiment
refer to SI, section VII).

A second discovery, which emerges from the LCP-DP, is the
strong correlation between the two variables CN and LCL, which
we call the LCP-correlation (LCP-corr), and which might be inter-
preted as a typical feature of LCP networks (Fig. 4a–b). More spe-
cifically, the LCP-correlation is defined as the Pearson-correlation
coefficient between the variables CN and LCL as plotted in the LCP-
DP (computation details are in SI, section VIII). Looking at the curve
of average LCP-correlation values - computed for the Mouse con-
nectome configurations, in the randomly destroyed synapses experi-
ment of Fig. 2a – we observe that the LCP-correlation decreases
significantly between 10% (LCP-corr 5 0.60) and 20% (LCP-corr
5 0.31) of removed synapses, and this is a confirmation that the
choice to focus our attention on the comparison of the predictors
when 10% only of the links are randomly removed, was a correct
procedure to preserve the community structure. In fact the average
LCP-correlation values of the 8 partially destroyed complex net-
works adopted in Fig. 2c are always higher (except for the
Grassland web) than LCP-corr 5 0.5. On the other hand, also the
examples provided in Fig. 4a (Network1 has LCP-corr 5 0.92;
Network2 has LCP-corr 5 0.95; Network3 has LCP-corr 5 0.90)
might lead one to suspect that large LCP-correlation coefficients are
invariably associated with the occurrence of LCP, and small LCP-
correlation coefficients with LCP’s non-occurrence. Therefore, to
investigate the extent to which this hypothesis is generally valid,
we considered a total of 45 networks from differing fields (15 bio-
logical, 10 social, 10 atomic, 1 power grid, 9 roadmaps - see SI, section
IX).
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Figure 3 | Topological link-prediction in protein interactomes. (a) Precision curve of each technique by ascertaining whether the top-ranked candidate

links had meaningful association in Gene Ontology (GO). For clarity, only CAR-based, classical and bio-inspired prediction techniques are shown; the

rest of the results and plots appear in SI, section V. (b–d) The Area Under the Precision curve (AUP) summarises the general performance for each

technique in the three analysed networks: Network1 (Ben2Hur & Noble, 2005), Network2 (Chen et al., 2006), Network3 (Chen et al., 2006). (e) Gene

Ontology (GO) performance robustness (PR) is computed as the minimum AUP among the networks and used for comparison between CAR and FSW.

(f) In-silico STRING validation: the first 100 best interactions for each method are tested in STRING. The minimum number of verified-interactions

among the three networks represents the minimum precision, which is a measure of performance robustness (PR) for comparison - with regard to

STRING - between CAR and FSW.
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As evidenced in Fig. 5, where we juxtapose a few paradigmatic
examples, the scenery is more intriguing than we had expected: we
found that the region of LCP-correlations between 0.8 and 0.4 repre-
sents a threshold (a sort of intermediate region) that distinguishes
networks that are characterised by LCP from those that are not. We

want to acknowledge that also Lancichinetti et al.36 went close to the
formalisation of the LCP paradigm; and the observation of the dicho-
tomy between LCP and non-LCP networks. In fact, they provided a
systematic empirical analysis of the statistical properties of com-
munities in diverse types of large complex networks36, and evidenced

Figure 4 | LCP-DP, LCP-correlation and sparsification-experiment on PPIs. (a) Using the LCP-DP for investigation of the network topology and for

visualization of the LCP-correlation in protein interactomes. (b) Using the LCP-DP for investigation of the network topology and for visualization of the

LCP-correlation in brain connectomes. (c) Testing the prediction robustness of CAR and the other indices during PPI network sparsification by random

link deletion. For each point 10 network realizations are computed, and the average AUP with standard-error for each index (computed with the same

procedure as that used for Fig. 3b-d) is reported. The random deletion adopted progressive levels (10%, 20%, and so forth, until network connectivity was

lost) of the links in the original network. By varying the level of sparsification, we produced a curve of average-AUP values, so that the area under this curve

became a volume. On the basis of normalised AUP, we were able to compute what we called ‘volume’ under the precision curve (VUP). VUP is an

advanced performance measure in the sense that it accounts both for random variations in the original network topology and for differing levels of

sparsification. Isomap (ISO), which is the only embedding-based method, is not plotted for reasons of display clarity, but its VUP is reported.
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that the mesoscopic organisation of networks of the same category is
extraordinarily similar, concluding that: although the community
size distributions are always wide, certain categories of networks
consist mainly of tree-like communities, while others have denser
modules.

If we investigate the networks at the extremity of the intermediate
region, we find that the power grid network is a borderline case, one
that can be considered neither as LCP nor as non-LCP, and this
finding has strong significance. It has been proved that power grid
networks, which are human-designed and propagate electricity
rather than information, are neither scale-free nor clustered37, that
they have homogenous topology and that they are easy to control38.
The other interesting borderline case is the Grassland species food
web that with LCP-correlation of 0.42 is closer to non-LCP networks,
and this can motivate its paradoxical behaviour detected in Fig. 2c
(after 10% of random link removal, LCP-corr 5 0.41) and discussed
above.

On the other hand, the upper-bound case is represented by the air
transportation network, which shows a 0.99 LCP-corr (Fig. 5 left side,
American/Canadian flight map). We mined the literature to find an
explanation for the contradiction between the result obtained for the
air transportation and for the road transportation networks (Fig. 5
right side, LCP-corr ranges from 0 to 0.16). Guimera et al.39 provided
a possible answer, which we shall now cite: = …We find that the
worldwide air transportation network is a scale-free small-world
network. In contrast to the prediction of scale-free network models,
however, we find that the most connected cities are not necessarily
the most central, resulting in anomalous values of the centrality. We
demonstrate that these anomalies arise because of the multicommu-
nity structure of the network. We identify the communities in the air
transportation network and show that the community structure can-
not be explained solely based on geographical constraints and that
geopolitical considerations have to be taken into account. …?.

Although Guimera et al. did not formalise any paradigm, we
recognise an ante litteram discovery of the LCP in their intuition
of the need for a new explanation (besides the scale-free and the
small-world paradigms) to characterise the topology of air trans-
portation networks more precisely. Meanwhile, the social (geopol-
itical) interpretation of the flight networks clarifies the mismatch
with the road networks, which are shaped more by geographic con-
straints, and further justifies our choice to allocate the flight map
among the social networks.

The conclusions of Guimera et al. - and the need to formalise them
in a paradigm such as LCP - appear clearer if interpreted in the light
shed by two theories recently posited, one by Boguñá et al.37 on the
navigability of complex networks, and the other by Liu et al.38 on
the controllability of the same. Boguñá et al. illustrated the greedy-
routing of information in a network through an example of passenger
air-travel. They showed how greedy behaviour takes a passenger
from a small airport to larger hub airports, which significantly
reduces the distance to the destination (zoom-out coarse-grained
search), and how hubs are thus crucial for global delivery. Once a
hub near the destination is reached, hubs are not needed anymore
because a less-connected neighbouring airport can take the passen-
ger to the desired city (zoom-in fined-grained search). Therefore,
some particular non-hub nodes centred in local modules are fun-
damental for the local processing of the general function implemen-
ted on the network. On the other hand, Liu et al. found that low-
degree nodes (and, counter-intuitively, not hubs) play the most
important part in the full controllability of complex networks, and
this finding fits with Boguñá’s, because hub nodes may be viewed as
collectors and distributors of information: if one of the near-destina-
tion hubs is unavailable, another one can compensate. They act as
intermediary relaxing points that avoid bottlenecks and direct data to
more important nodes (driver or processor nodes) that accomplish a
dedicated function within local modules, where they naturally

Figure 5 | LCP in real networks. Examples of LCP networks (left panel) and non-LCP networks (right panel). The LCP networks we found range from

LCP-corr 0.84 (C. elegans rostral ganglia neuro-synaptic connectome) to 0.99 (American/Canadian flight map). The networks in the center (Power Grid and

Grassland species food web) are borderline cases. The adjacency matrices of all the networks for which we computed LCP-corr are provided at the link in SI,

section IX. For licence information on the individual elements of this figure please see SI, section X.
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assume a position of centrality. Similar conclusions are discussed by
Lancichinetti et al. as well36.

We also introduced the analysis of atomic-level networks. On the
right side of Fig. 5, we showed that many organic molecules (their
crystals, reticula and lattices) and secondary-biological structures
have a network topology that is non-LCP. In similar vein, we inves-
tigated the network topology in the tertiary-biological structures of
proteins: said structures are generated by various classes of non-
covalent interactions that occur between protein residues and deter-
mine the typical protein folding conformation. Residue interaction
networks (RINs) have recently been used to describe the protein
three-dimensional structure as a graph, where nodes represent resi-
dues and edges physico-chemical interactions, e.g. hydrogen bonds
or van der Waals contacts40. Various topological properties have
been calculated over RINs and have been correlated with differing
aspects of protein structure and function40. We found that both the
hydrogen bond network of human glutathione peroxidase 4 (GPX4,
LCP-corr 5 0.90) and the van der Waals contact network of human
triosephosphateisomerase (TIM barrel, LCP-corr 5 0.88) - which
were the only RINs available to use40 - are LCP (Fig. 5 right side,
and SI, section IX). Consequently, we envisage that this finding
might be extended beyond the examples here quoted, to confirm that
the LCP-state detected within tridimensional-protein conformations
could be a generic property of some tertiary-biological structures.

The LCP in idealised networks. LCP accounts for community-based
structure in the topology of complex networks, and extends pre-
sent knowledge to a degree that, along with the small-world and
preferential-attachment paradigms, may enhance our understand-
ing of systems of interacting units, their evolution and self-
organisation. The need for, and value of, such a novel paradigm
are further investigated in the following examples, which deal with
referential idealised models. The networks in Fig. 6a are two diverse
random regular graphs (random graphs for which each node has the
same degree) with the same number of nodes. The BA paradigm
(which is based on power-law node distribution) does not detect
any difference between these two networks, since the degree distri-
bution of a random regular graph corresponds to a single value that is
also the fixed node degree. Even the WS paradigm (small-world)
does not detect any difference, since the two networks have iden-
tical clustering coefficients and characteristic path lengths. This is
further proof that, as clarified in the original article2, the small-world
paradigm is inapplicable to the detection of topological changes that
emerge exclusively at a local structural level in the network. Boguñá
et al.37 showed, firstly, that behind each network there is a hidden
metric space that is closely related to the network topology and,
secondly, that global mapping may be inferred from local dis-
tances. In a way, the same principle is exploited by Isomap41, a
landmark algorithm for embedding that was mainly designed to
visualise the hidden structure of a dataset or of a network in a bi-
dimensional space. Surprisingly, the embedding in two dimensions
by Isomap suggests substantial divergence between the hidden
metric spaces of the two random regular networks, as well as a
likewise substantial difference in the local topology (Fig. 6a). The
paradigm we propose is the only one that clearly identifies this
topological difference within the hidden metric space of the two
networks (Fig. 6a). The LCP-correlation is 0.37 for the network on
the left, which consists of only two clusters, while for the second
network, which consists of three clusters, the LCP-correlation is, as
expected, higher (LCP-corr 5 0.71, Fig. 6a on the right side).

Idealised networks are very useful to test the generality of a hypo-
thesis in different configurations, which in turn are easily generated
artificially through a known model and controlled by certain para-
meters2. Such networks are particularly crucial to investigations into
the behaviour of a given measurement around a critical region that
hosts a transition between differing macroscopical states of the

system. We simulated differing ER networks by varying the two
parameters used in the model G(n, p), namely network size (number
of nodes n) and edge probability (each edge is included in the graph
with probability p independent from every other edge). We per-
formed 100 realizations for each combination of model parameters
and plotted in Fig. 6b the mean (displayed in the centre) and the
standard deviation (displayed on the right) of the LCP-correlation
values computed for the 100 network realizations. In their original
1960 paper1, Erdős and Rényi mathematically described the beha-
viour of G(n, p) at various values of p. One of their main conclusions

was that
ln nð Þ

n
represents a critical threshold for the connectedness of

G(n, p). In particular, they proved that: i) If pv

1{eð Þ ln nð Þ
n

then a

graph in G(n, p) will be disconnected because it certainly contains
several isolated vertices (which implies the loss of local network

communities); ii) if pw

1zeð Þ ln nð Þ
n

then a graph in G(n, p) will

be most likely connected (which implies the preservation of local
network communities). Interestingly, we discovered that the theor-
etical transition region (Fig. 6b, plot on the left) is accurately detected
and visualised by the LCP-correlation (Fig. 6b, in the centre and on
the right) in our experiments. From the mean of the LCP-correlation
values, as plotted in the centre of Fig. 6b, we discovered that the
majority of all possible generable ER models strongly follow the
LCP (black area above the critical region). The necessarily small
percentage of non-LCP models appear in the white area under the
critical region. This result confirms that under the critical region,
several isolated vertices appear in the graph, while above the critical
region a topology characterised by several community structures
begins to emerge. Meanwhile, prompted by standard deviation ana-
lysis (Fig. 6b on the right) we learn that the generation of graphs with
intermediate values for LCP-correlation occurs very rarely and is
only possible when it coincides with the instability expressed in the
critical transition region (dark region in the plot); in the other zones
(white part of the plot), standard deviation is close to zero and the
LCP-correlation value is very stable.

In conclusion, this simulation suggests that the generation of: i) ER
networks with LCP-corr higher than 0.80 is very frequent; ii) ER
networks with LCP-corr close to 0 is not frequent; iii) ER networks
with intermediate LCP-corr is very infrequent. These findings are in
line with the ones we obtained for real networks, where the iden-
tification of LCP networks was very easy (Fig. 5b, left side), both at
diverse physical levels and in differing domains (biological, social,
atomic), while the identification of non-LCP networks was difficult
and their occurrence was almost exclusively detected at the atomic
level (Fig. 5b, right side). Interestingly, except for the power grid
(which showed 0.78 LCP-corr, a borderline value) and few others,
real networks with intermediate levels of LCP-correlation were not
identified.

Taken together, these discoveries are important steps towards the
answer to the second question formalised in the introduction.

Discussion
The third question posed in the introduction conjectures a sort of
generalised systemic parallelism between the occurrence of certain
topological properties (as formalised in a paradigm) and the rel-
evance of some physical properties. In effect, LCP networks (Fig. 5
left side) are related to dynamic and heterogeneous systems that are
characterised by weak interactions42 (relatively expensive or rela-
tively strong) that in turn facilitate network evolution and remod-
elling; these are typical features of social and biological systems as
well as, at the atomic level, of tertiary protein structures. According to
Liu et al.38, it should be more difficult to achieve full control of these
systems by manipulating a few network driver-nodes. In contrast,
non-LCP networks (Fig. 5 right side) characterise steady and homo-
geneous systems that are assembled through strong (often quite
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expensive) interactions, difficult to erase. Given their homogenous
structure, such systems should be easier to control38. This argument
is particularly valid for the power grid, which is not densely con-
nected (network density is proven to increase controllability), but
whose topology is homogeneous enough to be easily controllable38 - a
required specification in human-engineered networks.

The LCP architecture facilitates not only the rapid delivery of
information across the various network modules, but also the local
processing. On the other hand, the non-LCP architecture is more
useful for processes where: i) the storage of information (or energy) is
at least as important as its delivery; ii) the cost of creating new inter-
actions is excessive; iii) the creation of a redundant and densely
connected system is strategically inadvisable. An emblematic
example is the road networks, for which the money and time costs
of creating additional roads are very high, and in which a community
of strongly connected and crowded links resembles an impractical
labyrinth.

While the small-world-paradigm treated the main effect of re-
modelling in real networks, and the scale-free-paradigm offered an
innovative view of network growth in terms of node-preferential-
attachment, the LCP is a first attempt to advance a link/community-
based-interpretation of the epitopological learning component that
appears in many cognitive, social and evolutionary processes.

Methods
Link removal and re-prediction in connectomes, social and ecological networks. A
specific amount of synapses, equal to 10% of the total in the mouse connectome, was

destroyed uniformly at random. This process was repeated 1000 times, and we
generated 1000 diverse and random sparsified connectome topologies with 10% less
synapses with respect to the original connectome. Following the same procedure we
generated 1000 diverse and random sparsified topologies for each sparsification level,
ranging the amount of removed synapses from 10% to 90% of the original, according
to the following progressive levels of sparsification: 10%, 20%, 30%, …, 90% (see
Fig. 2a). The link-prediction techniques (see Table 1), along with a random predictor,
were applied to the diverse connectome topologies, and a list of candidate interactions
sorted by likelihood score was obtained for each sparsified connectome configuration.
The proportion of top-ranked candidate interactions that at each sparsification level
matched the removed synapses - which is a measure of precision - was used to assess
the performance in prediction. Since this process was repeated 1000 times for each
sparsification level, in practise mean precision and standard error were considered for
each stage. To characterise the deviation of each predictor from randomness, we
transformed the indices’ mean precisions at each sparsification level into decibels as:

10: log10

PrecisionPrediction Technique

PrecisionRandom Predictor
taking the mean performance of the random

predictor as a reference. This transformed measure was named prediction power. The
predictive power, measured at different sparsification levels, generated a prediction
power curve (see Fig. 2a), and the area under this curve (AUPPC) summarised the
power of each predictor. Since deletion of more than 50% synapses caused node
isolation and the disappearance of local communities, to have a fair comparison, the
AUPPC in Fig. 2B was computed considering only up to 50% of links removed in the
Mouse Connectome. More details on this part are given in SI, section IV.

To further test the link-prediction power of classical and CAR-based indices, we
inspected their performance over 8 different networks (see Fig. 2C). Their prediction
power was tested when only 10% of the network links were destroyed, in order to be
sure that the community structure of the analysed networks was preserved, and thus
to guarantee a fair comparison between all different predictors. Finally, we performed
a permutation test with 1000 resampling realizations, to assess whether the mean
prediction power of the CAR-based indices was significantly different and possibly
higher than the mean prediction power of the classical indices; a p-value threshold of
0.05 was considered statistically significant (see SI, section IV).

Figure 6 | LCP in idealised networks. (a) Isomap embedding of two random regular graphs (Nodes 5 10, Degree 5 5) with equal clustering coefficients

(Cp) and characteristic path lengths (Lp) but different LCP-correlation. Neither the BA nor the WS paradigm were able to explain the topological

difference between these two random regular graphs, which share the same node numbers and the same node degree. The paradigm we propose is the only

one that, consistent with Isomap embedding, clearly highlights the community organisation diversity present in the hidden metric spaces of the two

networks. (b) Testing the LCP-correlation for differing Erdős–Rényi random graphs G(n,p) by varying the number of nodes n (from 10 to 500, step 10)

and the edge probability p (from 0.01 to 0.99, step 0.02). For each combination (n,p) the LCP-correlation was evaluated 100 times for calculation of mean

and standard deviation. The theoretical critical region computed by Erdős and Rényi in their model (plot on the left) is strikingly detectable both by the

mean (plot in the centre) and by the standard-deviation (plot on the right) LCP-correlation.
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Link prediction in protein interactomes. The classical (see Table 1; and SI, section
IIIA), the bio-inspired (see SI, section IIIB) and the CAR-based indices (see Table 1;
and SI, section IIID) were applied to three different yeast protein interactomes. The
proteins involved in the predicted candidate interactions were annotated according to
their Gene Ontology (GO) terms, and their GO semantic similarities were measured
over the three different gene ontologies (see SI, section V). A level of precision (on the
basis of significant associations in GO; see SI, section V) was recursively evaluated for
increasing-size sets of the best first-ranked candidate interactions. A precision curve
was obtained, and the area under this curve (AUP) was considered as measure of
performance.

In-silico validation of the best protein interaction candidates. Considering CAR
and FSW as reference methods, we took the top-ranked 100 candidate interactions
from each of the two techniques’ list and intersected them with the entire STRING
Database version 9.0, which was queried in February 2012. We reported: 1) how many
protein pairs per 100 were validated for each network; 2) the average STRING
confidence and its standard deviation; 3) the average GO confidence and its standard
deviation. In addition, we reported the Robustness of each of these indicators across
the networks (see SI, section VI).

Network sparsification in protein interactomes. This experiment is similar to the
one performed for the connectome. However, instead of the prediction power we
measured the AUP at each sparsification level, and since protein networks are
significantly larger than the previous considered networks, 10 (as in Liu et al.38)
different sparsified network topologies were generated instead of 1000. Another
difference is that the simulation stops whenever network connectivity is lost, instead
of when 90% of original links are removed, because embedding techniques such as
ISOMAP can be applied only to networks with a single connected component.

LCP-decomposition-plot and LCP-correlation. A point in the LCP-decomposition-
plot (LCP-DP) corresponds to a link from the network, and its coordinates are
specified by the number of shared neighbours between the interacting nodes (CN, on
the x-axis), and the squared root of the number of local community links (LCL, on the
y-axis) between the CN (see SI, section VIII). The LCP-correlation (LCP-corr)
quantifies the linear dependency between CN and LCL, and is based on their Pearson
correlation coefficient (see SI, section VIII).

LCP in idealised networks. We simulated differing Erdős-Rényi networks by varying
the two parameters used in the model G(n, p), namely the number of nodes n and
edge probability p. We performed 100 realizations for each combination of model
parameters and plotted the mean LCP-corr and its standard deviation in Fig. 6.

Additional Methods’ information and any associated references are given in the
Supplementary Information that is available on the online version of the paper.
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This Article contains typographical errors in Table 1.
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