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Targeting the Y/CCAAT box in cancer: YB-1 (YBX1)
or NF-Y?

D Dolfini1 and R Mantovani*,1

The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box – one of the few elements
enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to
the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning – through the screening of expression
libraries – of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug
resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes,
notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer
cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA
biology, render it important in cancer biology.
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Facts

� Precise sequence of the CCAAT element.
� The nuclear factor Y (NF-Y) transcription factor (TF) binds

to the CCAAT box.
� Lack of solid evidence of DNA-binding specificity of the Y

box-binding protein 1 (YB-1) oncogene.

Open Questions

� How NF-Y turns on ‘cancer’ genes with CCAAT boxes?
� What is the exact role of YB-1 in the regulation of gene

expression?
� Is there an interplay between NF-Y and YB-1?

Y and CCAAT: Two Names, One Entity

The Y box – consensus CTGATTGGT/CT/C – was identified
three decades ago as a DNA element conserved in promoters
of major histocompatibility complex (MHC) class II genes.1 In
vitro transcription, transfections and transgenic mice experi-
ments with Y box-mutated promoters showed its crucial
role, along with neighboring conserved sequences, for
the coordinated and tissue-specific expression of these
genes.2 In reality, the Y box contains an inverted CCAAT

sequence – ATTGG underlined above – which had previously
been identified in the globin and ovalbumin promoters along
with the TATA box.3,4 Importantly, the CCAAT/ATTGG
pentanucleotide was shown to be required for transcriptional
activation (TA).5–11 In essence, the Y and CCAAT boxes are
functionally equivalent. Thereafter, the importance and wide-
spread distribution of the Y/CCAAT box, as precisely defined
by the initial genetic and biochemical experiments, has been
substantiated by unbiased genomic studies. The exact
sequence and frequency of Y/CCAAT in promoters was
assessed using different bioinformatic tools: several labs
reported the identification of Y/CCAAT as over-represented in
human promoters and enhancers by searching with available
matrices,12–19 and two studies searching for unbiased ‘words’
enriched within promoters identified Y/CCAAT and precise
flanking motifs.20,21

Y/CCAAT is Enriched in Promoters of ‘Cancer’ Genes
Analysis of transcriptome profiles during cellular transforma-
tion identified the Y/CCAAT box as over-represented in
promoters of genes overexpressed in diverse types of
cancers, breast, colon, thyroid, prostate and leukemias.22–29

Treating cells with cytotoxic drugs, or overexpressing growth
suppressors, led to the downregulation of genes with CCAAT
in their promoters.30,31 However, it is important to remark
that these exercises were performed with matrices included
in TRANSFAC and JASPAR; hence, they could be highly
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biased, as the lists of transcription factor-binding
sites (TFBS) present in databases certainly do not recapitu-
late all possible TF-binding sequences. More tellingly,
de novo motif discovery methods that allow unbiased
identification of sequence logos showed that promoters
of genes, specifically overexpressed in tumors, are signifi-
cantly enriched in Y/CCAAT elements.32–34 This indicates
that Y/CCAAT is of importance in the overexpression of
cancer genes in tumors. Therefore, the TFs recognizing this
element are likely relevant for the process of cellular
transformation.

The search for the TF(s) binding to Y/CCAAT started in
the late 1980s, leading to the apparent identification of
more than one activity.35 We will not discuss here C/EBP
(CCAAT enhancer-binding proteins) and CTF/NF1
(CCAAT TF/nuclear factor 1), two bona fide sequence-
specific TFs originally associated with CCAAT binding, as
they were later unambiguously shown to have different
sequence specificities.36–38 Two additional proteins have
been ‘battling’ over the Y/CCAAT ground for over two
decades, NF-Y and YB-1. We review here the work of the
past 20 years pertinent to the specific role of the two factors in
Y/CCAAT activation.

NF-Y and CCAAT. NF-Y was originally shown to bind to the
Y box of the MHC class II Ea promoter using electrophoretic
mobility shift assays (EMSAs).35,39 Later, it became clear
that it was identical to CBF (CCAAT-binding factor) shown to
interact with collagen promoters,6 CP1 (CCAAT protein 1)
binding to globin promoters7 and EFI binding to the Rous
sarcoma virus long terminal repeat (RSV LTR).40 It was soon
realized that this activity was ubiquitously expressed,
composed of multiple subunits and conserved in yeast,
where it is called HAP complex.41 The complex was
biochemically purified using conventional affinity purification
with oligomerized Y/CCAAT oligos. Initially, two subunits
were characterized.42–45 Eventually, NF-Y was shown to be
a heterotrimer composed of NF-YA, NF-YB and NF-YC
(Figure 1), whose genes are found in all eukaryotes (they are
termed HAP2/3/5 in yeast). NF-YB and NF-YC have histone
fold domains (HFDs) similar to core histones H2A/H2B,
composed of three a-helices separated by short loop/strand
regions;46 dimerization of HFDs is required for association
with NF-YA, which provides sequence specificity to the
complex.

Several lines of evidence indicate that NF-Y activates
transcription through sequence-specific binding to Y/CCAAT:

(i) Saturation mutagenesis studies on different Y/CCAAT
boxes, using in vitro EMSAs, clearly showed that NF-Y
binding is absolutely dependent on each of the five core
nucleotides and pointed at important flanking nucleotides
– 2 bp at the 50 end and 3 bp at the 30 end – as, indeed,
found in the original Y box.6,7,35,39,40 Unbiased SELEX
assays further confirmed the specificity of NF-Y for a
10 bp stretch.47

(ii) In vitro transcription and transfections of promoters
mutated in the NF-Y-binding sites showed a perfect
correlation between the decrease or abolition of NF-Y
binding and the decrease of functional activity.6–10

In vitro transcription assays with purified NF-Y, anti-
bodies and recombinant proteins showed an effect of
NF-Y on transcriptional initiation, and re-initiation, in
various promoters.6,7,11,48–51

(iii) The development of specific antibodies, used in
supershift EMSAs in vitro48 and in chromatin immuno-
precipitation (ChIP) assays in vivo,52 enabled different
labs to verify that the band observed in EMSAs, and
the protein bound in cells, was indeed NF-Y. The initial
in vitro experiments lead to the definition of a first
NF-Y positional sequence frequency matrix (PSFM),53

which was soon incorporated into the TRANSFAC
and JASPAR databases (Figure 2). Note that the
bioinformatic analyses of motifs in promoters of
cancer genes mentioned above also retrieved the
NF-Y logo.

(iv) The use of dominant-negative NF-YA vectors54 and,
more recently, the inactivation of NF-Y subunits by small
interfering RNA (siRNA) or short hairpin RNA (shRNA)
interference allowed the in vivo confirmation that a
CCAAT promoter is regulated by NF-Y (reviewed in
Dolfini et al.55).

(v) Genomic analysis by ChIP-on-Chip56–59 and ChIP-Seq60

confirmed that NF-Y binds to Y/CCAAT in vivo. These
experiments further refined the NF-Y PSFM (Figure 2). In
summary, a very robust set of data leads to the accepted
conclusion that NF-Y regulates gene expression through
specific binding of the Y/CCAAT box.

YB-1 and CCAAT? YB-1 was identified through screening of
a phage expression library using a multimerized Y box oligo
from the MHC class II DRa promoter.61 DRa is the human
homolog of the mouse Ea, which was the starting point for the
biochemical identification of NF-Y.35 A similar strategy was
reported in the cloning of rat EFIa, using a CCAAT oligo from
the RSV LTR,62 Xenopus FRG-163 and chicken YB-1.64 This
technique identifies phages producing a single polypeptide,
and it could not have been used for NF-Y, as all three of its
subunits are required for DNA binding. YB-1 was shown to be
a protein with a known nucleic acid-binding domain, termed
CSD (cold-shock domain), which is highly conserved in
eukaryotes and prokaryotes (Figure 1 and Mihailovich et al.65).

Intriguingly, two cloning manuscripts published in the same
period were at odds with the interpretation that YB-1 was a
classic sequence-specific TF: (i) YB-1 was identified inFigure 1 Scheme of NF-Y subunits and YB-1
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screenings of expression libraries with a completely unrelated
oligo, the W box, also from the DRa promoter, but sharing no
sequence similarity to Y/CCAAT;66 these authors first provided
evidence that YB-1 binds well to single-stranded (ssDNA) and,
surprisingly, to abasic DNA. The chicken YB-1, subsequently
cloned, also showed DNA binding with little dependence on the
presence of a Y/CCAAT box.64 (ii) The Xenopus FRG-1 gene
was cloned with expression libraries67probed with antibodies
directed against p54/p56,68 one of the subunits of the mRNA-
binding complex biochemically identified in the 1970s, and
widely studied for its role in mRNA translation.68 Thereafter,
research on YB-1 proceeded, by and large, in two parallel
fields: its role in the control of mRNA biology (splicing, stability,
translation), in which it has taken a center-stage position
(Bouvet and Wolffe69; reviewed in Evdokimova et al.70), and its
role in the control of transcriptional initiation, which has been
more controversial.

NF-Y is the Sequence-Specific CCAAT Factor

We list below a comparison of features supporting NF-Y and
YB-1 as bona fide sequence-specific TFs.

DNA affinity and sequence specificity. When recombi-
nant YB-1 was tested in in vitro binding assays, which are
more sensitive and specific than the Southwestern blots used
in the initial cloning papers, the protein was shown to bind to
RNA and DNA oligos.71 With SELEX and Chip methods, it
was established that the strings of nucleic acids preferred by
YB-1 are GGGG (ssDNA), CACC/T (double-stranded DNA
(dsDNA)) and AACAUC (RNA). None of these motifs
resemble to a canonical Y/CCAAT box (Bouvet et al.,72

Zasedateleva et al.73 and Ray et al.74; reviewed by Eliseeva
et al.71). In vitro, YB-1 prefers RNA and ssDNA – KD in the
order of 10� 9 – with respect to dsDNA. The appetite of NF-Y
for DNA is much higher, with a KD of 10� 11.7,39 As for the

specificity, single-nucleotide substitutions within the CCAAT
and flanking nucleotides of Y/CCAAT drop affinity by one/two
log levels.6,10,35 Typically, nanograms of NF-Y give a robust
EMSA shift,47,75 as opposed to micrograms of recombinant
YB-1.76 Methylation interference and orthophenanthroline
footprinting confirmed that the bases contacted by NF-Y are
centered on Y/CCAAT.6,7,35,39,40,47 The only such data
available for YB-1 is relative to a site in the MMP-2 promoter
– CTGCTGGGCAAG – which lacks a Y/CCAAT sequence.77

In summary, in vitro biochemical analyses indicate that the
affinity and specificity of NF-Y for Y/CCAAT is superior to that
of YB-1.

Mechanisms of TA. Sequence-specific TFs are known
to be modular proteins, composed of a minimum of two
domains: a DNA-binding domain (DBD) and a TA
domain. Different types of DBDs and TAs have been
described. NF-Y has two large Q-rich TAs over150 amino
acids in length, in the NF-YA and NF-YC subunits. These
TAs function when fused to heterologous DBDs, such as
those of yeast GAL4 or bacterial LexA.49,78,79 Importantly,
removal of the NF-YA (CBF-B) Q-rich domain generates a
dominant-negative mutant, which affects the activity of
CCAAT promoters upon transfection.80 Co-transfections of
the NF-Y trimer with TFs binding the loci neighboring CCAAT
boxes in mammalian and Drosophila cells synergistically
activate transcription of CCAAT promoters.52,81,82 Finally,
transfections of recombinant proteins in which NF-YA was
linked to a cell-penetrating TAT peptide activate endogenous
CCAAT genes but not CCAAT-less units.83,84 All these
features are quite standard for TFs: sequence specificity,
modularity of DBD and TA, and synergistic activation with
neighboring TFs.

YB-1 has two domains flanking the central CSD: the A/P
domain, and the C-terminal domain, in none of which is a
typical TA apparent; most importantly, there are no data

Figure 2 Y/CCAAT ‘evolution’ over time
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showing that these domains can function as TAs, in hybrids, or
within the intact protein. The inclusion of YB-1 among TFs is
based on changes in the expression of many genes by
overexpression or functional inactivation of YB-1 by siRNA or
shRNA.71 However, it should be remembered that northern
blots, RT-PCR, qRT-PCR and microarray profiles all measure
mRNA steady-state levels and not RNA Pol II transcription
rates. In general, a troublesome issue in the manuscripts
showing an effect of YB-1 in transcription is that they do not
take into account its known role in mRNA biology: one needs
to be sure that the reported changes in mRNA levels upon
overexpression or inactivation are really due to transcriptional
initiation events, rather than to post-transcriptional effects on
mRNA stability. This consideration is particularly relevant for
experiments measuring enzymatic activities of reporter
genes, such as chloramphenicol acetyltransferase or
Luciferase.

Nuclear run-on assays can provide evidence for a role in
transcriptional initiation events, but to the best of our knowl-
edge, no such experiments have been described for over-
expression or inactivation of YB-1, in contrast to the situation
for NF-Y-dependent transcriptional units.85–90 Analogously,
many in vitro transcription assays suggest a role for NF-Y in
the formation of the pre-initiation complex and in re-loading of
the RNA Pol II machinery.6,7,11,48–51 The only report showing
in vitro transcription data on YB-1 used the heat-shock 70 kDa
protein (HSP70) and thymidine kinase (TK) promoters with an
unpurified bacterially produced protein.63 It is worth noting
that the HSP70 CCAAT element was subsequently investi-
gated as a canonical NF-Y target by the same group.91,92

As to the mechanistic details of TA, NF-Y has been
shown to (i) promote the DNA binding of neighboring
activators, (ii) make contacts with multiple general transcrip-
tion factors, including TBP (TATA-binding protein) and TAFs
(TBP-associated factors), (iii) mediate recruitment of Pol II
and (iv) bind multiple coactivators – p300, PCAF, MLL – and
be post-translationally modified by some of them.93 The role of
YB-1 in activation appears to be related to ssDNA binding in
promoter regions (Stein et al.94; reviewed in Eliseeva et al.71).

The targets. YB-1 has been shown to regulate a number of
genes. Among them, the multidrug resistance protein 1
(MDR1) promoter was analyzed in detail, due to the
paramount importance that this gene has in the mechanisms
of drug resistance. Overexpression of this efflux pump as a
result of TA is a normal response to the treatment of cells to
many chemicals, including cytotoxic drugs. Upon adminis-
tration of anticancer compounds, cancer cells often acquire
resistance to pharmacologic doses of drugs through the
overexpression of MDR1, rendering antitumor regimens
ineffective. The transcriptional control of MDR1 has been
the object of many studies, as preventing its overexpression
could be highly desirable.95 The MDR1 promoter contains a
crucial Y/CCAAT element, and a number of contradictory
reports concerning the identity of the activator were
published. Several papers suggested that YB-1 activates
MDR1 through the Y/CCAAT box.96–99 The identification of
YB-1 as the CCAAT activator relied on EMSAs challenged
with anti-YB-1 antibodies and on overexpression of YB-1
and inactivation by an antisense YB-1 transcript. Other

investigators later showed that overexpression of YB-1 has
no effect on MDR1 transcription,100 and that inactivation by
different siRNAs and shRNAs, which completely obliterates
YB-1 expression, have no effect on MDR1 basal, or activated
expression.101 The MDR1 Y/CCAAT is a perfect NF-Y site –
CTGATTGGCT – located in the NF-Y canonical position,
at � 70 from the TSS. Indeed, several labs showed that
NF-Y is the activator, both under basal and under multiple
inducing conditions.102–108 In EMSAs performed with the Y/
CCAAT box, these authors detected NF-Y as the only DNA-
binding complex. Specifically, Scotto’s lab showed that a NF-
YA dominant-negative mutant affects MDR1 expression.104

Finally, in vivo ChIPs reported NF-Y binding to MDR1.109

Recent experiments reported interactions of YB-1 with
APE1, a protein originally characterized for its role in base
excision repair (BER), and shown to be important in the
specific system to recruit Pol II by association with p300 and
YB-1. APE1 is also known as redox effector factor 1 (Ref1), as
it affects the redox status of, among other proteins, many TFs.
APE1/Ref1 and YB-1 directly interact,110 they bind the MDR1
core promoter and removal of APE1 leads to decreased YB-1,
Pol II and p300 promoter association in ChIP assays.111 This
led the authors to propose that the YB-1/CCAAT interaction
mediates the recruitment of the APE1/p300/Pol II complex
onto the promoter. The redox potential of NF-Y affects directly
its DNA-binding capacity, acting on three conserved cysteines
of the NF-YB HFD, and Ref1 is an important regulator.112

Therefore, the above data are consistent with an alternative
explanation in which APE1/Ref1 acts on NF-Y/CCAAT
interactions to activate MDR1 transcription.

In general, we find it extremely surprising that in the reports
pointing to YB-1 as the MDR1 CCAAT activator, NF-Y was
either not observed or not recognized as such in EMSAs,
given its superior affinity for the Y/CCAAT sequence.
Technical considerations are perhaps unlikely to account for
this, as NF-Y is readily observed in nuclear extracts of all
growing cells, regardless of extraction protocols employed,
incubation and EMSA conditions. In fact, it has been detected
in EMSAs in hundreds of manuscripts reporting CCAAT
binding in disparate promoters (Dolfini et al.55 and references
therein). Essentially, the MDR1 system is apparently a rare
exception to the rule that a Y/CCAAT binding complex
detected in vitro contains NF-Y. This confusion has been
replicated with the related MRP2 promoter, suggested to be
either activated by NF-Y113 or YB-1.114

The same argument applies to other Y/CCAAT promoters,
which YB-1 was shown to activate, including DNA Pola,115

cyclin A, cyclin B1,116 where many reports have also
demonstrated an NF-Y dependence (Farina et al.117;
reviewed in Gurtner et al.118). For other YB-1 targets, such
as EGFR, PIK3CA, MET and CD44,119–122 the Y/CCAAT,
as it has been characterized genetically and bioinformatically,
is absent.

Focusing on the global picture, transcription profiling
analysis after functional inactivation is available both for
YB-1123 and NF-Y.124 In YB-1-regulated genes, an abun-
dance of E2F sites was reported: we re-examined these data
with bioinformatic tools and indeed confirm this point, but
neither the Y/CCAAT logo nor related variants are over-
represented (Figure 3). On the other hand, inactivation of
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single NF-Y subunits led to different phenotypes and sets of
regulated genes,124,125 with the enrichment of the Y/CCAAT
logo in downregulated genes a common feature (Figure 3).

The genomic loci. The genome-wide identification of
TFBSs through ChIP-on-Chip and, more recently, ChIP-Seq
has vastly advanced our understanding. For NF-Y, ChIP-on-
Chip studies performed on CpG islands, promoters and oligo
tiling arrays led to the conclusion that the protein is bound not
only to promoters but also to many enhancers. The presence
of Y/CCAAT in these regions was consistent, although not all
loci contained the pentanucleotide. ChIP-Seq experiments
performed in the framework of the ENCODE Project (Wang
et al.60) provide far higher precision. The data are clearcut:
almost all peaks do contain the Y/CCAAT consensus,
essentially identical to the original NF-Y matrix (Figure 2).
Moreover, the CCAAT-less sites are variation of one
nucleotide in the core sequence that also harbor optimal
flanking sequences. The technique is so spectacularly
powerful and precise that it is possible to discriminate the
exact area bound by NF-YA – the CCAAT pentanucleotide –
from the immediately flanking nucleotides bound by NF-YB, in
perfect accordance with the in vitro biochemical data.

ChIP-on-Chip and ChIP-Seq experiments for YB-1 were
also reported recently.121,126 We analyzed the data for
430 000 ChIP-Seq peaks in three cancer cell types and
could not identify a Y/CCAAT sequence, either searching for
known TFBS or with de novo motif discovery tools.127 This is
uncommon for a sequence-specific TF, whose logo is usually
recognizable within the bound peaks, but not unheard of:60 in
many cases, one can identify either a new logo or one of those
characterized for other TFs. Of the 35 YB-1-targeted genes

previously analyzed by various means, including reporter
assays (summarized in Eliseeva et al.71), 5 are associated
with YB-1 peaks in BT747 cells, 15 in HR5 and 13 in HR6 cells:
collectively, 18 genes are targeted (Figure 4). A minority
(seven) of the YB-1 peaks is in promoters and even fewer are
at the exact sites described in the functional studies.
Obviously, these results can be heavily influenced by the
dissimilar cellular contexts used in the functional and location
assays. However, a similar NF-Y ChIP-Seq analysis per-
formed on the same 35 genes, also from disparate cells,
showed positivity for 19 units, with all but 4 peaks being
present in promoters: this leads to the somewhat paradoxical
notion that, in unbiased experiments, NF-Y targets more
‘bona fide’ YB-1 sites in vivo than YB-1 itself.

Cellular localization. Intuitively, TFs exert their function in
the nucleus, where their genomic targets are located. In
this respect, NF-Y is prototypical, with NF-YA and NF-YB
being found exclusively in the nucleus, NF-YC being in
part in the cytoplasm and traveling to the nucleus with the
NF-YB HFD partner.128 YB-1 is fundamentally cytoplasmic in
normal cells, and nuclear in transformed cells, or after
specific stimuli. Many inducible TFs are found in the
cytoplasm or membrane bound, and are transferred to the
nucleus only after a specific stimulus. To explain the
activation of G1/S cell-cycle-regulated promoters, such as
DNA Pol a and cyclin A by YB-1, it was proposed that there is
a transient nuclearization of the protein at the G1/S
boundary.116 Even so, it not clear how YB-1 could activate
transcription of the many proposed target genes that are
constitutively expressed, or of the G2/M-specific cyclin B, in
normal cells.

Figure 3 Enriched TFBS in YB-1- or NF-Y-regulated genes. Data of gene expression profilings of different cell lines, reported by Lasham et al.,123 were analyzed by pscan
(upper panels). In the lower panels, a similar analysis is reported on gene expression profiles of HCT116 cells inactivated with shNF-YA or shNF-YB (Benatti et al.124)
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Protein structure considerations. The modality of CCAAT
recognition by NF-Y is now fully understood, as the crystal
structure of the complex bound to a CCAAT oligo has been
solved.129 NF-Y contacts DNA in a non-sequence-specific
manner via the HFD subunits, which bind the double helix in
a way that is essentially identical to H2A/H2B within
nucleosomes, with sequence specificity imparted by minor
groove binding to the CCAAT, via an a helix (A2) and a novel
motif of NF-YA. This modality of DNA recognition is
unprecedented among TFs. Overall, a high number of
amino-acid residues (46) contact the DNA over a 25–28 bp
area, which helps to explain the extraordinary affinity of the
trimer for DNA. The domain of YB-1 required for nucleic acid
binding is the CSD, composed of RNP1 and RNP2: the
structure of this domain is known, both from X-ray crystal-
lography and NMR studies,62 but the interactions with RNA
or DNA are not detailed and modeling exercises could not
provide compelling reasons why YB-1 should bind to double-
stranded Y/CCAAT with any type of specificity.

Altogether, from the most reductionistic in vitro assays to
in vivo approaches, a large set of data strongly argues against
YB-1 being a direct regulator of transcriptional initiation by
binding to the Y/CCAAT sequence, or variations of it. Because
of the widespread and profound influence played by YB-1 on

mRNA biology, likely impacting on results obtained in over-
expression or functional inactivation experiments, it is even
debatable as to whether it has any role in direct promotion of
transcriptional initiation events. On the contrary, NF-Y’s
credentials as a paradigmatic sequence-specific TF are
impeccable.

The – Apparent – Paradox of Y/CCAAT, NF-Y and YB-1 in
Cancer

To the best of our knowledge, NF-Y subunits are neither
consistently mutated – as for p53 – nor generally over-
expressed – as for MYC – in human tumors. However,
changes in the expression of NF-Y subunits, often NF-YA,
have indeed been reported,93 and this phenomenon should be
studied in a quantitatively credible and statistically significant
manner. Moreover, the links of NF-Y with activation of cancer
pathways mediated by mutant p53 and E2Fs are well
established.130 More recently, strong connections emerged
from ChIP-Seq experiments with JNKs,131 the PRAME
oncogene,132 and a specific group of oncogenic TFs in
ENCODE data (Fleming and Struhl, submitted for publication).

There is little doubt that YB-1 expression changes
dramatically, at both the mRNA and protein levels, in

Figure 4 Presence of YB-1 and NF-Y peaks in YB-1-regulated genes. YB-1-regulated genes, as summarized by Eliseeva et al.,71 were analyzed for the presence of YB-1
peaks in the YB-1 ChIP-Seq data reported by Astanehe et al.,126 and for NF-Y peaks present in ENCODE data of K562, HeLa-S3 and GM12878 cells (Wang et al.60 and
Fleming and Struhl, submitted for publication)
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transformed cells; the correlation is so impressive that in some
tumors it is considered a prognostic marker (for a review see
Eliseeva et al.71 and Costessi et al.133). Furthermore, the
localization of YB-1 becomes strongly nuclear in tumor cells.
The changes are maximal in aggressive tumors resistant to
drugs, and in advanced stages of cancer. It is also undisputed
that a large set of genetic experiments point to YB-1 as a
protein promoting transformation, epithelial–mesenchymal
transition and growth of metastatic cancer cells: in essence,
YB-1 is a powerful oncogene.134–136

Largely because of the alleged role of YB-1 on MDR1
transcription, two syllogisms emerged in the literature.
First, Y/CCAAT is enriched in cancer genes, YB-1 is a
Y/CCAAT binding TF enriched in cancer cells; hence, YB-1 is
responsible for the activation of CCAAT cancer genes in
cancer cells.137 Second, MDR1 expression is induced by
and responsible for resistance of cancer cells to cytotoxic
drugs, YB-1 is responsible for MDR1 overexpression (and it is
overexpressed in cancers); hence, YB-1 mediates cancer
resistance by enhancing MDR1 expression. Flaws in the
antithesis, as explained above, lead to an at least partially
incorrect synthesis.

So how could YB-1 be mediating cancer progression and
resistance to drugs, if not by binding directly to the Y/CCAAT
boxes of MDR1 or other overexpressed genes? Reviews of
available literature point to many possible hypotheses, the
most likely of which highlight the control of various aspects of
RNA metabolism, such as stability, splicing and transla-
tion.71,135 The mechanisms of YB-1 mRNA regulation were
studied in reliable reconstituted in vitro systems, and they are
now relatively well understood, and consistent with specific
binding of the protein to RNA. Interestingly, the preferred
target logo, derived from the analysis of ChIP-Seq experi-
ments, is consistent with the RNA-binding features of YB-1,
and indeed resembles Kozak sequences.127

Thus, we offer an alternative explanation for the many
reports of YB-1 binding in ChIP experiments, and indeed
ChIP-Seq, in transformed cells:126 YB-1 could be transitorily
located in an area physically ‘close’ to promoters, or other
important regulatory regions, where transcriptional initiation
decisions are made, but loaded on partially synthesized
primary RNAs (Figure 5). One finding consistent with this

interpretation is that chromatin association of YB-1 is
apparently lost upon treatment with ribonucleases, which
destroys pre-mRNAs.138 It is well established that coactiva-
tors, which do not bind to DNA directly, can be crosslinked
efficiently to DNA, resulting in peaks in ChIPs and ChIP-Seq.
It is also known that promoter structures and specific TF
combinations have an impact on the loading and composition
of the mRNA splicing apparatus.139,140 Thus, we propose that
rather than being enemies battling over the same DNA
sequence, NF-Y and YB-1 take on different tasks, cooperating
to alter gene expression in cancer cells: transcriptional
initiation through Y/CCAAT sequence-specific binding the
former, and post-transcriptional mechanisms through RNA
binding the latter.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. We thank the members of the lab for helpful
discussions. Our special thanks to David Horner for his patience and dedication
in reviewing the manuscript. The work is supported by the Regione Lombardia
NEPENTE Grant.

1. Mathis DJ, Benoist CO, Williams VE II, Kanter MR, McDevitt HO. The murine E alpha
immune response gene. Cell 1983; 32: 745–754.

2. Benoist C, Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y
and other letters of the alphabet. Annu Rev Immunol 1990; 8: 681–715.

3. Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Connell C, Spritz RA et al. The
structure and evolution of the human beta-globin gene family. Cell 1980; 21: 653–668.

4. Grosveld GC, Shewmaker CK, Jat P, Flavell RA. Localization of DNA sequences
necessary for transcription of the rabbit beta-globin gene in vitro. Cell 1981; 25: 215–226.

5. Myers RM, Tilly K, Maniatis T. Fine structure genetic analysis of a beta-globin promoter.
Science 1986; 232: 613–618.

6. Maity SN, Golumbek PT, Karsenty G, de Crombrugghe B. Selective activation of
transcription by a novel CCAAT binding factor. Science 1988; 241: 582–585.

7. Kim CG, Sheffery M. Physical characterization of the purified CCAAT transcription factor,
alpha-CP1. J Biol Chem 1990; 265: 13362–13369.

8. Greuel BT, Sealy L, Majors JE. Transcriptional activity of the Rous sarcoma virus long
terminal repeat correlates with binding of a factor to an upstream CCAAT box in vitro.
Virology 1990; 177: 33–43.

9. Viville S, Jongeneel V, Koch W, Mantovani R, Benoist C, Mathis D. The E alpha promoter:
a linker-scanning analysis. J Immunol 1991; 146: 3211–3217.

10. Tronche F, Rollier A, Sourdive D, Cereghini S, Yaniv M. NFY or a related CCAAT binding
factor can be replaced by other transcriptional activators for co-operation with HNF1 in
driving the rat albumin promoter in vivo. J Mol Biol 1991; 222: 31–43.

Figure 5 Scheme of mechanisms of gene expression control by NF-Y and YB-1

Targeting the Y/CCAAT box in cancer
D Dolfini and R Mantovani

682

Cell Death and Differentiation



11. Zeleznik-Le NJ, Azizkhan JC, Ting JP. Affinity-purified CCAAT-box-binding protein

(YEBP) functionally regulates expression of a human class II major histocompatibility

complex gene and the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci

USA 1991; 88: 1873–1877.
12. Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H et al. Identification

and characterization of the potential promoter regions of 1031 kinds of human genes.

Genome Res 2001; 11: 677–684.
13. Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J et al.

Sequence comparison of human and mouse genes reveals a homologous block structure

in the promoter regions. Genome Res 2004; 14: 1711–1718.
14. Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y. Genome-wide in silico identification

of transcriptional regulators controlling the cell cycle in human cells. Genome Res 2003;

13: 773–780.
15. Linhart C, Elkon R, Shiloh Y, Shamir R. Deciphering transcriptional regulatory elements

that encode specific cell cycle phasing by comparative genomics analysis. Cell Cycle

2005; 4: 1788–1797.
16. Zhu Z, Shendure J, Church GM. Discovering functional transcription–factor combinations

in the human cell cycle. Genome Res 2005; 15: 848–855.
17. Grskovic M, Chaivorapol C, Gaspar-Maia A, Li H, Ramalho-Santos M. Systematic

identification of cis-regulatory sequences active in mouse and human embryonic stem

cells. PLoS Genet 2007; 3: e145.
18. Halperin Y, Linhart C, Ulitsky I, Shamir R. Allegro: analyzing expression and sequence in

concert to discover regulatory programs. Nucleic Acids Res 2009; 37: 1566–1579.
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