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High-throughput genomic data reveal thousands of gene variants
per patient, and it is often difficult to determine which of these
variants underlies disease in a given individual. However, at the
population level, there may be some degree of phenotypic homo-
geneity, with alterations of specific physiological pathways under-
lying the pathogenesis of a particular disease. We describe here the
human gene connectome (HGC) as a unique approach for human
Mendelian genetic research, facilitating the interpretation of abun-
dant genetic data from patients with the same disease, and guiding
subsequent experimental investigations. We first defined the set of
the shortest plausible biological distances, routes, and degrees of
separation between all pairs of human genes by applying a shortest
distance algorithm to the full human gene network. We then
designed a hypothesis-driven application of the HGC, in which we
generated a Toll-like receptor 3-specific connectome useful for the
genetic dissection of inborn errors of Toll-like receptor 3 immunity.
In addition, we developed a functional genomic alignment approach
from the HGC. In functional genomic alignment, the genes are clus-
tered according to biological distance (rather than the traditional
molecular evolutionary genetic distance), as estimated from the
HGC. Finally, we compared the HGCwith three state-of-the-art meth-
ods: String, FunCoup, and HumanNet. We demonstrated that the
existing methods are more suitable for polygenic studies, whereas
HGC approaches are more suitable for monogenic studies. The HGC
and functional genomic alignment data and computer programs are
freely available to noncommercial users from http://lab.rockefeller.
edu/casanova/HGC and should facilitate the genome-wide selection
of disease-causing candidate alleles for experimental validation.
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Recent advances in next-generation sequencing (NGS) have
made it possible to identify thousands of germline protein-

coding gene variants per patient, only one or a few of which may
cause disease (1, 2). In such genome-wide approaches, it may be
difficult to identify candidate morbid variants by genetic means
alone, due to the uncertainty of the mode of inheritance in in-
dividual kindreds and the possibility of high levels of genetic
heterogeneity in the population. Nevertheless, there may be some
degree of physiological homogeneity in the pathway underlying
the pathogenesis of a particular disease in different patients (3, 4).
The abundance of high-throughput data provides an opportunity
to test this hypothesis of pathogenesis and pathway homogeneity
(5, 6). However, it is often almost impossible to detect biological
links between very small numbers of genes with state-of-the-art
programs, such as String (7), FunCoup (8), and HumanNet (9),
unless they are predicted to be directly connected in a pathway.
These programs provide estimates for direct connections or for
the extended network shared by two given genes from the same
pathway, rather than the specific pathway (i.e., route) between
any two given genes of interest. These existing methods are
therefore more suitable for polygenic disease/phenotype studies
than for the investigation of monogenic traits, in which the goal is

to detect a single mutated gene, with the other polymorphic genes
being of less interest. This goes some way to explaining why,
despite the abundance of NGS data, the discovery of disease-
causing alleles from such data remains somewhat limited.
We developed the human gene connectome (HGC) to over-

come this problem. The principal objective of this approach is to
define, in silico, the set of the shortest plausible biological dis-
tances and routes between any two given genes. We hypothesized
that the morbid genes underlying a specific disease in different
patients are closely connected via core genes or signaling path-
ways. We designed an HGC-based hypothesis-driven approach,
to be used in research based on high-throughput genomic data,
through the selection of candidate genes belonging to a given
morbid pathway (hypothesis-driven). We assessed the usefulness
of the HGC, by applying a hypothesis-driven approach to generate
a Toll-like receptor 3 (TLR3)-specific connectome. Inborn errors
of TLR3 immunity have been shown to underlie the pathogenesis
of herpes simplex virus 1 (HSV-1) encephalitis (HSE) in a small
fraction of affected children (10–13). No genetic etiology has yet
been identified for most children with HSE and the TLR3 con-
nectome may facilitate the selection of candidate variants in these
patients (3, 14). Finally, we generated all human gene-specific
connectomes, including computer programs for HGC analysis,
which are available from http://lab.rockefeller.edu/casanova/HGC.

Results
The HGC. We define the HGC as the full set of distances and
routes between any two human genes. We generated our HGC
from the binding subset of the String protein actions database
version 9.0 (7, 15, 16). We rendered distance calculation more
biologically plausible, by accounting for the degrees of separation
between each pair of genes (Fig. 1; see detailed explanation in
Materials and Methods). Each pair of genes considered may be
directly connected, indirectly connected, or unconnected. We
randomly sampled 100,000 gene pairs from the HGC to generate
probability distributions for degrees of separation (C; Fig. 1A)
and distances between pairs of human genes. The median C value
in the HGC is 4 (the expected number of genes on the biological
route between two random human genes would therefore be 3),
whereas the median weighted biological distance (B; Eq. 2)
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between two random genes in the HGC is 23.692. We then ran-
domly sampled gene pairs for biological distances corresponding
to specific degrees of separation (Fig. 1B). We found that only
0.086% of all possible human gene pairs are directly connected
(i.e., current knowledge concerning the direct binding connections
between two given human genes). We therefore predicted the
remaining 99.914% of human gene pair routes and distances with
the HGC (Fig. 1A). Distance ranges for the 95% confidence in-
terval of two consecutive degrees of separation systematically
overlapped, whereas the ranges of distances between genes with
C = 1 (directly connected genes) and C ≥ 3 never overlapped
(Fig. 1B). For example, a 9.4% overlap was observed between
the distances for C = 2 and those for C = 3. In the case of real
biological pathways, this indicates that, although a smaller de-
gree of separation mostly indicates a smaller biological distance,
biological distances may be shorter for higher degrees of sepa-
ration in some cases, due to very strong direct connections (i.e.,
very short direct biological distances). We therefore suggest that
the calculation of distances in this way generates a range of
values (B, C, and predicted route) that are biologically relevant
and meaningful.

Generation of the TLR3 Connectome for Hypothesis-Driven Research.
A core gene-specific HGC would facilitate the selection and study
of potentially relevant morbid alleles from high-throughput data
for patients with a particular disease. This is now possible, by
ranking, in each individual patient, the list of polymorphic genes
according to their biological proximity to a central gene that is
known to be associated with the disease. We began by defining
the connectome of TLR3 (Fig. 2, Table S1). Inborn errors of
TLR3 immunity have been shown to underlie HSE in a small
fraction of affected children with HSE (3, 10–12, 14). Childhood
HSE is a devastating viral illness of the central nervous system
(CNS) occurring during primary infection with the almost ubiq-
uitous HSV-1. We recently showed that HSE results from inborn
errors of TLR3-dependent IFN-α/β or IFN-λ immunity, with the
discovery of germline mutations in a group of TLR3–IFN path-
way genes (Fig. S1), including TLR3, TIR-domain-containing
adapter-inducing interferon-β (TRIF/TICAM1), Unc-93 homolog
B1 (UNC93B1), TNF receptor-associated factor 3 (TRAF3) and
TANK-binding kinase 1 (TBK1), these findings being supported
by extensive studies (3, 11–14, 17–19). We also recently showed
that inborn errors of TLR3-dependent IFN production impair
intrinsic immunity to HSV-1 in nonhematopoietic CNS-resident

cells, including neurons and oligodendrocytes in particular (10,
20). We therefore defined TLR3 as the core HSE gene and hy-
pothesized that new HSE-causing genetic lesions might affect
known (experimentally connected) or unknown TLR3 pathway
genes. The TLR3 connectome is the full set of distances and
routes between all other human genes and TLR3, generated as
the HGC. The TLR3 connectome contains 12,009 genes, including
601 genes in the top 5% (significant proximity to TLR3; P < 0.05;
Fig. 2, Table S1). The TLR3 connectome has a median C = 4,
similar to that for the entire HGC, whereas its median dis-
tance is 17.684, 25% lower than that for the whole HGC, high-
lighting the relative centrality of TLR3 in the human genome
[the median distance for less central genes may be considerably
lower than that of other genes: 30.51, for example, for the gene
connectome of TAPE (coiled-coil and C2 domain containing 1A
(CC2D1A)), which encodes a protein of the TLR3 pathway]. We
carefully validated the accuracy of the TLR3 connectome on the
basis of our knowledge for the 21 experimentally connected,
known TLR3 pathway genes (excluding TLR3; Table S2, Fig. S1,
Materials and Methods), including the five known HSE-causing
TLR3 pathway genes (including TLR3) (14), as described below.

Assessing the Accuracy of the TLR3 Connectome. The relevance of
a list of genes to a disease or pathway for which a core gene
(TLR3 in the case of HSE) has been identified can be assessed by
generating the connectome of the core gene, as described above
for TLR3 (see Table S2 for the known TLR3 pathway genes
within the TLR3 connectome). We identified and present to-
gether the 21 genes (excluding TLR3 itself) that we considered to
be the most strongly associated with the TLR3–IFN cascade,
based on in vivo and/or in vitro validation of their involvement in
the TLR3 pathway (10) (Fig. S1). We found that 17 of these 21
genes belonged to the top 5% of the TLR3 connectome. These 17
genes included all eight TLR3 pathway genes validated in vivo.
All five known HSE-associated TLR3 pathway genes (14) were
also found to lie in the top 5% of the TLR3 connectome. We
calculated the statistical significance of all five HSE genes, all
eight in vivo–validated genes, and 17 of the 21 known TLR3
pathway genes being located within the top 5% of the TLR3
connectome, by randomly sampling sets of five, eight, and 21
human genes (for the HSE, in vivo, and TLR3 pathway tests,
respectively) and determining the frequency with which they
were found in the top 5% of the TLR3 connectome. We obtained
a P < 10−7 for all three sets. By contrast, the implementation of
a simpler distance metric in the form of a uniform score for di-
rect connections, with the ranking of genes by degrees of sepa-
ration only (i.e., an unweighted graph), yielded a significantly
lower discovery rate of TLR3 pathway genes in the top 5% of the
TLR3 connectome. Only eight of the 21 known TLR3 pathway
genes (P = 4.9 × 10−6) were identified with this simplified ap-
proach. A best reciprocal P value (BRP) test (i.e., ranking TLR3
within the connectomes of other genes and choosing the lowest
of the two P values, to account for the connectivity of less central
genes) was carried out for genes experimentally demonstrated to
be involved in the TLR3 pathway but displaying no significant
connection to TLR3 (P ≥ 0.05) in the TLR3 connectome. This
resulted in an increase in the predicted connectivity to TLR3 for
the two lowest ranking known TLR3 pathway genes [from
P = 0.548 to P = 0.054 for TAPE (CC2D1A), and from P = 0.757
to P = 0.287 for NAP1 (5-azacytidine-induced protein 2)]. We
suggest that the probable reasons for the lack of detection of
these genes in the top 5% of the TLR3 connectome (despite
their experimental validation as TLR3 pathway genes) is their
poor description in previous studies and biological databases
(21), resulting in less biologically accurate initial String scores
and connections. These findings also demonstrate the power of
the String scoring system, which takes into account multiple
validations of connections between genes and the presence of
genes in the same pathway. Two of the TLR3 pathway genes
[TRIF (TICAM1) and UNC93B1] are directly connected to
TLR3; the rest were predicted by the HGC algorithm (the

Fig. 1. (A) The proportions of the various degrees of separation (C) in the
HGC. Only 0.086% of all human genes are directly connected (C = 1, data
obtained directly from String). The median degree of separation between
genes is 4 (39.932% of all connections), 0.041% of genes have a C ≥ 9, and
2.152% of human genes cannot be connected, mostly because they belong
to isolated networks of small numbers of genes disconnected from the main
human gene network. (B) Box plots displaying the range of biological dis-
tance (B) between genes for different degrees of separation C in the HGC.
The box represents the 95% confidence interval for randomly sampled gene
pairs, the circle represents the median value, the diamond represents the
mean value and the vertical line shows the full range from the minimum to
the maximum for the specific C value considered. The box on the right shows
random sampling from the HGC for all C values, including C ≥ 9.
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directly connected genes were also detected by the HGC pro-
cedure, as indirectly connected routes must also be considered in
case they provide a shorter biological distance than direct con-
nections; Fig. 1B).

Assessing the Usefulness of the TLR3 Connectome.We then aimed to
assess the usefulness of the TLR3 connectome in the analysis of
whole-exome sequencing data from HSE patients. For this pur-
pose, we retrospectively obtained whole-exome sequencing data
for two patients recently shown experimentally to carry HSE-
causing mutations of the TBK1 gene (19). TBK1 was not directly
connected to TLR3 in the String database at the time of analysis,
and was thus an HGC algorithm prediction. We applied standard
filters (nonsynonymous and rare polymorphic genes not found in
public databases) to obtain final lists of 152 and 157 polymorphic
genes for these two patients, respectively. In both patients, TBK1
was first on the list following sorting by HGC-predicted biological
proximity to TLR3, validating the usefulness of our TLR3

connectome for the analysis of patient-specific high-throughput
data. Moreover, with the HGC, we were able to predict the in-
volvement of the two most recently described TLR3 pathway
genes, proto-oncogene tyrosine-protein kinase (SRC) and epi-
dermal growth factor receptor (EGFR), which were found in the
top 1% of the TLR3 connectome (top 0.1% and top 1%, of the
TLR3 connectome, respectively; Table S1 and Table S2) before
their experimental validation as TLR3 pathway genes (22). Our
TLR3 connectome is therefore not only consistent with existing
biological and medical data, but can also be useful to predict the
connectivity of any human gene to TLR3, on the basis of bi-
ological distance and route to TLR3. We have thus generated
such a gene-specific connectome for all human genes, available
from http://lab.rockefeller.edu/casanova/HGC.

ComparisonBetweentheHGCandState-of-the-ArtMethods inMonogenic
Disease Research. In the application of the HGC concept to high-
throughput whole-genome data, any extensive list of mutated (or
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Fig. 2. Genes within the top 5% of the TLR3 connectome: the 601 human genes with the shortest biological distances to TLR3, as identified from the HGC.
The genes are placed in a 2D space (Materials and Methods) and the colors used indicate their unweighted distance from TLR3. The genes in the upper fifth
percentile (the outer circle) were assigned a distance of 3.3, for clear visualization. The dashed lines show the predicted shortest plausible biological routes
between TLR3 and the 17 (of 21) known TLR3-pathway genes within the top 5% of the TLR3 connectome. The TLR3 pathway genes known to be associated
with HSE (all five are within the top 5% of the TLR3 connectome) are indicated by a violet star.
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up-/down-regulated) genes can be ranked within the connectome
of the core gene. The genes toward the top of the list (e.g., P <
0.05) are the most likely to be disease-causing according to the
hypothesis that patients with the same disease bear morbid
alleles in the same pathway. This has been illustrated by our
study of the location of the HSE-causing genes in the TLR3
connectome, in which we statistically validated the HSE-causing
TLR3 pathway genes located at the top of the TLR3 con-
nectome. The process used for such analyses of high-throughput
data from patients with other diseases would be identical to that
described here for the TLR3 pathway and HSE-associated genes.
These analyses demonstrate the greater suitability of the HGC than
of available state-of-the-art methods for high-throughput mono-
genic studies: the goal in high-throughput monogenic disease
studies is to identify the single disease-causing gene from a large set
of genes. The HGC is the only method currently available that is
designed for such an approach in monogenic studies. The HGC
automates the process, by ranking any one of a large set of genes
according to its biological distance to a known disease-causing gene,
in relation to all other human genes, by direct or indirect con-
nections. String provides the confidence score for direct relation-
ships (whenever available) between the various pairs of genes, but
not between a group of genes and a core gene, such as the 21 TLR3
pathway genes and TLR3, because most of these genes are not
directly connected (Figs. S2 and S3). The same is true for FunCoup:
the method provides estimates for the direct relationships of each
gene in the set to the other genes in the set, but not for the specific
relationship of all these genes to a core gene, such as TLR3 (Figs.
S4 and S5). It is therefore difficult to use for the prioritization of
a list of genes in the monogenic disease context. The HumanNet
method is more suitable for monogenic studies, as it provides, for
all genes in the set, a prediction concerning the likelihood of their
belonging to the same functional network. However, in this
method, for example, TLR3 was ranked number 14 (of 22), and
the genes are split into subnetworks and cannot be automatically
ranked in relation to a specific core gene (Figs. S6 and S7). This
method is therefore less suitable for high-throughput datasets for
hundreds or thousands of polymorphic genes.

Functional Genomic Alignment: Clustering Human Genes by Biological
Distance. Finally, we developed the functional genomic alignment
(FGA) method (Materials and Methods) to cluster human genes
according to their biological relationships. We tested the FGA by
using it to identify the TLR3 connectome genes with the nearest
biological relationships to the known HSE-causing TLR3 con-
nectome genes, which, by inference, should be considered as
candidate HSE-predisposing TLR3 pathway genes. We first gen-
erated a biological distance matrix for all top 5% TLR3 con-
nectome gene pairs (Eq. 3). We then used the neighbor-joining
(NJ) method to cluster biologically parsimonious genes hierar-
chically by clade (Fig. 3) (23). All of the known TLR3 pathway
(including HSE-causing) genes clustered into a small number of
clades (Fig. 3). Variants of any of the other 55 genes present in
these clades therefore become prime candidates for TLR3 path-
way deficiencies underlying childhood HSE. This hypothesis is
experimentally testable. In FGA analysis, the HGC also becomes
suitable for high-throughput oligogenic or polygenic studies, in
which the aim is to identify several genes, from a long list, as re-
sponsible for the disease. Unlike the other state-of-the-art meth-
ods available, the HGC can be used for polygenic investigations in
twoways: (i): ranking a list of polymorphic genes in relation to core
genes (for example, see Table S2), and (ii) hypothesis-free clus-
tering of the polymorphic genes by the FGA approach, on the basis
of the distance matrix for all genes of interest (as in Fig. 3). All of
the available methods described above are suitable for the in-
vestigation of polygenic traits; they are also complementary, as
they tackle the problem from different angles. String provides vi-
sual output showing the direct interactions network and scores
between the genes of the set considered and is very useful for data
mining and investigations of the specific connections from differ-
ent perspectives (the type of connection, published findings,

evolution, etc.). FunCoup also makes use of a visual network in-
terface with a thorough summary of the direct interactor estimates
for each gene in the list. HumanNet follows a different approach,
scoring a list of genes in terms of their probability of belonging to
similar networks. Again, the principal advantage of theHGCand the
difference between this approach and other state-of-the-artmethods
is the ability of the HGC method to predict a specific pathway and
distance between any two indirectly connected genes, and to cluster
a list of genes accordingly, either in relation to core genes of interest
(hypothesis-driven clustering) or simply in relation to each other on
the basis of their biological relationship, but without defining any
particular gene as the core gene (hypothesis-free clustering).

Discussion
In monogenic diseases and phenotypes, only one of the thousands
of genetic variants per individual is relevant. The interactions be-
tween the true disease-causing gene and the other polymorphic
genes, or in the context of an extended genetic network, are
therefore of no interest. Instead, the aim is to automate the
ranking of the polymorphic genes according to their distance and
specific route (rather than the large shared network) to the known,
experimentally validated core gene.We show here that the current
state-of-the-art methods String (7), FunCoup (8), and HumanNet
(9), although excellent for polygenic research, are not optimized
for monogenic phenotype/disease research as, in most cases, they
cannot predict the single biologically plausible distance and route
between a pair of genes that are not directly connected (Figs. S2–
S7, Materials and Methods). We overcame this problem by gener-
ating theHGC, using theDijkstra algorithm (24, 25), to identify the
shortest biological route and distance between all pairs of genes in
the human genome network generated from the String binding
database. Just as the Human Connectome Project (26, 27) aims
to identify the set of connections in the human brain, the HGC
project aims to describe the connections between human genes,
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Fig. 3. FGA of the genes in the top 5% of the TLR3 connectome. Based on
weighted biological distances between genes, as determined from the HGC,
a hierarchical clustering of the genes in the top 5% of the TLR3 connectome
was generated and plotted. HSE-associated genes are shown in red, whereas
known TLR3-pathway genes not known to be associated with HSE are shown
in green. Genes belonging to the same clades as known TLR3-pathway genes
are shown in pink. Genes that are not known to be associated with TLR3-
pathway or HSE are shown in blue. See Materials and Methods for a detailed
description of the FGA approach applied.
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at the genome-wide level. The HGC can be generated from any
other biological database of connections between genes and pro-
teins. Itmakes it possible to generate a straightforward, biologically
plausible ranking of any large set of human genes, on the basis of
biological proximity. We propose the HGC as a powerful method
for detecting relationships between genes of interest, by focusing
on a core gene (such as TLR3) and forming a connection network
of ranked genes around it, or alternatively, for estimating the bi-
ologically plausible distance and route between any pair of genes of
interest, without the need to set hypothetical priorities in advance.
Hypothesis-driven HGC and FGA approaches can be applied

to high-throughput data from any genome-wide study. As a proof-
of-principle for the hypothesis-driven approach, the demonstra-
tion of biologically plausible estimated routes between TLR3 and
the genes in the top 5% of the TLR3 connectome (Tables S1 and
S2, Fig. 2, and Figs. S2–S7) suggests that the HGC is a suitable
technique for predicting connections between genes, or between
proteins, for various phenotypes of interest. This approach can
also be applied to the discovery of novel disease-causing genes
that are not necessarily involved in a signaling pathway. We
identified 20 of the 20 collagen genes (28) and six of the six fibrous
collagen protein genes associated with Ehlers–Danlos syndrome,
using the core gene collagen, type I, alpha 1 (COL1A1) (29–33)
(P < 10−7). However, for a Mendelian disease, such as senso-
rineural hearing loss, which has a broader phenotype and in-
volves heterogeneous genetic pathways, this approach performs
less well (although the results obtained are nonetheless signifi-
cant), discovering only eight of the 38 disease-associated genes
with the core gene gap junction beta-2 protein (GJB1) (34)
(P = 0.00051). This suggests that the HGC is currently more ef-
fective for well-defined phenotypes with pathway homogeneity, in
which it can also be applied to nonsignaling pathways. The dis-
covery rate for broader phenotypes with pathway heterogeneity
should increase when new genome-wide experimentally vali-
dated databases become available and are integrated into the
current HGC database or with the use of several core genes cor-
responding to the different pathways. At present the HGC can be
used only for genes whose mRNA translates into a protein. Future
versions of the HGC will integrate untranslated RNA data (and
other layers of information such as gene coexpression), when whole
datasets containing sufficiently robust experimental evidence be-
come available. Alternatively, this problem may be resolved by
investigators generating HGCs by creating their own databases
(see http://lab.rockefeller.edu/casanova/HGC for instructions).
Potentially, the HGC could also be used to identify previously
unknown pathways underlying the pathogenesis of a disease, this
task being extremely time-consuming and almost impossible to
achieve solely through searches of the existing scientific literature.
This being said, the HGC and FGA should also be useful in hy-
pothesis-free research—a genome-wide extension of the hypoth-
esis-driven approach to situations in which no core gene has been
identified. Overall, the rigorous application of HGC-based
approaches should significantly increase the rate of discovery of
disease-causing lesions for experimental testing (3).

Materials and Methods
Direct Gene Distances Dataset. We extracted all of the direct human protein–
protein connection data from the String protein actions database version 9.0
(7, 15, 16), and then selected only pairs for which binding interactions had
been described (a total of 166,468 pairwise connections for 12,009 human
genes). In this study we define “direct biological distance” as the inverted
original String scores for confidence of connection, which give continuous
distance metrics for differentiating between directly connected genes, as-
suming that strong confidence for a direct binding connection is equivalent
to a short direct biological distance between two genes:

Di; j =
1
Si; j

; [1]

where Di,j is the direct biological distance between genes i and j, and Si,j is the
combined String score for confidence in the connection between genes i and j.
The String probabilistic confidence score represents the association between
the two given proteins (or genes). The combined score is calculated by String,

by independent benchmarking of the performance of the predicted con-
nections with interaction/association data from different sources [including
Gene Ontology (GO), Protein Data Bank, Molecular INTeraction database
(MINT), Reactome] (35–38) against Kyoto Encyclopedia of Genes and Genomes
(KEGG) (39, 40)—and by Bayesian analysis of the evidence of interaction be-
tween the two genes in various sources. Higher combined String confidence
scores indicate that the association between the two genes is supported by
a larger number of information sources (7). Si,j ranges from 0.150 (the weakest
evidence of connection) to 0.999 (the strongest evidence of connection) (7),
giving a direct distance between two given genes of between 1.000 (shortest
distance) and 6.667 (longest distance).

Generation of the HGC. We constructed a network of all human genes, with
nodes and edges corresponding to the direct biological distances between any
two available genes (25). Using the Dijkstra algorithm (24, 25), we determined
the shortest distances and the corresponding shortest routes (i.e., the number
of genes lying between two genes) for all possible pairs of human genes,
whenever connection was possible. Some of the genes concerned belonged to
secondary networks isolated from the major human genes network. We de-
fine “biological distance” between two genes as the weighted sum of direct
biological distances on the route of the true molecular pathway between the
two genes. We hypothesize that the number of genes on the route between
genes i and j is positively correlated with the probability of i and j having
unrelated biological functions. We therefore accounted for the shorter bi-
ological distance (B) between more directly connected genes by multiplying
each distance by the degrees of separation C [the number of direct con-
nections between the two genes (equal to the number of genes on the route
between any pair of genes plus 1; so for a pair of genes separated by a route
including four other genes, C = 5)]:

8<
:

if C = 1 : Bi; j =Di; j

if C > 1 : Bi; j =C
�
Di;1 +D1;2 +D2;3 + . . . +DC−2;C−1 +DC−1; j

�
;

[2]

where Di,1 is the direct biological distance (Eq. 1) between gene i and gene 1
(the first gene on the route between genes i and j, as predicted by the
Dijkstra algorithm), gene 2 is the second gene on the route, and gene C–1 is
the last gene with a predicted direct connection to gene j, completing the
predicted pathway. The HGC was constructed and investigated with the
Python package NetworkX for complex network analysis (25).

Generation of the Human TLR3 and Gene-Specific Connectomes. The genes in
the TLR3 connectome were sorted and ranked according to their proximity to
TLR3. A P value for the proximity of a gene to TLR3 within the TLR3 con-
nectome was determined as the probability of a random gene in the TLR3
connectome having a shorter biological distance to TLR3, accounting for the
uniform distribution of distances within the HGC. The sphere corresponding to
a gene within the TLR3 connectome describes its simplified location among
the circles for all human genes surrounding TLR3 (see Table S1). Distance ra-
tios, with median and mean connectome values, were also calculated for each
gene within the TLR3 connectome. We repeated the process described above
for all human genes, to acquire a full set of human gene-specific con-
nectomes. The TLR3 connectome was visualized with the Fruchterman–Rein-
gold force-directed algorithm, which placed the genes in a 2D space by means
of 10,000 interations with the NetworkX package (25, 41).

FGA: Clustering of High-Throughput Data on the Basis of Biological Distance. In
the face of an extensive list of genes acquired from any high-throughput
technology (including the HGC described here), clustering is a common ap-
proach to estimating relationships between the genes. Multiple sequence
alignment (MSA) is the method traditionally used for assessing evolutionary
genetic distances between the genes of a given group, resulting in the
generation of phylogenetic trees. However, evolutionary genetic distance
does not necessarily indicate functional proximity (42), and genes associated
with a specific pathway or disease/phenotype would be expected to belong
to the same functional pathway/network (such as the TLR3 pathway). We
therefore developed the FGA method for clustering genes by biological
distance, as estimated by the HGC. The biological distance matrix M for a set
of n genes is generated as follows:

M

2
4 1 ⋯ n
⋮ ⋱ ⋮
n ⋯ n

3
5=Bi;j for

�
i; j
n

�
; [3]

where i and j are any two given genes in the set. We demonstrate the method
here with the top 5% of TLR3 connectome genes. We first estimated the bi-
ological distances between all of the genes in the top 5% of the TLR3
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connectome and generated a matrix of these distances. We then used the APE
(Analyses of Phylogenetics and Evolution) R language package (23), applying
the NJ method to cluster the genes on the basis of the distance matrix and to
plot the hierarchically clustered network of the genes in the top 5% of the
TLR3 connectome. In this network, the TLR3 pathway and the HSE-causing
genes were found to be clustered into a small number of clades constituting
only a small proportion of the full biological tree for the genes in the top 5%
of the TLR3 connectome. The tree illustrates the full set of relationships be-
tween the genes in the top 5% of the TLR3 connectome, accounting for direct,
indirect, and relational connections.

Comparison with State-of-the-Art Methods.We compared the HGC with three
state-of-the-art methods: String, FunCoup, and HumanNet. In the context of
monogenic disease investigation, for each of the methods, we first assessed
the connection between TLR3 and TANK (a well-documented gene from the
TLR3 pathway that is indirectly connected to TLR3). We then tested the
connection between TLR3 and CC2D1A (a less well-described gene that is
also a part of the TLR3 pathway) within the context of all 21 experimentally
validated TLR3 pathway genes. We further assessed the suitability of the
methods for Mendelian (monogenic) studies, by ranking a high-throughput

dataset in relation to a core gene for detection of the single polymorphic
gene of interest, by ranking the TLR3 pathway genes according to their
proximity to TLR3. We also determined the suitability of the HGC, String,
FunCoup, and HumanNet methods for complex genetic (polygenic) studies—
clustering all genes in a filtered high-throughput dataset to suggest func-
tional relationships between the genes (the FGA method).
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