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Abstract
Compensating for the collimator-detector response (CDR) in SPECT is important for accurate
quantification. The CDR consists of both a geometric response and a septal penetration and
collimator scatter response. The geometric response can be modeled analytically and is often used
for modeling the whole CDR if the geometric response dominates. However, for radionuclides that
emit medium or high-energy photons such as I-131, the septal penetration and collimator scatter
response is significant and its modeling in the CDR correction is important for accurate
quantification. There are two main methods for modeling the depth-dependent CDR so as to
include both the geometric response and the septal penetration and collimator scatter response.
One is to fit a Gaussian plus exponential function that is rotationally invariant to the measured
point source response at several source-detector distances. However, a rotationally-invariant
exponential function cannot represent the star-shaped septal penetration tails in detail. Another is
to perform Monte-Carlo (MC) simulations to generate the depth-dependent point spread functions
(PSFs) for all necessary distances. However, MC simulations, which require careful modeling of
the SPECT detector components, can be challenging and accurate results may not be available for
all of the different SPECT scanners in clinics. In this paper, we propose an alternative approach to
CDR modeling. We use a Gaussian function plus a 2-D B-spline PSF template and fit the model to
measurements of an I-131 point source at several distances. The proposed PSF-template-based
approach is nearly non-parametric, captures the characteristics of the septal penetration tails, and
minimizes the difference between the fitted and measured CDR at the distances of interest. The
new model is applied to I-131 SPECT reconstructions of experimental phantom measurements, a
patient study, and a MC patient simulation study employing the XCAT phantom. The proposed
model yields up to a 16.5 and 10.8% higher recovery coefficient compared to the results with the
conventional Gaussian model and the Gaussian plus exponential model, respectively.
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I. Introduction
Accurate quantification in single photon emission computed tomography (SPECT) is
important in many applications. For example, accurate SPECT-based dosimetry in internal
emitter therapies such as I-131 radioimmunotherapy and radioiodine therapy can potentially
improve dose-response correlations so that the efficacy and toxicity of the treatments can be
better assessed. There has been considerable research on improving the quantitative
accuracy in SPECT by using various correction methods: attenuation correction, object
scatter correction, and collimator-detector response (CDR) compensation [1]–[6].

The CDR, which consists of both a geometric component and a septal penetration and
collimator scatter component, is one of the most important degrading factors in quantitative
SPECT imaging. Incorporating depth-dependent CDRs in the system matrix of an iterative
image reconstruction improves performance [5]. The septal penetration and collimator
scatter component is particularly problematic for radionuclides that emit medium or high-
energy photons [7]–[11]. The geometric response can easily be modeled analytically,
whereas modeling the septal penetration and collimator scatter response is more challenging.
Up to now, three main approaches have been used.

1. The first approach is to model only the geometric response and to ignore the septal
penetration and collimator scatter response. One can analytically calculate the
geometric transfer function by using the scanner parameters (e.g., collimator
specifications and distance between detector and imaging plane) [12], [13]. This
approach is easy to use and works well when the geometric response dominates the
CDR (e.g., for Tc-99m). It is used for CDR modeling in most commercial iterative
reconstruction software available with SPECT systems due to its simplicity. The
geometric component can be well fitted with a Gaussian function [13]. However,
this model does not consider the septal penetration and collimator scatter response.

2. The second approach is to use Monte-Carlo (MC) simulation techniques. One can
either generate a table of the depth-dependent CDR functions using MC simulation
[2], [3], [8], [10], or use a MC simulator itself as a forward projector in an iterative
image reconstruction [14]. With this approach it is possible to model all
components of the CDR including the septal penetration and collimator scatter
response, which is important for accurate quantitative SPECT with radionuclides
that emit medium or high-energy photons such as I-131, In-111, Ga-67, and I-123.

However, MC simulations that include the septal penetration and collimator scatter
response are challenging and accurate results may not be available for all of the
different SPECT scanners in clinics. Even though generating a table of depth-
dependent CDRs with very low noise requires their computation only once, it is
still computationally demanding [2]. There have been some efforts to develop
faster MC simulations that include the septal penetration and collimator scatter
response [9], [11], [15], but using a MC simulator as a forward projector involves
high computational complexity [14]. In addition, one should validate the MC
simulation by comparison of simulated energy spectra and PSFs with experimental
measurements. For higher-energy photons it has been shown that it is important to
carefully model all components of the SPECT detector system (collimator, back
compartment, shielding) to get good agreement between measurement and
simulation [9], [16], [17]. Even small discrepancies between collimator
specification provided by the manufacturer and the actual dimensions of the
collimator can lead to significant mismatch between measurement and simulation.
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3. Lastly, one can use point source measurements from a scanner for CDR modeling.
The point source should be measured at many locations for both a SPECT system
with rotating detectors [18] and a stationary SPECT system [19], [20]. However,
for the former case, the number of required measurements is usually smaller: by
assumption, one needs only to place the point source at several source-to-detector
distances while keeping the rotation angle fixed. For conventional SPECT systems
with rotating detectors, one can fit a 2-D function such as a Gaussian function to
the measured point source at several distances and then use the fit results to
produce a model of the depth-dependent CDR. Since a Gaussian function cannot
describe the septal penetration and collimator scatter response, a 2-D Gaussian plus
a heavy-tailed function such as an exponential have been used to fit the
measurements [6], [18]. Usually, the Gaussian function fits the geometric
component of the CDR and the exponential function fits the septal penetration and
collimator scatter response component. However, a rotationally-invariant
exponential function cannot represent the “star-shaped” septal penetration tails of
the CDR in detail (see Fig. 1).

In this paper, we focus on this last approach and use point source measurements from a
conventional SPECT system with rotating detectors. However, we propose a “nearly non-
parametric” model of the CDR (a 2-D Gaussian function plus a point spread function (PSF)
template) and fit the proposed model to the measured point source response at six different
distances. This approach is intended to provide an alternative to the MC simulation
technique. It is most appropriate when accurate MC simulations are not available for a given
SPECT scanner. By better fitting the septal penetration tails, our approach is designed to
increase quantification accuracy for radionuclides that emit medium or high-energy photons
compared to that using Gaussian or Gaussian plus exponential functions.

Section II reviews how to model the depth-dependent CDR by using function fitting. Section
III details the PSF template approach that uses B-spline PSF templates. Sections IV and V
present the results of our proposed approach. The results will show improved CDR model
fitting to the point source measurements compared with previous approaches using fitting by
the Gaussian function and by the Gaussian plus exponential function. In addition, image
reconstruction results for experimental and digital phantom studies will show improvements
in quantification with our method.

II. Function Fitting Approach for CDR Modeling
In this section, we review procedures for the “function fitting approach” of modeling the
depth-dependent CDR using point source measurements at several distances [18].

A. Gaussian Function Fitting Approach
Here, we describe using a Gaussian function to fit the measured point source CDRs.
However, the procedure can be applied to other parametric functions.

Suppose that we obtained several point source measurements pm at several source-to-
detector distances dm where m = 1, …M. We assume that pm is scatter-corrected for each m
(e.g., using a triple energy window (TEW) method [21]) because usually object-specific
scatter correction, which will include collimator scatter, is applied separately during our
reconstruction procedure.

The following two steps are used to obtain a normalized CDR (or PSF) as a function of
distance.

The first step is to fit a discretized version of a 2-D Gaussian function
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(1)

to each pm. In other words, the amplitude a1,m and the width w1,m for each distance dm are
estimated by

(2)

where (xj, yj) is the discretized location of the jth pixel in pm. One can use any nonlinear
least square fitting for (2) [22]. In this first function fitting, we obtain the amplitude â1,m and
the width ŵ1,m for all distances dm, m = 1, …, M.

The second step is to fit a 1-D function of distance d to the amplitude â1,m and the width
ŵ1,m. One can use any 1-D function-fitting tool to find good functions of d to fit all M
values of â1,m and ŵ1,m. We chose the following functions for the amplitude a1 (d) and the
width w1 (d):

(3)

(4)

where b5 and b6 are nonnegative. One can obtain the estimates of bi, i = 1, … 7 by fitting a1
(d; b1, b2, b3, b4) and w1 (d; b5, b6, b7) to the amplitude â1,m and the width ŵ1,m,
respectively.

Therefore, from these two steps, one can model the depth-dependent PSF at a distance d by
plugging (3) and (4) into (1) as follows:

(5)

where Z(d) is a normalization factor such that ∫ ∫ PSFG(x; y; d) dx dy = 1. Using (5), one
can generate samples of the (normalized) Gaussian CDR at any distance. Finding a1 (d) is
redundant for this Gaussian case due to the normalization factor Z(d), but it will be
necessary for the next two cases.

B. Gaussian + Exponential Function Fitting Approach
The CDR model (5) using a 2-D Gaussian function is well suited for describing the
geometric component of the CDR, but cannot capture the details of the septal penetration
tails. Modeling the septal penetration is important for accurate quantification in SPECT
imaging with radionuclides that emit medium or high-energy photons such as I-131. Koral et
al. used the sum of a 2-D Gaussian plus exponential function instead of (1) for modeling the
CDR as follows [18]:

(6)
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for each distance dm where fG is defined in (1). We use the same procedure in Section II-A
to derive a PSFGE (x, y; d) that better fits the measurements pm than (5).

This Gaussian plus exponential function model (6) is circularly symmetric unlike the star-
shaped penetration tails (see Fig. 1). This mismatch between the model and the data suggests
that we should be able to improve the fit further by using other functions.

III. B-Spline PSF Template Approach
This section describes the B-spline PSF template model that can potentially improve the
CDR fit to the point source measurements compared to that with either (1) or (6).

A. B-Spline PSF Template
To describe the rotationally-variant, star-shaped penetration tails of the CDR better, we
propose using the following 2-D B-spline PSF template instead of the exponential function
underlying (6):

(7)

where cik are B-spline coefficients, i, k are integers, β is a B-spline basis and hx, hy denote
the B-spline knot spacing between the centers of the adjacent B-spline bases. We
hypothesize that the CDR has a common shape at all source-to-detector distances and,
furthermore, assume that (7), by appropriate spatial scaling, can yield a good fit to the point
source measurements obtained at different distances.

By using this B-spline template (7), we propose to use the following CDR model instead of
(6):

(8)

for each distance dm. The B-spline coefficients cik do not depend on the distance dm and
they describe the common shape. We estimate the shape of the PSF template (the
measurement minus the Gaussian fit) using all the measurements at all distances at the same
time. Therefore, separate optimization of (2) for each distance dm is not applicable to this
new CDR model. We will present a new cost function and an optimization scheme for the
new CDR model in Section III-B and III-C.

We represent a discretized version of (7) by a simple matrix form as follows:

(9)

where c is a vector with the elements {cik} and B is a matrix with the elements [B]j,ik = β(xj/
hx − i)β(yj/hy − k). In this case, a discretized version of (8) can also be represented as
follows:

(10)

where
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and

Both Tshift and Tscale can be implemented with any image interpolation method. We used a
cubic B-spline interpolation to implement these matrices [23]. Smaller hx, hy can potentially
improve the fitting of (10) to the measurements due to the greater number of degrees of
freedom, but the increased number of parameters to estimate would make the nonlinear,
nonconvex optimization problem more ill-posed. Considering this trade-off, we chose hx =
hy = 4 pixels in our implementation.

B. Cost Function for Spatially-Invariant PSF Template
Any spatial variations in the hole pattern at a given distance dm are usually ignored in
SPECT image reconstruction in order to calculate the CDR in the system matrix more
efficiently (e.g., using the fast Fourier transform). Both (1) and (6) are space-invariant PSF
models because they ignore the details of the hole pattern (see Fig. 1 for a hole pattern
example). In the MC simulations, the CDRs at different spatial locations of the source that
had the same source-to-detector distance were averaged.

Due to its considerable flexibility, our proposed PSF template can potentially describe the
spatially-variant hole pattern, but doing so is inconsistent with efficient image
reconstruction. Therefore, we designed the cost function to produce a spatially-invariant
CDR estimate.

Since we searched for the common shape of a B-spline PSF template for all measured
distances, we effectively averaged the hole patterns of the CDR from several source-to-
detector distances. However, it was still possible to have some spatially-variant hole patterns
in the PSF template estimate. So, we postulated the following three properties of the CDR
and required their fulfillment for the estimate of the PSF template (8) so that the hole
patterns were suppressed more completely.

First, the CDR is smooth. Even though the B-spline itself is a smooth basis, we also
penalized the roughness of the PSF template to further control the smoothness. Second, the
CDR is symmetric. Due to the geometry of the hexagonal collimator that we used, the CDR
should be the same for any number of 60° rotations. (For foil collimators with four
penetration tails, left–right and top–bottom symmetry could be used instead.) Third, the
CDR is nonnegative. This requirement followed from the fact that the normalized CDR
represents a detection probability and that a probability cannot be negative.

Thus, we used the following cost function with three priors:

(11)

where uq is the location of the point source measurement (q = x, y), ηl’s are regularization
parameters (l = 1, 2, 3), and pl’s are regularizers for smooth, symmetric, and nonnegative
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properties of the CDR (l = 1, 2, 3). We set the amplitude an, round(M/2) ≜ 1 and the width
wn, round(M/2) ≜ 1. The first regularizer p1 is defined as

where C is a first-order difference matrix (x and y directions). The second regularizer p2 is
described as follows:

where

and

Lastly, the third regularizer p3 is simply  where x− ≜ x for x < 0 and x− ≜ 0
for x ≥ 0. We determined the regularization parameters empirically so that the estimated PSF
template showed the three assumed properties of the CDR with the following results: η1 = 1,
η2 = 103, and η3 = 10.

C. Optimization for B-Spline PSF Template
One can use any optimization algorithm to minimize (11). We chose to use block alternating
minimization. We repeated two minimization steps: one minimization with respect to the
Gaussian function fG and the other minimization with respect to the B-spline PSF template
bB. Although both fG and bB contain variables ux and uy, we treated them separately.

We used a nonlinear least square algorithm [22] for minimizing (11) with respect to the
Gaussian function

(12)

which is the same minimization method we used to estimate the parameters for the Gaussian
PSF model (1) and the Gaussian plus exponential PSF model (6). We minimized (11) with
respect to the B-spline PSF template as follows:

(13)
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(14)

using the L-BFGS [24] algorithm. We performed (12), (13), and (14) in order, and repeated
the process several times.

Once we obtained all parameters from the above minimization, we fit the amplitude an,m and
wn,m the width (scaling) to the functions in (3) and (4), respectively. Thereby, we finally
obtained the desired PSFGB (x, y; d) function.

IV. Evaluation
We performed all of our I-131 studies with the Siemens Symbia TruePoint SPECT-CT using
high-energy collimation for the dual heads. The studies employed both experimental
measurements and simulations with the SIMIND (Simulation of Imaging Nuclear Detection)
MC simulator [25]. The shape of the high-energy collimators was hexagonal with a septal
thickness of 2 mm, a hole diameter of 4 mm, and a hole length of 59.7 mm. The system
resolution at 10 cm was 13.4 mm. Using the TEW method, an object scatter correction was
applied to the point source measurements, and an object scatter estimate was employed in
the phantom reconstructions and in the patient reconstructions. The main window for the
TEW correction was set at 20% (centerline 364 keV) and the two adjacent subwindows were
set at 6% (subwindow centerlines at 318 and 413 keV, respectively) [21].

A. Measurement of Point Source at Several Distances
We measured the CDR at several distances between the front surface of the collimator and
the object plane. We placed an I-131 point-like source (about 7 mm diameter, 658 μCi) on a
Styrofoam cup (low scatter medium) that stood on a flat bed. The source was positioned off
the center of the image plane by 11 mm in one direction and 7 mm in the other. We acquired
six planar images (512 × 512 bins, 1.2 × 1.2 mm pixels), one each at a distance of 25, 20,
15, 10, 5, and 2 cm. The data were acquired for 20 min per distance.

Fig. 1 shows the measured I-131 point source at the six distances. The image intensity is
presented on a logarithmic grey scale to better show the penetration tails [13].

We also simulated our point source (7 mm diameter) measurements at the same six distances
using the SIMIND MC simulator and fitted the three CDR models (1), (6), and (8) to the
images. To evaluate the goodness of fit, we performed another MC simulation to generate
the point source measurements at distances that were different and greater in number (11
instead of six) and generated with a different random seed.

B. Hot Phantom Studies
We performed two separate studies using an elliptical phantom with six spherical lesions.
The lesion volumes were 96, 62, 16, 11, 8, and 4 cc. In the first study, the spheres contained
I-131 activities in μCi (activity concentration in μCi/cc in parentheses) of 191 (1.99), 121
(1.95), 35 (2.19), 29 (2.64), 29 (3.63), and 29 (7.25), but there was no activity in the
background water. In the second study, using the same format, the spheres contained
activities of 96 (1.00), 61 (0.98), 18 (1.13), 15 (1.36), 14 (1.75), and 14 (3.50), and the
background water contained 2.20 mCi (concentration 0.19 μCi/cc). In the second study, the
sphere-to-background concentration ratios were 5.26:1, 5.18:1, 5.92:1, 7.18:1, 9.21:1, and
18.42:1 from largest to smallest sphere. For each study, the individual scan time was 40 min
and the acquisition was performed with the SPECT-CT scanner in body-contouring mode.
Projection data were acquired at 60 views (angles) of 128 × 128 bins (4.8 × 4.8 mm). Also,
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CT images were obtained and used to calculate attenuation correction maps. Finally, TEW
object scatter estimates were employed during reconstruction. We repeated the scanning for
a total of eight realizations in the first study, and for a total of seven realizations in the
second.

We generated projections that modeled the depth-dependent normalized CDRs for all
projection views and accounted for the changing radius of rotation due to body contouring.
We employed the three models: Gaussian PSFG(x, y; d) with (1) (Gaussian), the Gaussian
plus exponential PSFGE(x, y; d) with (6) (GauExp), and the Gaussian plus B-spline PSF
template PSFGB(x, y; d) with (8) (GauBspl). Then these depth-dependent PSFs were
effectively incorporated into the system matrix by convolving the CDR with the projection
at each depth. The rotate-sum method using bilinear interpolation for rotating the current
estimate of the activity distribution speeds up a CDR compensation routine by using the fast
Fourier transform (FFT) [26] and we used that method in our implementation. A 3-D
ordered-subset expectation maximization (OSEM) reconstruction with 35 iterations and six
subsets, which is the reconstruction used in our patient studies [27], was performed using the
CDR-compensated system matrix. The result of the projection using this system matrix
produced an estimate of the primary photons and the TEW object scatter estimate was then
added. Thus, Poisson statistics were preserved.

The 3-D regions of interest (ROIs) for the six hot spheres were drawn on the CT image and
applied to the SPECT reconstruction. We calculated an activity recovery coefficient (RC)
from the counts within the ROIs as a quantification measure. The RC of the ROI relative to
the field-of-view (FOV) was calculated as

(15)

Note that

(16)

is the measured activity in the ROI. Thus, (15) becomes the ratio of measured activity to true
activity, the standard definition of activity recovery coefficient.

C. Patient Study
We applied our proposed CDR compensation method retrospectively to SPECT-CT data
from a patient imaged under an ongoing research protocol for an I-131 radioimmunotherapy
dosimetry study [27]. The SPECT data consisted of a 20-min acquisition with body
contouring, 60 views, and 128 × 128 bins (4.8 × 4.8 mm), and a low-dose CT acquired for
attenuation correction. We applied the TEW object scatter correction to the data and carried
out the SPECT image reconstruction with the three different CDR models of Section IV-B.

Patient tumors were delineated on the CT image by a trained Radiologist. Since we did not
know the true activity in the ROI and FOV, we set the activity to 1 in (15) so that the count
ratio (CR) could be defined as follows:

(17)
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This CR is directly proportional to the RC since the unknown true activities do not change
between the different reconstructions. Thus, any increase of the CR with a given
reconstruction implies an increase of the RC with that reconstruction.

D. MC Simulation Study With XCAT Phantom
We also evaluated our proposed method using MC simulated data corresponding to the
XCAT phantom [28] and the same SPECT-CT system used in the experimental studies. We
simulated the XCAT phantom with five spherical lesions (6, 10, 20, 70, 109 cc) near the
liver and kidneys. We set the relative activity concentrations in the XCAT phantom as
follows: lesion 100, kidney 80, spleen 51, lung 28, liver 21, and whole body 6. These
choices were based on data from a patient [4]. We obtained low noise projection images of
the XCAT phantom. We used the same SPECT image reconstruction methods as described
in Section IV-B. The reconstructions using the low noise projections produced approximate
mean images [29].

The aim of this MC simulation study was to determine the performance improvement with
our proposed method for a more realistic geometry than the “hot-sphere” phantom. Thus, we
did not use MC-simulation-based CDR compensation, but used the function fitting approach
with different models for the simulated point source measurements.

V. Results
A. Fitting CDR Models to Measurements

We estimated the amplitudes an,m and widths wn,m to fit the three CDR models (1), (6), and
(8) to the point source measurement of Fig. 1 for each distance dm. Points (○, *, ▷) in Fig. 2
show the measured amplitudes and widths for the Gaussian component in (1), the
exponential component in (6), and the B-spline component in (8). The amplitude and width
for the Gaussian in (1) were very similar to the Gaussian component of (6) and (8). By using
a curve fitting tool, we fitted (3) and (4) to the amplitudes and widths as shown in Fig. 2
(dashed lines). Note that for GauExp and GauBspl, we set b3 = b4 = 0 in (3) since these
parameters did not yield monotonically decreasing fits. Using these fitted functions of
distance, one can obtain the amplitude and width of a PSF model at any distance, and
therefore one can have the CDR at any distance that was modeled with Gaussian, GauExp,
and GauBspl. In Fig. 2(a), the amplitudes of the exponential and B-spline components at 250
mm deviated slightly from the fitted curves. Since the y axis is on a logarithmic scale, the
differences were relatively small.

Fig. 3(a), (c), and (e) shows the fitted CDR images with the models of Gaussian, GauExp,
and GauBspl. Fig. 3(b), (d), and (f) shows the absolute difference between the measured and
fitted CDRs for the three different models. The Gaussian model ignored the septal
penetration tails and the GauExp model tried to account for those tails by using a
rotationally-invariant function. On the other hand, the GauBspl model represented the details
of the septal penetration component well as seen in Fig. 3(e). The difference image between
the GauBspl model and the measurement contains very little evidence of the septal
penetration tail pattern as shown in Fig. 3(f). A horizontal profile (which passes through a
septal penetration tail and corresponds to one azimuthal angle) and a vertical profile (which
avoids passing through a tail and corresponds to a different azimuthal angle) for the
normalized CDR are shown in Fig. 4. The GauExp values fall below the measured values in
one case and above them in the other because GauExp averaged the values from the entire
range of azimuthal angles. In contrast, GauBspl values match the measured CDR values for
both profiles.
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Lastly, Fig. 5 shows quantitative results by measuring the sum of the absolute difference
between the measured (normalized) CDR and the fitted (normalized) CDR for the Gaussian,
GauExp, and GauBspl models. Fig. 5(a) from the experimental CDR measurements shows
that overall the fitting was improved by using the GauBspl model compared to using the
Gaussian and GauExp models at all measured distances. Similar results were obtained from
an initial set of MC simulated CDRs as shown in the bottom three plots, labeled with the
extension [-fitted], of Fig. 5(b). We also compared the fitted CDR using this initial MC
simulation with another set of MC simulated CDRs generated using a different random seed
at 11 distances. The absolute difference between them for all three models as shown in the
top three plots, labeled with the extension [-tested], of Fig. 5(b) shows that our proposed
GauBspl model can represent the CDRs at various distances better than the Gaussian and
GauExp models. The different random seed did change the total difference at each distance,
but did not affect the ranking of the three methods.

We observed that our proposed GauBspl model yielded the best fit to the CDR measurement
qualitatively and quantitatively. Section VI examines how this improvement in fitting the
CDR affected quantification accuracy.

B. Hot Phantom Studies
Fig. 6(a), (c), and (e) shows three reconstructed SPECT images at 35 iterations (six subsets)
using the Gaussian, GauExp, and GauBspl models for the hot phantom without background
activity. Fig. 6(b), (d), and (f) show similar images for the hot phantom with background
activities. Fig. 6(g) and (h) shows the CT and schematic images of the phantom. It can
perhaps be discerned that the GauBspl method increased the image intensity in the spheres
compared to the Gaussian and GauExp methods.

Fig. 7 shows that the GauBspl CDR compensation method yielded higher RC values than
the other methods (Gaussian or GauExp) for all spheres. For the phantom without
background activity, GauBspl yielded 12.9%–15.7% higher RC’s than the Gaussian method
and 2.8%–5.4% higher RC’s than the GauExp method. For the phantom with background
activity, it yielded 10.6%–13.0% higher RC’s than the Gaussian method and 3.7%–6.6%
higher RC’s than the GauExp method. All improvements of the GauBspl method were
achieved with a negligible increase of the standard deviation of the RC. Note that the RC
value is “usually” larger for the larger ROIs, but the relationship to size is not linear and not
monotonically increasing. This phenomenon was also observed in our XCAT phantom study
of Section V-D. It may be because the RC depends not only on count “spill-out” but also on
the “spill-in” effects, which depend on the activity in nearby structures, and/or because these
RCs had not converged to final values due to our choice of only 35 iterations. Further
investigation is necessary to explain the phenomenon.

C. Patient Study
Fig. 8 shows the transaxial SPECT images using the three different CDR models and one
CT image with a delineated tumor (left inguinal tumor, 38 cc). The GauBspl method yielded
increased image intensity compared to the Gaussian and GauExp methods. The CR of the
GauBspl method was 12.4% higher than the CR of the Gaussian method and 6.4% higher
than the CR of the GauExp method. These results imply that our proposed method increased
the RC compared to the Gaussian and GauExp methods, which is consistent with the results
of our hot phantom studies. However, in this patient study, we do not know whether our
proposed method resulted in improvement of absolute activity quantification since we do not
know the amount of true activities.
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D. XCAT Phantom Study With MC Simulation
Fig. 9 shows the true and reconstructed SPECT images using three different CDR models
with the XCAT phantom. The GauBspl method produced somewhat increased image
intensity compared to the other Gaussian and GauExp methods. Fig. 10 shows the
quantification results of the XCAT phantom study. The GauBspl approach yielded 10.2%–
16.5% higher RC’s than the Gaussian method and 7.0%–10.8% higher RC’s than the
GauExp method for the different-size spherical tumors.

VI. Discussion
We evaluated our method and showed quantification improvement in I-131 SPECT imaging
for oncologic applications (tumor dosimetry). However, our proposed method can
potentially be useful in improving SPECT quantitative accuracy using any radionuclides that
emit medium or high-energy photons for various applications with other organs.

We measured an I-131 point source that had a 7 mm diameter because of the difficulties in
constructing a smaller point source with significant activity. We studied the effect of
potentially reducing the size of the point source using MC simulation. We simulated a 7 mm
diameter and a 1 mm diameter point source and measured the full-width half-maximum
(FWHM) of the Gaussian fit for both. The MC results show that, at 2, 10, and 15 cm, the
FWHM of the 7 mm point source was 8.5, 15.1, and 18.6 mm, respectively, while the
FWHM of the 1 mm point source was 7.4, 14.8, and 18.2 mm, respectively. In our XCAT
phantom study, using the results from the smaller point source resulted in a RC difference (|
RC using 7 mm point source − RC using 1 mm point source|/RC using 1 mm point source
×100) that ranged from 0.6%–2.3%. The RC differences, therefore, seem relatively small.
However, recently, small beads with Tc-99m (180–500 μm size) were used as point sources
in micro SPECT-CT studies [30]. The same beads could potentially be used with I-131 to
improve the accuracy of our present CDR measurements.

The location of the point source relative to the septa can also change the quantification result
since the sensitivity depends on the location. We ran another MC simulation with the point
source at two locations (center of the image plane and 2 mm shifted from the center in both
the x and the y direction). An observed increase of the FWHM became smaller as the
distance from object to camera became larger. The FWHM changed from 8.5 to 10.9 mm at
2 cm, from 11.2 to 12.1 mm at 5 cm, and from 15.0 to 15.1 mm at 15 cm. In our XCAT
phantom study, these differences resulted in a 0.5%–3.1% difference in the RC value (|RC
using centered point source - RC using shifted point source| /RC using centered point source
× 100). One may reduce this variability by measuring the point source at more than one
location for close distances (e.g., 2 cm) and averaging the results. Compensating for the
sensitivity difference at different locations would require computationally demanding MC
simulations in the forward projection.

Our proposed function fitting based approach is an alternative way to model the CDR
compared to MC-based CDR modeling [2], [3], [14]. The MC-based CDR modeling method
requires accurate SPECT simulations for a given scanner, but our proposed B-spline PSF
template approach requires only the measured CDRs from the scanner. However, this work
did not assess the relative merits of the two methods. In a future study, it would be
interesting to compare the performance difference between the function fitting based and the
MC-based CDR models.

We used unregularized OSEM (35 iterations and six subsets), which is the reconstruction
method used in our I-131 SPECT-CT imaging-based dosimetry studies [27]. In our phantom
studies, we observed that more iterations yielded higher RC values, but they also yielded
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noisier images due to the ill-posed nature of the unregularized optimization. The
unregularized optimization also usually yielded lesions or spheres with edge artifacts [1]
[higher activities around the sharp edges—see Fig. 6(a)–(e)]. Edge-preserving regularization
methods may be able to reduce both the edge artifacts and the noise [31].

VII. Conclusion
We developed a B-spline PSF template approach to CDR modeling for more accurate
quantification in SPECT. It is most appropriate for radionuclides that emit medium or high-
energy photons, such as I-131. Our proposed method yielded CDRs that better matched the
measured CDRs compared to previous function fitting methods using Gaussian or Gaussian
plus exponential functions. We also showed that this improved CDR fitting translated into
substantially improved SPECT quantification, as determined by increased RCs, in
experimental and digital phantom studies.
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Fig. 1.
Measured I-131 point source images at six different distances between the front surface of
the collimator and the object plane. Top row: 25, 20, 15 cm, bottom row: 10, 5, 2 cm.
Zoomed point source image at 10 cm shows hole pattern due to high-energy collimator. The
image intensity is presented on a logarithmic grey scale except for the zoomed image.
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Fig. 2.
Measured and fitted amplitudes (a) and widths (b) of Gaussian, exponential, and B-spline
components in the Gaussian, GauExp, and GauBspl models, plotted as a function of
distance. Gaussian components in all three models were nearly the same for both
measurements and fits. The amplitudes are displayed on a logarithmic scale. (a) Amplitude.
(b) Width.
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Fig. 3.
The fitted CDR, (a), (c), and (e), and the absolute difference between the fitted and
measured CDR, (b), (d), and (f), for each fitting method (Gaussian, GauExp, and GauBspl)
at 10 cm. The images are shown on a logarithmic grey scale. The GauBspl model describes
the penetration tails of the CDR the best. (a) Gaussian. (b) |Gaussian − Measurement|. (c)
GauExp. (d) |GauExp − Measurement|. (e) GauBspl. (f) |GauBspl − Measurement|.
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Fig. 4.
Normalized CDR profiles for the measurement and for each fitting method (Gaussian,
GauExp, and GauBspl), at 10 cm. The profile in the x direction is shown in (a) and that in
the y direction in (b). GauBspl matched the measured CDR shape best in both directions. (a)
x profile. (b) y profile.
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Fig. 5.
Sum of the absolute differences between the measured and fitted PSFs versus distance for all
three models: Gaussian, GauExp, and GauBspl. The three plots in (a) are using the
experimentally measured CDRs. The bottom three lines in (b), labeled with the extension [-
fitted], are from an initial set of MC simulated CDRs. The other three plots (top three) in (b),
labeled with the extension [-tested], are from a second set of MC simulated CDRs generated
using a different seed. All three comparisons show that our proposed GauBspl model can
represent the CDRs at various distances better than the Gaussian and GauExp models. (a)
Experimental measurements. (b) MC simulations.
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Fig. 6.
Transaxial OSEM SPECT images of 3-D “hot-sphere” phantom without (no bck), (a), (c),
and (e), and with background (with bck), (b), (d), and (f), activities at 35 iterations (six
subsets) using three different CDR models: Gaussian, GauExp, and GauBspl. CT image (g)
and schematic image (h) show the size of the spheres. The GauBspl method increased the
image intensity in the spheres compared to the Gaussian and GauExp methods. Note that not
all spheres are centered on the same axial plane. (a) Gaussian, no bck. (b) Gaussian, with
bck. (c) GauExp, no bck. (d) GauExp, with bck. (e) GauBspl, no bck. (f) GauBspl, with bck.
(g) CT. (h) Schematic image.
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Fig. 7.
RCs of phantom (a) without and (b) with background activity as a function of sphere
volume. The GauBspl CDR model yielded higher RC values than the Gaussian or GauExp
models for all spheres. (a) RC (no bck) versus sphere volume. (b) RC (with bck) versus
sphere volume.

Chun et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
(a) CT image with delineated tumor and (b)–(d) SPECT images with different CDR models
of a patient. The GauBspl method yielded increased image intensity and CR’s (implicitly
RC’s) compared to the Gaussian and GauExp methods. (a) CT image. (b) SPECT image
(Gaussian). (c) SPECT image (GauExp). (d) SPECT image (GauBspl).
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Fig. 9.
Transaxial true images of the XCAT phantom with five tumors near the liver (a) and the
kidney (b). SPECT images were reconstructed using the three different CDR models for the
liver (c), (e), and (g), and for the kidney (d), (f), and (h). The GauBspl method produced
somewhat increased image intensity compared to the Gaussian and GauExp methods. (a)
XCAT phantom (liver). (b) XCAT phantom (kidney). (c) Gaussian (liver). (d) Gaussian
(kidney). (e) GauExp (liver). (f) GauExp (kidney). (g) GauBspl (liver). (h) GauBspl
(kidney).
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Fig. 10.
Recovery coefficients from the XCAT phantom plotted as a function of sphere volume. The
GauBspl approach yielded higher RC’s than the Gaussian and GauExp methods for all
spherical tumors.
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