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Abstract
Systems approaches have long been used in pharmacology to understand drug action at the organ
and organismal levels. The application of computational and experimental systems biology
approaches to pharmacology allows us to expand the definition of systems pharmacology to
include network analyses at multiple scales of biological organization and to explain both
therapeutic and adverse effects of drugs. Systems pharmacology analyses rely on experimental
“omics” technologies that are capable of measuring changes in large numbers of variables, often at
a genome-wide level, to build networks for analyzing drug action. A major use of omics
technologies is to relate the genomic status of an individual to the therapeutic efficacy of a drug of
interest. Combining pathway and network analyses, pharmacokinetic and pharmacodynamic
models, and a knowledge of polymorphisms in the genome will enable the development of
predictive models of therapeutic efficacy. Network analyses based on publicly available databases
such as the U.S. Food and Drug Administration’s Adverse Event Reporting System allow us to
develop an initial understanding of the context within which molecular-level drug-target
interactions can lead to distal effectors in a process that results in adverse phenotypes at the organ
and organismal levels. The current state of systems pharmacology allows us to formulate a set of
questions that could drive future research in the field. The long-term goal of such research is to
develop polypharmacology for complex diseases and predict therapeutic efficacy and adverse
event risk for individuals prior to commencement of therapy.
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INTRODUCTION
Over the past 60 years, drug therapy for many complex noncommunicable diseases has been
quite successful. Drugs are now routinely used to control hypertension and treat peptic
ulcers, asthma, and many types of cancers. In spite of these successes over past decades, it
has become clear that the drug discovery process has slowed down as the costs of bringing a
drug to market have gone up tremendously (1). New targets are most often identified by
linking individual cellular components to an organismal- or tissue/organ-level phenotype.
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Such distal correlations, although a good starting point, often do not work for drug
development because the cellular and tissue/organ-level systems are treated as black boxes.
This leads to a lack of mechanistic understanding of how drug interactions at the molecular
level manifest themselves as alterations in tissue/organ-level function. This lack of
understanding, in turn, leads to confounding situations at various stages during the drug
discovery process. Drugs that are promising in cell-based assays often do not work in vivo,
and even when they do, they show variable efficacy. Most new drugs often fail in Phase II
and Phase III trials. Another limitation of the black-box approach is the inability to predict
adverse events when the drug is brought to market and used by the population at large. The
occurrence of serious and sometimes fatal adverse events has led to the withdrawal of or
tight restrictions on the use of drugs that are beneficial to the majority of the population.
Such regulatory caution is warranted because of our lack of ability to predict who among the
target users of a drug will have a serious adverse event such that the risk of adverse events
outweighs the therapeutic advantage. These problems have led to calls for different
approaches to drug discovery and therapeutics (2).

The advances in mammalian genomics, biochemistry, molecular and cell biology, and
physiology have allowed us initial glimpses of the complexity of human and mammalian
biology at multiple scales that involve organization at the atomic/molecular, cellular and
tissue, organ, and organismal levels. Although this understanding is still far from complete,
the emerging picture indicates that network analysis, wherein we study the organization (i.e.,
topology) of interactions among components of a system, can provide a useful approach for
multiscale understanding. Network analyses allow us to define the relationship between
emergent functions and topology at each level of organization (atomic/molecular, cellular/
tissue, organ, and organismal) and connections between levels that give rise to organ- and
organismal-level functions. Understanding the explicit relationships between scales (i.e.,
levels) of organization allows us to appreciate how drugs that interact with molecular
components and have their first effects at the cellular level are able to produce organ- and
organismal-level effects, both therapeutic and adverse. In this approach, which focuses on
what we term multiscale mechanisms, black-box assumptions are purposefully avoided and
qualitative relationships or quantitative parameters are directly related to molecular
interactions or cellular functions.

The term systems pharmacology now describes a field of study that uses experimental and
computational approaches to provide us with a broad view of drug action rooted in
molecular interactions between the drug and its targets in the context of such targets
interacting with and regulating other cellular components. This newer definition expands the
older usage, in which systems pharmacology was used to describe drug action in a specific
organ system such as ocular pharmacology or reproductive pharmacology (3). Here we
review the current status of this new field and describe how, in our view, integrating
network analysis with dynamical quantitative approaches in pharmacokinetic and
pharmacodynamic models can help us develop a mechanistic understanding of drug action
in the context of an individual’s genomic status and environmental exposure.

TYPES OF NETWORKS USED IN ANALYZING DRUG ACTION
A network is defined as a series of entities connected to one another on the basis of a
defined criterion. The entities in a network are named nodes, which represent different types
of objects such as genes (4), proteins (5), drugs (6), and disease (7, 8). Nodes in a network
can also be used to specify the state of a system. Such specifications can be computed using
Boolean dynamics (9, 10), in which each node has a chance to exist in two states (inactive or
active), or using concentrations of the nodes with dynamical models based on ordinary
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differential equations (9, 11). The latter approach is most commonly used in
pharmacokinetic-pharmacodynamic models.

The connections between the nodes are termed edges and can be specified using criteria of
interest. In the context of studying drug action, edges may represent protein-protein
interactions (5), drug-target interactions (12), or transcriptional regulation (13). Edges can
also be defined on the basis of similarities between two nodes such as the chemical or
therapeutic similarity (6), the similarities between proteins based on the shared number of
diseases (14), or the similarities of diseases based on the shared number of genes (14).These
types of complex definitions for edges allow the networks to transcend multiple scales of
interactions from the atomic- and molecular-level drug-target interactions to the coordinated
functional outputs of multiple organs, i.e., phenotype. Such multiscale organization is
featured in Figure 1, which shows networks at two levels: the cellular/ tissue level and the
organ level. There is a possibility that tissue-level networks are distinct from cellular-level
networks. This distinction will have to be specified on a case-by-case basis. Nevertheless,
developing networks at various scales allows us to explicitly track drug effects from atomic-
level interactions to organismal physiology.

The edges of a network can be directed, in which the source node causes an effect on the
target node, and the relationship is valid in only one direction. An example of directed edges
is the protein kinase activation of a transcription factor and the regulation of a target gene by
that transcription factor (13). Alternatively, the edges can be undirected, in which
interactions can occur in both directions. Examples of undirected edges include the
interactions between a protein and its scaffold. The edges can also be given weight based on
the strength of their association. These weights can be derived from numerous criteria,
ranging from statistical correlations for distal relationships (such as gene-disease
relationships) to kinetic rate constants for direct physical interactions (such as hormone or
drug binding to receptors).

In analyzing drug actions, one can use a variety of networks based on different types of
nodes and edges. The simplest network has a directed edge connecting a drug node to its
target protein node (12).The target protein node is then connected to other proteins that
physically interact with the drug-target protein, and these proteins can be linked to
additional proteins using the same criterion (15). In this network, all edges have the same
weight, implying that they have the same extent of connectivity. This simplifying
assumption is not always true, and we need to be careful in ascertaining when the network as
depicted is a reasonable representation of the system. These types of networks are known as
interaction networks. Interaction networks allow us to quickly determine the potential
downstream and upstream interactors of a particular node (16), which can be useful in
identifying pathways for signal flow and regulatory motifs such as feed-forward and
feedback loops that have information processing capability.

Interaction networks are also the foundation of more highly specified networks that are
typically used to study biological systems such as dynamical, Boolean, and stochastic
networks. However, the interaction networks require the least amount of knowledge
regarding nodes and edges, allowing them to be easily constructed and applied to a variety
of problems (6, 17–19). The simplicity of interaction networks allows networks at different
scales of organization to be combined on the basis of the notion that they “interact”; i.e.,
they are related. A protein-protein interaction network can be expanded by connecting
proteins to their physiological function (20), and, in doing so, one can analyze drug-to-
physiological function through combining edges that represent drug-protein, protein-protein,
and protein-physiology interactions. The types of network used to analyze drug action
depend on the type of action of interest. These networks can be constructed, taken apart, and
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reorganized from different data sets that define methodologies for identifying edges that
connect the nodes. Performing the analyses correctly requires knowledge about the edges’
limitations and meanings.

EXPERIMENTAL APPROACHES IN SYSTEMS PHARMACOLOGY
The data sets needed to build networks require simultaneous measurements on a large
number of variables in response to a perturbation, such as a pathophysiological state or drug
treatment. Systems biology uses “omics” experiments, in which a large number of output
variables is measured in response to one or more perturbations. Typically, such experiments
fall into one of three categories: genomics, proteomics, or metabolomics.

Genomics Analyses
Genomics analyses involve the sequencing or characterization of many genes, typically the
whole genome simultaneously. At the DNA level, genomics involves sequencing of the
genome to identify variations and to determine transcriptional binding sites and epigenetic
status. At the mRNA level, genome-wide profiling is largely focused on characterizing gene
expression patterns in a disease state or before and after drug treatment. This type of
profiling was accomplished mostly through the use of microarrays, but in the past few years,
direct sequencing, termed mRNA seq, has become more widely used.

As the sequences of many organisms were determined, it became apparent that positional
variations exist within the DNA sequences of the individuals in a single species and even
between the sequences of pairs of chromosomes. These variations are named single-
nucleotide polymorphisms (SNPs). Sometimes SNPs fall within the coding regions of genes,
leading to changes in protein primary sequences and activity (21). Although coding-region
SNPs are infrequent, they are important in drug action because genes for several drug-
metabolizing enzymes have coding-region SNPs, such as rs1799853 in cytochrome P450–
2C9 (CYP2C9*2) for warfarin dosing (22). Consequently, genomics analysis that is focused
on DNA-sequencing methodologies has become important in understanding drug action.
Sequencing technologies are rapidly changing, and the cost of sequencing is decreasing (23).
These developments indicate that whole-genome sequencing is likely to play an important
role in systems pharmacology.

An interesting approach for characterizing drug action has been the use of gene expression
patterns as a means to connect drugs with disease states. Combining profiling experiments
with pattern-matching software, Lamb et al. (24) have created a library of gene expression
signatures from adding drugs—both U.S. Food and Drug Administration (FDA)-approved
drugs and non-therapeutic small molecules used in laboratory research—to human cell lines
in vitro to obtain whole-genome gene expression patterns. These studies indicate that
structurally different compounds that converge on common targets can yield the same gene
expression signature. As the field progresses from cell-based to tissue-based analyses of
drug action, such gene expression signatures can be useful in understanding drug action in
multiple tissues and organs.

Proteomics Analyses
Proteomics involves the study of changes in the levels or states of large numbers of proteins
in a sample of interest such as a cell extract, the plasma, or a tissue sample. Typically, the
measurement of proteins is by mass spectrometry, although sometimes protein arrays are
also used. In contrast to genomics approaches, the use of proteomics in drug discovery and
study of drug action has been limited. A major issue is the difficulty in obtaining tissue
biopsies sufficient for proteomics analyses to correlate changes in target tissues and organs
with drug action in humans. Most proteomics studies have focused on human cancer cell
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lines and can be used for target profiling (25) and mechanism-based classification of
potential drugs (26).

Metabolomics Analyses
Metabolomics focuses on measuring changes in a large number of metabolites
simultaneously (27). The method of choice for identification of metabolites is mass
spectrometry, generally preceded by chromatographic resolution. The most readily available
source for metabolic profiling in humans is plasma. Several studies have shown identifiable
metabolic signatures associated with drug treatment. A study on 50 patients with
schizophrenia being treated with antidepressants showed identifiable changes in lipid
patterns after treatment (28). These observations raise the possibility that metabolic
signatures of drug treatment could be an additional tool in assessing drug therapy in patients.
A recent study (29) on patients with major depressive disorders has shown an interesting
relationship between genomics and metabolomics in predicting drug action. Metabolomics
was used to characterize levels of amino acids in plasma. Patients who were nonresponsive
to therapy with the serotonin reuptake inhibitor citalopram showed higher baseline levels of
glycine, which remained unaltered after treatment. Genomics analyses indicated that in
nonresponders, the SNP rs10975641 in the glycine dehydrogenase gene was associated with
treatment outcome. The authors of the study (29) did not elucidate the mechanisms by which
the SNP in the glycine dehydrogenase gene can result in elevated plasma levels of glycine,
but the study is important because it provides an approach for developing mechanistic
multiscale studies wherein genomic changes can be correlated with the biochemical profile
of the plasma, which, in turn, can be correlated with treatment outcomes. Such multilevel
correlation can be used to specify mechanisms that operate within cells and tissues.

PHARMACOGENOMICS AS A SUCCESSFUL MODEL FOR SYSTEMS
PHARMACOLOGY

A success story in explicitly connecting genomic status and drug action has come from the
field of pharmacogenomics. This type of linkage is important for understanding drug action
and effects at an individual level. Genomics is thought to account for a significant part of
interindividual variability (30) in the drug effect, while eliciting consistent intraindividual
responses (31). Many FDA-approved drugs now contain pharmacogenomic information
within their labels. Pharmacogenomic specification is used for a wide range of drugs from
antiasthmatics (e.g., montelukast) (32) to cancer therapeutics (e.g., cetuximab) (33). The
study of genomics variations in altering drug responses can be divided into three major
areas: pharmacokinetics, pharmacodynamics, and responsiveness to therapy. A list of select
pharmacogenomic biomarkers in the various areas for FDA-approved drugs is given in
Table 1.

A major use of genomic information is in relating genomic status to drug dosage and
metabolism (pharmacokinetics) because drug-metabolizing enzymes play a large role in
converting prodrugs into active metabolites (e.g., codeine) (34) or active drugs into inactive
drugs or toxic metabolites (e.g., nortriptyline) (35). Sometimes, the same metabolizing
enzyme can do both: Both codeine and nortriptyline are metabolized by the cytochrome
P450 isoform CYP2D6 (35). Codeine is converted from the prodrug to the active drug,
whereas nortriptyline is converted from the active form to the inactive form. In both cases,
the relationship between the intake dose of the drug and the active drug in the plasma is
related to the activity of CYP2D6. These findings have led to tests for drug-metabolizing
proteins in individuals (36, 37) so that intake dosage can be set at a safe level for each
patient. Other drug-binding proteins with polymorphisms include drug transporters such as
the ATP-binding cassette family and solute carrier organic anion transporter family of
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membrane transporters. These transporters affect plasma concentrations of non-nucleoside
reverse transcriptase inhibitors sunitinib (a tyrosine kinase inhibitor) and methotrexate (a
dihydrofolate reductase enzyme inhibitor) (29, 38, 39).

The cytochrome P450 protein CYP2C9 regulates the metabolism of warfarin, which is used
as an anticoagulant. CYP2C9 has two polymorphisms that reduce the level of enzyme
activity; consequently, increased levels of warfarin in the blood result in an increased risk of
bleeding (22). Thus, knowing if a patient has CYP2C9 polymorphisms allows the physician
to titrate the dosage of warfarin to optimize therapy while reducing the risk of bleeding as a
serious adverse event. Testing for warfarin metabolism has become a common approach to
titrating warfarin dosage in clinical practice.

The relationship between genomic status and pharmacodynamics can also be important. An
example is the polymorphisms in vitamin K epoxide reductase (VKOR) that alter an
individual’s sensitivity to warfarin (21). VKOR activity is required for the γ-carboxylation
of multiple clotting factors, and warfarin exerts its action by inhibiting VKOR and thus
reducing clotting. Polymorphisms in the VKOR genes result in variants that have lower or
higher sensitivity to warfarin; thus, the dosage of warfarin needs to be adjusted in patients
with different polymorphisms (21). In the case of warfarin, both pharmacokinetic and
pharmacodynamic properties are regulated by SNPs, so both aspects need to be considered
in the dosing of individual patients.

Genomic status can also predict responsiveness in therapy. This type of relationship has
been used mainly in cancer therapy—the presence of certain mutant oncogenes is an
indicator for lack of responsiveness to targeted therapy. KIT oncogene mutations reduce the
responsiveness of gastrointestinal stromal tumors to imatinib (40); k-RAS oncogene
mutations in colorectal cancer reduce responsiveness to cetuximab (33); and epidermal
growth factor receptor mutations in non-small-cell lung cancer alter responsiveness to
gefitinib or erlotinib (41, 42). Other examples in which a genotype–drug response phenotype
is known but the underlying mechanism is not fully understood include patients with
variants in major histocompatibility complex class IB (HLA-B*5701) who show
hypersensitivity to the antiviral drug abacavir (43) and musculoskeletal toxicity from
aromatase inhibitors used to treat breast and ovarian cancers (44).

Several tests are commercially available for identifying polymorphisms associated with drug
responses. Those approved by the FDA include the microarray-based Roche AmpliChip®

for cytochrome P450 genotyping. Because warfarin effects are regulated by polymorphisms
in both cytochrome P450 enzymes and VKOR, the FDA recommends testing both CYP2C9
and VKORC1 polymorphisms for warfarin (45). The FDA has also approved the Invader®

UGT1A1 Molecular Assay for the polymorphisms that increase the risk of neutropenia
associated with the colon cancer drug irinotecan, which inhibits DNA topoisomerase. The
FDA recommends the testing of HLA-B*5701 for abacavir; low-density lipoprotein receptor
variants for atorvastatin; thiopurine S-methyltransferase for azathioprine; HLA-B*1502 for
carbamazepine; epidermal growth factor receptor for cetuximab; cytochrome P450 protein
CYP2C19 for clopidogrel; breakpoint cluster region–Abl tyrosine kinase translocation for
dasatinib and imatinib; UDP glucuronosyltransferase 1 family, polypeptide A1 for
irinotecan; k-RAS oncogene for panitumumab; glucose-6-phosphate dehydrogenase for
rasburicase; erythroblastic leukemia viral oncogene homolog 2 for trastuzumab; and
carbamoyl-phosphate synthase 1 for valproic acid. However, no specific tests for these
polymorphisms have been approved by the FDA.
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NEED FOR DETAILED PHARMACODYNAMIC MODELS THAT INCLUDE
CELLULAR AND TISSUE MECHANISMS

Although in the case of warfarin one can explicitly relate drug interactions with
metabolizing enzymes and target proteins to physiological events such as thrombosis and
bleeding at the organismal level, explicitly identifying such multiscale relationships for most
drugs is difficult. A major challenge for systems pharmacology is the development of a
mechanistic understanding of how different cellular- and tissue-level regulatory networks
control variability in drug response at the organismal level. For this, we need enhanced
pharmacodynamic models that couple detailed models of cellular regulatory networks with
measurable pharmacokinetic and pharmacodynamic parameters. A recent pharmacodynamic
modeling study (46) on antagonists of the calcium-sensing receptor and its relationship to
parathyroid hormone (PTH) secretion has shown how negative allostericmodulators of the
calcium-sensing receptor, coupled with negative feedback, can explain the observed
homeostatic relationship among plasma calcium, PTH, and calcium absorption. The
mechanisms of the PTH-driven negative feedback are not known; this demonstrates the need
to build detailed models of intra- and intercellular signal networks so that the molecular and
cellular bases of homeostasis can be explicitly described and understood. It has long been
known that intracellular signaling networks form regulatory motifs such as positive feedback
loops that can function as bistable switches (47) that are involved in cellular state change
such as synaptic plasticity (48). Large signaling networks are full of regulatory motifs such
as feedback and feed-forward loops that can process information as signal flows through
(16). Characterizing the topology of cellular regulatory networks and understanding the
dynamic capability of the topology can help explain both therapeutic and adverse drug
action. In the calcium-sensing receptor and PTH, identifying the molecular components that
participate in the negative feedback loop and how they can be modulated can help us design
better antagonists at the calcium-sensing receptor or develop polypharmacology for
treatment of osteoporosis.

Detailed studies of intracellular pathways, such as metabolic or signaling pathways, can be
useful for understanding the efficacy of drug action in humans. Panetta et al. (49) built
models of methotrexate metabolism and action for the treatment of childhood acute
lymphoblastic leukemia. The model incorporated the production of methotrexate
polyglutamate metabolites and the regulation of the folate pathway enzymes by both
methotrexate and its metabolites in T and B cells. The development of the detailed model
allowed for simulations that were able to explain how changing dosage and duration of
infusion affected efficacy of treatment. The simulations also took into account how SNPs in
folate metabolism genes affect drug responses. This combination of pathway simulations
and pharmacokinetic and pharmacodynamic patient data with knowledge of genomic status
can be useful in predicting drug efficacy in individual patients.

NETWORK ANALYSIS FOR DISCOVERY OF NEW DRUG TARGETS
Drug discovery for complex diseases requires the identification of therapeutic targets that
can be used to achieve the desired therapeutic effect while reducing the risk of adverse
events. Network analysis methods provide computational tools for pharmacologists and
physiologists to identify and rank potential targets, which can then be used to develop drugs.
The tasks of simultaneously identifying the appropriate target, determining efficacy for the
therapeutic effect, and predicting adverse events constitute a problem that cannot be solved
through the use of high-throughput experimental techniques alone owing to the high
dimensional size of the problem. Determination of efficacy requires detailed dynamical
models based on the biochemical kinetic parameters of the target and other proteins involved
in the phenotypic responses. Network analysis can be used, in an unbiased way, to define the
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system that needs to be dynamically modeled and identify targets that, in theory, would
enable one to have a higher specificity for the selected drug targets. Such combined network
and dynamical analysis should both increase therapeutic efficacy and decrease the adverse
events (15).

The mammalian signaling and regulatory network is complex, and even perturbations on the
intended targets may lead to adverse events owing to propagation of signal to distal effectors
in multiple cell types or tissues. Certain proteins, such as GRB2 or MYC, may directly
interact with several hundred different proteins, according to a PubMed search in March
2011. Most protein kinases have 10 or more substrates. Such multiplicity of connections
poses serious challenges in designing drugs that affect single pathways that lead to the
desired therapeutic effects. To identify new drug targets, it is important to know how
specificity of signal flow is achieved within pathways. Network analysis can be used (a) to
identify how many different proteins will be affected by the targeting of a particular protein
or (b) to identify if a protein participates in a motif (16). This approach involves the use of
what is known as a path discovery. The simplest and oldest is Dijkstra’s (50) shortest-path
algorithm: When given a seed node, the algorithm finds the shortest path between that node
and potentially every other node. By looking for a path—that is, a series of edges from a
starting node to an ending node—one can identify relationships and topology for the
network. This algorithm can be expanded by setting requirements for the path; for example,
one can require a path to start at a receptor, go through specific types of intracellular
proteins, and eventually reach a known transcription factor. However, imposing such
requirements would require a longer run time that increases with their complexity. A protein
that has a high connectivity is commonly lethal, whereas diseased genes with lower
connectivity are nonlethal but lead to a diseased phenotype (7). This type of analysis can
produce initial ranked lists of potential targets that can be further vetted by additional
criteria.

Both positive and negative effects can be predicted for a potential target on the basis of
network analysis methods. For example, a network algorithm utilizing mean first passage
time (MFPT) can, on the basis of a set of known genes that cause a prolonged long QT
interval, identify drugs that may lead to a long QT interval event (15). In this method,
Berger et al. (15) used the MFPT as a distance measure to assess how “close” a protein is to
another protein that is known to be related to long QT intervals. Other methods of measuring
functional distance can also be used. The nearest neighbor method assesses distance by
measuring the shortest length of a path between a protein of interest and any of the known
long QT–causing proteins. It is important to know the scoring metric used in the algorithm;
for example, two methods looking at protein-protein interactions may measure them
differently according to the problem of interest (6, 51). Network analysis methods can be
used to determine the association of a protein with a physiological phenotype of interest on
the basis of a defined set of proteins related to the phenotype. Therefore, proteins can be
selected as potential targets on the basis of their high proximity to the phenotype of interest
and their distance from proteins involved in adverse events. The potential of finding one
target that can be optimized for a variety of criteria simultaneously is likely to be low.
Computational network analysis allows us to explore combinatorial targets and thus
increases our chances of finding useful therapeutic agents for complex diseases.

Network Analysis to Define the Context of Targets Involved in Therapeutic and Adverse
Action

Network analysis can be used to identify physiologically relevant targets and the
neighborhood within which these targets have their action. The network-building techniques
require the selection of a seed list of proteins that are related to the physiology or
pathophysiology of interest. A seed list is a set of related nodes in a network based on some
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predefined characterization; for example, the list of gene mutations related to the congenital
prolonged QT interval used by Berger et al. (15) is a typical seed list. Other examples
include lists of genes identified through microarray experiments or genes associated with a
particular disease phenotype in the Online Mendelian Inheritance in Man® catalog
(OMIM®). Characterization of the seed list can be based on key phrases that describe an
organismal-level physiological event such as water retention or clotting. The list of relevant
genes/proteins involved in these processes can be identified through the use of databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (52), the Gene Ontology
project (53), and Reactome (54), or the list may be manually curated on the basis of the
physiology of interest (16, 55). These seed lists serve as inputs to network-building
algorithms (e.g., MFPT, nearest-neighbor, or other network distance metrics) that identify
proteins within the neighborhood associated with the phenotype of interest. To identify
candidates that are more easily druggable, researchers can further filter identified proteins
for ontological classifications such as receptors, plasma membrane proteins, or cytoplasmic
protein kinases. Thus, both potential drug targets and their functional neighborhood can be
identified.

A similar approach can be used with a known drug: One can explore functional distances
that are downstream of known drug targets to understand their therapeutic and adverse
effects. For example, starting with rosiglitazone as the drug and peroxisome proliferator-
activated receptor γ (PPARγ) as the target, we can identify a series of potentially important
PPARγ-regulated effectors such as PTGS2(prostaglandin 2 synthase), SERPINE1
(plasminogen activator inhibitor), VEGFA (vascular endothelial growth factor A), APOB
(apolipoprotein B), TSPO (mitochondrial translocator protein), MMP9 (metalloproteinase
9), IL-6 (interleukin-6), CASP3 (caspase 3), and CA2/4 (carbonic anhydrase 2/4). Several of
these proteins are associated with cardiac function and myocardial infarction (56–63) and
may in part be responsible for the observed association between rosiglitazone and
myocardial infarction (64). Thus, using information from known drug targeting and building
networks of related proteins can allow us to understand how drugs can have varied effects,
some beneficial and others detrimental.

Such network building can also be used to understand how drug-induced effects percolate
through multiple layers of organization. This is shown in Figure 2 for a few drugs that
induce long QT syndrome as an adverse event. Targets of these drugs are part of the cellular
networks that directly regulate the ion channels whose activity shapes the cardiac myocyte
action potential. Changes in this cell physiological phenotype (myocyte action potential)
lead to the observed organ-level phenotype: the prolonged QT interval in the
electrocardiogram. Such prolongation can lead to arrhythmias that can result in life-
threatening events such as torsades de pointes. Although this diagram implies that we
understand the multiscale mechanism by which these drugs cause long QT syndrome and
fatal arrhythmias, the intracellular network does not explain why such adverse events are
observed in only a few patients. The answer may lie in building tissue-level networks to
explain how changes in myocyte action potential may or may not lead to changes in
electrocardiogram profiles. Building such multicellular networks that are anchored in
molecular interaction networks will be the required next step to address multiscale
biological problems of this kind.

Network Analyses of the FDA Adverse Events Reporting System Database
Building organ-level and organismal-level networks to identify concurrence of therapeutic
and adverse phenotypes requires that one define the loci identifying relationships between
drug-target interactions and phenotypes in humans. The FDA Adverse Events Reporting
System (AERS) is a publicly available database that records drug-induced adverse events in
people using one or more drugs. The FDA AERS database, in combination with other

Zhao and Iyengar Page 9

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2013 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



databases such as DrugBank, enables one to examine drug target relationships to phenotypes
that are adverse events in an unbiased way in the context of multitherapeutic systems
without control subjects. This allows us to associate drugs with possible adverse effects
without having to conduct specialized trials. AERS can be used to determine relative
adverse event profiles. For example, using AERS to select for patients who are being treated
for schizophrenia and who experienced tardive dyskinesia as an adverse event, we identify
haloperidol, promazine, risperidone, quetiapine, ziprasidone, and clozapine. All these drugs
are associated with this adverse event in a clinical trial (65, 66).

Network analysis can be used to associate distal drug targets with particular adverse events.
Using these drug targets as seed nodes, we can use methods such as MFPT to look for genes
that are closely connected to them. This approach would help us understand and identify
potentially useful targets for combination therapies that might mitigate the adverse events or
help us predict drug targets that should be avoided because of their potential to lead to
adverse events. A major limitation of using the FDA AERS database, however, is that it
does not have data on the total number of people using a drug of interest. This information is
critical in determining the prevalence of incidents and reporting bias. These problems can be
ameliorated in the future through the use of electronic medical records, as they become more
commonplace in hospitals and clinics. Mining data from electronic medical records to
identify unknown drug interactions and adverse events is likely to be useful.

RELATING TARGETS OF A DRUG TO ITS STRUCTURE
The network analyses described above focus on drug targets as macromolecules that
function within the context of cellular regulatory systems. Such an analysis does not take
into account atomic-level interactions between the drug and its targets. As we understand
more about cellular-level and tissue/organ-level networks, potential drug targets will have to
be filtered by structural criteria to determine the ability of the target to be regulated by
drugs. Interactions between a drug and its target depend on structural determinants both in
the drug and in the target. This is a well-studied area in medicinal chemistry and structural
pharmacology. The binding pockets of targets are often analyzed to understand how the
drugs fit and the types of conformational changes they induce. Agonists and antagonists
interact with the same binding pocket, and the differences in detailed interactions lead to
either activation or inhibition of the receptor. The structure of a drug can be used to
determine the targeting of a drug through various computational algorithms (67–72) and for
ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions (73). The
identification of targets that bind or metabolize structural variants of a drug differently can
serve as the starting point for network analysis in the identification of off-target
physiological events. However, there are no tools to conduct such scalable computation
easily. To build such integrated networks, we require knowledge of the structures of both the
drug and the targets of the drug. Often, target structures are not readily available. This lack
of structural knowledge can lead to false-positive drug-target interactions. The potential of
false positives may be decreased through the application of orthogonal experimental
techniques such as high-content screening (74), in vitro ADMET (75), medicinal chemistry
techniques (76, 77), binding screens (78), and gene regulation (79). Methods based on
binding screens and gene regulation may also be used to develop drug-specific target
interactions as this information is made available through the differential binding
interactions and gene regulation with and without the drug.

PERSPECTIVE
Although in its infancy, the field of systems pharmacology has enormous potential to impact
both drug development and drug usage in the future. Currently, drug development is largely
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focused on noncommunicable diseases such as cancers, metabolic diseases, type 2 diabetes,
psychiatric disorders, and immune disorders, as well as communicable diseases wherein the
pathology arises from complex host-pathogen interactions and is not susceptible to simple
treatment approaches such as the use of antibiotics. Developing drugs for these diseases
through classical empirical methods has not proven to be productive. Many molecules that
show good therapeutic effects in cellular or animal models fail to be efficacious in humans.
These failures arise from our lack of understanding of human biology as defined by the
multiscale mechanisms that underlie the propagation of effects from molecular-level drug-
target interactions to organismal-level phenotypes. In addition to understanding and
predicting efficacy of therapy, it is becoming increasingly imperative that treatments are
personalized so that the risks associated with the drug therapy are understood before
treatment commences. These considerations lead to a set of key questions (see sidebar,
Questions in Systems Pharmacology) that need to be addressed by research in the field of
systems pharmacology. As such research progresses, the pace of drug discovery and therapy
should become more proportional to the pace of discovery in basic biomedical sciences.
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QUESTIONS IN SYSTEMS PHARMACOLOGY

1. What are the characteristics of diseases for which drugs at a single target may
not be therapeutically efficacious?

2. How does intracellular and intercellular networking give rise to adverse events?

3. How do we relate the efficacy of (poly)pharmacology to the genomic status of
the individual, and how does genomic status interact with environment and
behavior to control (poly)pharmacology efficacy?

4. How do we determine what combinations of targets are most likely to be
effective for polypharmacology of complex diseases?

5. Can we use the human interactome and the genomic status of the individual to
predict therapeutic efficacy and adverse event probability prior to
commencement of therapy?
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Figure 1.
A schematic representation of the multiscale networks needed to understand and predict
drug action. Atomic interactions between drug and target lead to alterations in the function
of cellular regulatory networks, which lead to changes in cellular- and tissue-level
physiology, which, in turn, lead to alterations in organ-level networking, which lead to
changes in whole-body functions. Networks at both the cellular/tissue level and organ level
are needed to understand the mechanism of drug action and to predict therapeutic efficacy
and adverse event probability. The drug-protein structures are taken from structures
deposited in the Protein Data Bank (http://www.pdb.org) with PDB IDs of 3QC4 and 2Y03
(88, 89), with the authors’ permission.

Zhao and Iyengar Page 17

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2013 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.pdb.org


Figure 2.
An intracellular network to explain how drug-induced adverse events can propagate across
scales of organization. Drug interaction with the target leads through the network to an
alteration of channel activity, which leads to a change in duration of the myocyte action
potential, which leads to prolongation of the QT interval as seen in the electrocardiogram.
This can result in fatal arrhythmias such as torsades de pointes. This network explains how
drugs used to treat very different pathophysiologies such as diarrhea (loperamide) and
cancer (dasatanib) can lead to long QT syndrome as an adverse event. However, this
network does not explain why only some people show drug-induced long QT syndrome and
why only some patients with long QT syndrome develop fatal arrhythmias. Additional
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information on genomic status and tissue- and multiorgan-level networks may be needed to
explain individual susceptibility. The drugs are shown in purple boxes. Red boxes are drug
targets, green boxes are intermediate nodes, and blue boxes are channels responsible for the
various phases of the myocyte action potential. The light blue box represents a node that is
an intermediate and also a channel involved in myocyte action potential, and each brown
box represents a node that is both an intermediate and also a drug target. Black arrows
indicate edges that are either undirected or directed with an unknown effect type (inhibition
or activation), red arrows indicate edges that are activating, and blue arrows indicate edges
that are inhibitory. Abbreviation: I, current that arises from the functioning of the channel
protein. Adapted from Berger et al. (15) with permission.
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Table 1

Various types of pharmacogenomic effects in drug action

Drug Gene Effect

Pharmacokinetics

Codeine CYP2D6 (34) Increase in the amount of active drug by variants

Clopidogrel CYP2C19 (80) Increase in the amount of active drug by variants

Warfarin CYP2C9 (81) Changes in drug levels in blood by variants

Pharmacodynamics

Warfarin VKORC1 (21) Increase or decrease of effectiveness of drug

Capecitabine DPD (82) Decrease in breakdown of 5-FU metabolite

Responsiveness

Panitumumab k-RAS (83) Requirement of wild-type k-RAS for drug efficacy

Imatinib c-KIT (84) Requirement of wild-type c-KIT for drug efficacy

Tretinoin PML/RARα translocation (85) Increased drug responsiveness

Unknown mechanisms

Carbamazepine HLA-B*1502 (86) Increased risk of Stevens-Johnson syndrome and toxic epidermal necrolysis

Abacavir HLA-B*5701 (87) Multiorgan systemic hypersensitivity, which may lead to death

Abbreviations: 5-FU, fluorouracil; CYP, cytochrome P450; DPD, dihydropyrimidine dehydrogenase; HLA, human leukocyte antigen; PML,
promyelocytic leukemia; RAR, retinoic acid receptor; VKOR, vitamin K epoxide reductase.
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