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Functional evidence for physiological
mechanisms to circumvent neurotoxicity
of cardenolides in an adapted and a
non-adapted hawk-moth species
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1Molekulare Evolutionsbiologie, and 2Tierphysiologie, Biozentrum Grindel, Martin-Luther-King-Platz 3,
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Because cardenolides specifically inhibit the NaþKþ-ATPase, insects feeding on

cardenolide-containing plants need to circumvent this toxic effect. Some insects

such as the monarch butterfly rely on target site insensitivity, yet other carde-

nolide-adapted lepidopterans such as the oleander hawk-moth, Daphnis nerii,
possess highly sensitive NaþKþ-ATPases. Nevertheless, larvae of this species

and the related Manduca sexta are insensitive to injected cardenolides. By radio-

active-binding assays with nerve cords of both species, we demonstrate that the

perineurium surrounding the nervous tissue functions as a diffusion barrier for

a polar cardenolide (ouabain). By contrast, for non-polar cardenolides such as

digoxin an active efflux carrier limits the access to the nerve cord. This barrier

can be abolished by metabolic inhibitors and by verapamil, a specific inhibitor

of P-glycoproteins (PGPs). This supports that a PGP-like transporter is involved

in the active cardenolide-barrier of the perineurium. Tissue specific RT-PCR

demonstrated expression of three PGP-like genes in hornworm nerve cords,

and immunohistochemistry further corroborated PGP expression in the peri-

neurium. Our results thus suggest that the lepidopteran perineurium serves

as a diffusion barrier for polar cardenolides and provides an active barrier

for non-polar cardenolides. This may explain the high in vivo resistance to car-

denolides observed in some lepidopteran larvae, despite their highly sensitive

NaþKþ-ATPases.
1. Introduction
Over the course of evolution, plants have evolved a vast diversity of secondary

plant compounds many of which act as chemical weapons against herbivores.

In return, herbivores have developed strategies to overcome plant defences. Mech-

anisms of resistance in insects are numerous and include detoxification of toxins

by enzymes, excretion, exclusion (gut barriers) and target site insensitivity [1,2].

In this study, we focus on insect resistance to plant-produced cardenolides

(aka cardiac glycosides), a specific class of plant toxins [3,4]. Cardenolides are

specific inhibitors of the NaþKþ-ATPase, a ubiquitous animal enzyme that is

essential for many physiological processes [5,6].

Several herbivorous insects, including the monarch butterfly (Danaus
plexippus) not only feed on cardenolide-containing plants, but also sequester

the toxins and thus derive protection against predators [7]. The NaþKþ-

ATPase of D. plexippus is altered by specific amino acid substitutions, which sig-

nificantly reduce its cardenolide susceptibility (target site insensitivity; [8,9]). In

earlier studies, however, we found that lepidopterans that are adapted to carde-

nolides sometimes possess cardenolide sensitive NaþKþ-ATPases [10,11].

Moreover, among cardenolide-adapted Lepidoptera, the monarch butterfly

actually seems to be an exceptional case [9,12,13].

In Lepidoptera, NaþKþ-ATPase is predominantly expressed in the nervous

tissue. The concomitant occurrence of dietary cardenolides in the caterpillars’

haemolymph, therefore, renders the interface between insect blood and nervous
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Figure 1. Binding of 3H-ouabain to the isolated nerve cord of D. nerii cater-
pillars: (a) caterpillar of the oleander hawk-moth (D. nerii ). The major host
plant of this species is N. oleander, whose marked toxicity is based on carde-
nolides. (b) Disruption of the perineurial barrier with urea in isolated nerve cords
of D. nerii (each datapoint represents the mean (+s.d.) of three independent
incubations, i.e. 18 caterpillars were used in total). (Online version in colour.)
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tissue especially important [11]. The ventral nerve cord of

insects is, like in other organisms, surrounded by the perineur-

ium, a tissue maintaining ionic conditions required for the

excitability of neurons, which may be different from the com-

position of the haemolymph (low Kþ and high Naþ required

in the extracellular space of the nerve cord versus an approxi-

mate 1 : 1 ratio in the haemolymph; [14]). Additionally, this

tissue is believed to function as a blood–brain barrier for

toxic plant compounds present in the herbivores’ haemolymph

[15]. However, thus far there is only limited functional

evidence for such a protective function of the perineurium.

In this study, we test whether the perineurium can func-

tion as a barrier to dietary cardenolides absorbed into the

haemolymph and thus potentially contribute to resistance

to these toxins. We used the oleander hawk-moth (Daphnis
nerii; figure 1a), a cardenolide specialist that feeds primarily

on oleander (Nerium oleander), a plant rich in these toxins

[16]. For comparison, we included Manduca sexta, a related

species which is not adapted to cardenolides.

Daphnis nerii caterpillars have relatively low levels of

oleander cardenolides in their body (approx. 150–200 mg at

maximum; [16]). Nonetheless, owing to their highly sensitive

NaþKþ-ATPase even minute amounts of cardenolides in the

haemolymph can be fatal [10]. Because oleander and other

cardenolide-containing plants have cardenolides with a

wide range of polarity, we speculated that different mechan-

isms may be important in insect resistance to diverse

cardenolides. For example, the perineurium forms a diffusion
barrier for polar cardenolides as was shown for M. sexta [17].

Nonetheless, non-polar cardenolides that are able to use the

transcellular pathway [18] might require an active barrier

mechanism (i.e. efflux transporters). Both mechanisms are

tested here by physiological experiments.

In the mammalian brain, P-glycoprotein (PGP) is one

of the most important efflux transporters [19] with an

amazingly wide substrate spectrum including the cardenolide

digoxin [20]. This 170-kDa membrane bound protein, a

member of the ABC (ATP-binding cassette)-transporter super-

family, extrudes xenobiotic compounds from cells driven by

ATP hydrolysis. In M. sexta, PGP was already suggested to

be involved in nicotine resistance [15]. In other insects, it is

believed to mediate resistance to insecticides or xenobiotics

[21,22]. We therefore tested whether a PGP-like transporter

may be involved in the physiological blood–brain barrier of

the hawk-moth nerve cord using the well-known PGP inhibi-

tors quinidine and verapamil. Immunohistochemical assays

with monoclonal antibodies were further used to visualize

PGP as well as NaþKþ-ATPase occurrence in the nerve cord.

Moreover, an analysis of M. sexta expressed sequence tags

(EST) data followed up by tissue-specific RT-PCR confirmed

the occurrence of PGP-like transporters in the perineurium.

In summary, our investigations address the relative

importance of passive and active mechanisms in protecting

the hawk-moth nervous system from potent plant toxins.
2. Material and methods
(a) Radiochemicals and inhibitors
3H-ouabain (12 Ci mmol21, dissolved in 9 : 1 ethanol : toluene, or

30 Ci mmol21, dissolved in ethanol) was purchased from GE

Healthcare (Freiburg, Germany) and Perkin Elmer (Rodgau,

Germany). 3H-digoxin was purchased from Perkin Elmer

(40 Ci mmol21, dissolved in ethanol). Both ouabain and digoxin

most likely do not occur in larval host plants of D. nerii, but

were used owing to their commercial availability and strongly

differing polarity. 2,4-dinitrophenol (2,4-DNP; Fluka, Taufkirchen,

Germany), carbonyl cyanide 3-chlorophenylhydrazone (CCCP;

Sigma, Taufkirchen, Germany), verapamil hydrochloride (Sigma)

and quinidine (Sigma) were used as 0.05 M stock solutions in

ethanol. In our binding experiments, we used 3H-cardenolide con-

centrations of 0.35 and 0.7 mM, respectively. We decided to use such

low amounts because Rubin et al. [17] observed non-specific

binding of 3H-ouabain to native nerve cords of Manduca at concen-

trations above 10 mM. We decided not to refer our disintegrations

per minute (dpm) values to protein content throughout the exper-

iments because protein determination proved to be dependent on

storage time (at 2208C) post-experiment. Referring to nerve cords

as experimental units, on the other hand, proved to be highly

reliable because the (simultaneously determined) protein content

of 18 D. nerii nerve cords (eight ganglia each, see below) averaged

63.01 mg with a standard deviation of 9.74. The small standard

deviations of our treatment groups throughout the experiments

give further evidence that this approach provides reliable data

that are not biased by size differences. Therefore, the radioactivity

measured in our experiments is expressed as dpm per nerve cord.

All data used in the inhibitor experiments are provided in the

electronic supplementary material.

(b) Diffusion barrier
To test for a diffusion barrier to polar cardenolides, we followed

the experimental design described by Rubin et al. [17], who dis-

rupted the perineurium of M. sexta by treatment with urea.
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Caterpillars of D. nerii (European origin) were raised on greater

periwinkle (Vinca major), which is devoid of cardenolides, at 238C
(16 L : 8 D cycle). Prior to dissection, last instar caterpillars were

chilled on ice and decapitated. Ventral nerve cords were removed,

placed in cold incubation buffer (125 mM NaCl, 5 mM MgCl2, 0.5%

bovine serum albumin (BSA) and 12.5 mM imidazole, pH 7.3),

cleaned from adherent tissue and trimmed to a chain of eight

ganglia plus intervening connectives (abdominal ganglia plus

metathoracic ganglion; [23]). For each of three replicates a series

of six caterpillars was used. One nerve cord of a series was used

as a control and was kept in incubation buffer at room temperature

for the duration of the urea treatment. The additional five nerve

cords were immersed in 3 M urea in incubation buffer for 5, 10,

12, 15 or 20 min, respectively. The cords were then washed twice

with incubation buffer for at least 5 min each. Following urea treat-

ment, cords (including the control cord) were individually

incubated in 100 ml incubation buffer with 0.7 mM 3H-ouabain for

1 h at 378C. After incubation, cords were washed in an excess

volume of 10 mM imidazole (pH 7.3) for 30 min on ice. Each

cord was then transferred to 200 ml 0.2 M NaOH/1 per cent SDS

and digested overnight. To 150 ml of this extract 3 ml liquid scintil-

lation cocktail (Ultima Gold, Perkin Elmer) were added and

radioactivity determined in a liquid scintillation counter (Wallac

1409, easy count mode). The remainder of each sample was stored

at 2208C for later protein determination with the bicinchoninic

acid (BCA) assay (Thermo Scientific) using BSA as a standard.

(c) Active barrier
(i) Manduca sexta
Eggs of M. sexta were kindly supplied by Dr. Markus Huß

(University of Osnabrück). Caterpillars were reared on gypsy

moth diet (MP Biomedicals) supplemented with streptomycin,

chloramphenicol, methyl benzoate and formalin (268C; 16 L : 8 D

cycle). Only last instar caterpillars before reaching the wandering

stage were used.

(ii) Daphnis nerii
Caterpillars of D. nerii (origin Thailand) were raised from eggs at

278C at 13 L : 11 D cycle. Hatched caterpillars were initially fed

with V. major later transferred (second instar) to N. oleander and

raised to the last instar.

Nerve cords of both species were dissected as described

above and maintained until incubation on ice in Manduca
saline: 5.0 mM K2HPO4, 10.0 mM MgCl2, 1.0 mM CaCl2,

10.0 mM NaCl, 10.0 mM KOH, 7.4 mM L-proline, 7.7 mM tri-

potassium citrate, 2.8 mM disodium succinate, 2.0 mM glucose,

175.0 mM sucrose, 5.6 mM malic acid, 10.0 mM HEPES, pH 6.7

[24]. Again, the posterior eight ganglia were used. To test the

hypothesis that the nerve cords of M. sexta and D. nerii possess

an energy-driven barrier that prevents cardenolides from reach-

ing the NaþKþ-ATPase, the metabolic inhibitors 2,4-DNP and

CCCP were applied. To test whether a PGP-like transporter is

involved in this barrier, we used verapamil and quinidine that

are well-known competitive PGP inhibitors [25]. All inhibitors

were dissolved in ethanol and applied at a final concentration

of 1 mM. Controls were incubated with an equivalent amount

of ethanol. The concentration of 3H-digoxin in the assay was

0.35 mM (ethanol concentration 3.36%). Each nerve cord was

incubated in a volume of 100 ml Manduca saline at 378C. After

30 min, tubes were placed on ice, the radioactive solution was

removed, 1 ml of cold 10 mM imidazole (pH 7.3) added and

mixed by vortex stirring. After replacing the washing buffer

once, tubes were inverted and kept on ice for 30 min. The short

washing step was performed to remove adherent radioactive sol-

ution, whereas the long washing step was performed to remove

unbound 3H-digoxin [17]. In an additional experiment (data not

shown) we found that nearly all adhering radioactivity is removed
from the tissue after the 30 min washing step. After washing, the

samples were lysed and radioactivity counted as described above.

(d) Statistical analysis
If necessary, data were squared or log-transformed to achieve

homogeneity of variances (Levene’s test) and approximately

normal distributions (Shapiro–Wilk). Data were analysed by

ANOVA using a randomized block design with the experiment

as blocking factor. Post hoc comparisons are based on Tukey’s

honestly significant difference (HSD) test. All statistical tests

were performed with SPSS (Statistical Package for the Social

Sciences, IBM).

(e) Comparison of digoxin versus ouabain permeability
This experiment was performed to demonstrate the different per-

meability of the perineurium of D. nerii caterpillars for ouabain

and digoxin. As incubation buffer, physiological saline without

energy sources (PBS: 137 mM NaCl, 2.7 mM KCl, 4.3 mM

Na2HPO4, 1.4 mM KH2PO4, pH 7.4; [26]) was used, otherwise

the assay followed the procedures described above. Control

nerve cords were incubated in buffer with 0.7 mM 3H-digoxin or
3H-ouabain only. In parallel, nerve cords were incubated with

the labelled compounds plus CCCP (1 mM). CCCP was added

to disable active transport processes and get an estimate of the

amount of cardenolides infiltrating the nerve cord by diffusion.

( f ) Immunohistochemistry
(i) P-glycoprotein-like transporter
Nerve cords of chilled D. nerii caterpillars (last instar) were dis-

sected and immersed in PBS. Tissues were fixed for 1 h at room

temperature in Lana’s fixative (15% picric acid, 4% paraformalde-

hyde (PFA) in 0.5 M sodium phosphate buffer, pH 7; [15]). After

fixation, tissues were washed three times for 10 min each in PBS

and successively cryoprotected in 5, 10 and 15 per cent sucrose in

PBS for 1 h each. Following cryoprotection tissues were embedded

in optimal cutting temperature (OCT) compound (Sakura, Alphen

aan den Rijn, The Netherlands) frozen in isopentane in liquid

nitrogen and stored at 2808C until sectioning. Sections of 16 mm

were cut on a Leica CM 1950 cryostat and allowed to dry at room

temperature. Slides were stored at 2808C until use. The anti-PGP

antibody C-219 (Abcam, Cambridge, UK; dissolved in PBS) was

applied at a concentration of 10 mg ml21. In the control sections,

the primary antibody was omitted. The primary antibody was

detected with the NOVADetect DAB (3,30-diaminobenzidine)-

Substrate Kit (Dianova, Hamburg, Germany). Stained sections

were shortly washed with deionized water, transferred into 80

per cent ethanol (via 60% ethanol) and mounted in Euparal.

Sections of ganglia were inspected under a Zeiss Axioskop 2 and

photographed with a Zeiss AxioCam colour camera.

(ii) NaþKþ-ATPase
To visualize the target site of cardenolides in the hawk-moth

ganglia (M. sexta) we followed the methods described in [27] and

[11]. For the specific detection of Naþ/Kþ-ATPase in paraffin sec-

tions, we used the monoclonal antibody a5 (developed by D.M.

Fambrough, maintained and distributed by the Developmental

Studies Hybridoma Bank, University of Iowa, USA).

(g) Molecular phylogenetic analyses
The coding sequences of three PGP-like transporters of Trichoplu-
sia ni [28] were used to identify homologous M. sexta sequences

in a collection of preassembled M. sexta ESTs (H. Vogel 2011,

unpublished data). The corresponding amino acid sequences

are given in the electronic supplementary material, figure S1.
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Available PGP-like transporters were downloaded from Gen-

Bank (accession date: May 2012), including the three PGP-like

transporters of Drosophila melanogaster (MDR49, MDR50 and

MDR65; [29,30]), as well as several PGP-like transporters of

other insects and crustaceans. A complete sequence list including

accession numbers is given in electronic supplementary material,

table S1. The amino acid sequences were aligned with MAFFT

using the G-INS-i routine [31] and the alignment was processed

with Gblocks v. 0.91b [32]. Gblocks settings and the final align-

ment are given in electronic supplementary material, figure S2.

Phylogenetic analyses were performed with MRBAYES v. 3.1 [33]

using the WAG model [34]. Metropolis-coupled Markov chain

Monte Carlo sampling was performed with one cold and three

heated chains. Two independent runs were performed for

1 million generations. Trees were sampled every 100th gener-

ation and posterior probabilities were estimated on the final

7500 trees (burnin ¼ 2500). Mammal PGPs, which are known to

be homologous to the PGP-like transporters of D. melanogaster
[29,30] were used to root the phylogram for visualization purpose.

(h) RT-PCR
Total RNA was extracted from nerve cords (eight hindmost

ganglia, tissues from 2–3 individuals pooled) and midguts of M.
sexta caterpillars (last instar) with the RNeasy plus kit (Qiagen,

Hilden, Germany). In both cases, three independent RNA extrac-

tions were performed (biological replicates). Amounts of RNA

were assessed by reading the absorption at 260 nm and

subsequently confirmed by denaturing gel electrophoresis. Equiv-

alent amounts were transcribed into cDNA with Superscript III

(Invitrogen, Darmstadt, Germany) using a combination of dT-17

and random hexamer primers. Amplification was performed

using a standard protocol (Invitrogen Taq Polymerase; PCR:

958C for 45 s, 528C for 60 s, and 728C for 60 s; 40 cycles). Gene

specific oligonucleotide primers were: 50-TTGACGGCAGTGT

GACGATAG-30 and 50-CCTTCAGGAGACGTTTGCATC-30 for

M. sexta PGP-like transporter I, 50-TCAAGATGTAGAGCCCG

TGGT-30 and 50-CCAGCGGTAGTGAAGGTTGAG-30 for M. sexta
PGP-like transporter II, and 50-TTCGGTGGCGCAGTTTATAGT-30

and 50-TCTTGTGCCCATCTTCTTTGC-30 for M. sexta PGP-like

transporter III. Primer specificity was confirmed by sequencing

the corresponding PCR products (GATC, Konstanz, Germany).
3H-digoxin 3H-digoxin
+ CCCP

3H-digoxin
+ verapamil

0

Figure 2. Influence of inhibitors on 3H-digoxin binding in isolated nerve cords:
(a) effect of the metabolic inhibitors 2,4-DNP and CCCP on nerve cords of M.
sexta (n ¼ 5; mean + s.d.). (b) Effect of the PGP inhibitors quinidine and
verapamil on nerve cords of M. sexta (n ¼ 5; mean + s.d.). (c) Influence
of the metabolic inhibitor CCCP and the PGP inhibitor verapamil on 3H-digoxin
binding in isolated nerve cords of D. nerii (n ¼ 6; mean + s.d.). Asterisks
above horizontal lines indicate significant differences ( p , 0.05, randomized
block ANOVA with experiment as blocking factor, followed by Tukey HSD
tests). Each data point represents the mean of 5 nerve cords per treatment
(b and c) or 6 nerve cords per treatment (c) +s.d.
3. Results
(a) Diffusion barrier
In our experiment with D. nerii caterpillars, we found a cor-

responding result to that described for M. sexta [17]:

ouabain binding to the isolated D. nerii nerve cord linearly

increased with time over the first 10 min of incubation in

3 M urea (figure 1b). After 10 min, the curve reached a pla-

teau either indicating that a limit of permeabilization was

achieved, or complete permeabilization of the diffusion

barrier and saturation of the ouabain binding sites.

(b) Active barrier
In contrast to polar ouabain, the more lipophilic digoxin is

known to permeate cell membranes [18]. Therefore, we

assume non-polar cardenolides to necessitate active barrier

mechanisms that prevent them from entering the nerve cord.

Application of the metabolic inhibitors (ionophores)

2,4-DNP and CCCP on the isolated nerve cord of M. sexta
significantly enhanced tissue binding of 3H-digoxin (figure 2a)

to 1.7-fold and 2.3-fold, respectively, of the untreated control.

For D. nerii, we tested only the more effective inhibitor CCCP
(figure 2c). Here, the increase of 3H-digoxin binding was even

stronger than that in M. sexta (4.5-fold compared with 2.3-fold).

To assess the involvement of a PGP-like transporter in the

active barrier, the widely used PGP inhibitors verapamil and

quinidine were tested for their effect on digoxin binding to

the nerve cord. For M. sexta, verapamil enhanced 3H-digoxin

binding to the nerve cord 2.7-fold. Quinidine produced a simi-

lar trend (figure 2b) which was, however, not significant. For

D. nerii, only verapamil was applied which again significantly

increased 3H-digoxin binding. Interestingly, as with CCCP, this
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cords per treatment (i.e. 12 caterpillars were used in total).
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effect was also stronger than in M. sexta (3.4-fold compared

with 2.7-fold).

To exclude the possibility that verapamil simply permeabi-

lizes the perineurium, M. sexta nerve cords were incubated

with digoxin and digoxin plus verapamil or with ouabain

and ouabain plus verapamil, respectively. If verapamil simply

disrupted the passive diffusion barrier, the polar ouabain

was also expected to gain access and bind to the nervous

tissue to a larger extent upon verapamil treatment. This was,

however, not the case (see the electronic supplementary

material, figure S3).
(c) Comparison of digoxin versus ouabain permeability
When nerve cords of D. nerii were incubated with either car-

denolide alone or in combination with CCCP, the latter

significantly increased digoxin binding but not ouabain bind-

ing (figure 3). This supports our conclusion that digoxin can

infiltrate the nerve cord by diffusion when active efflux car-

riers are disabled. The polar ouabain, however, is excluded

by a diffusion barrier and its binding is not increased when

the metabolic poison CCCP is applied. Interestingly, the

active barrier was still functional in this experiment (and

excluding most digoxin when not blocked by CCCP),

although we here used PBS instead of Manduca saline. In con-

trast to the latter, the former lacks energy sources thus

indicating that intrinsic energy levels are sufficient to main-

tain functionality of the efflux carriers for the duration of

the experiment.
(d) Immunohistochemical detection of a
P-glycoprotein-like transporter

The widely used anti-PGP antibody C219 binds to a con-

served epitope of the protein [35]. We applied this antibody

to cryosections of ganglia from D. nerii caterpillars and found

specific staining (brown precipitate) only in the periphery of

the respective ganglion (figure 5a).
(e) Identification of P-glycoprotein-like transporters
expressed in the nerve cords

Three proteins with at least 75 per cent identity to either one of

the PGP-like transporters of T. ni were identified in the ESTs of

M. sexta. We here arbitrarily refer to these corresponding pro-

teins as PGP-like transporters I, II, and III. The phylogenetic

analysis (figure 4a) shows that the lepidopteran PGP-like

transporters I form a monophyletic clade with D. melanogaster
MDR50 and several other insect proteins (posterior proba-

bility 1.0). Lepidopteran PGP-like transporters III form a

monophyletic clade with D. melanogaster MDR65 (posterior

probability 0.97), which are in a sister group position with a

monophyletic clade that among other insect proteins includes

D. melanogaster MDR49 (posterior probability 1.0). Lepidop-

teran PGP-like transporters II are in a sister group position to

a monophyletic clade, which comprises both D. melanogaster
MDR49 and MDR65 (posterior probability 0.98). RT-PCR ana-

lyses show that all of the lepidopteran PGP-like transporters

are expressed in the nerve cord of M. sexta, whereas in the gut

a comparable strong expression appears to be restricted to

PGP-like transporter I (figure 4b).

( f ) Immunohistochemical detection of NaþKþ-ATPase
Application of the monoclonal anti-NaþKþ-ATPase antibody

a5 revealed a strong signal in larval nerve cords of M. sexta
ganglia (figure 5b). The occurrence of NaþKþ-ATPase is

apparently restricted to the neurons within the ganglion

and no specific signal could be observed in the perineurium.
4. Discussion
In our study we focused on D. nerii and M. sexta, two closely

related species that differ in their host plants and the second-

ary compounds they are typically exposed to. Whereas

M. sexta is naturally not exposed to dietary cardenolides,

D. nerii is an oleander specialist and encounters high concen-

trations of cardenolides of a wide polarity range in its

natural diet, oleander. This species does not sequester cardeno-

lides as do other specialists such as the monarch butterfly. The

presence of only low amounts of cardenolides in the body [16]

could be achieved by a relative impermeable gut membrane as

has been observed in generalist insects such as Schistocerca and

Periplaneta [1]. Such impermeability is not surprising in the

case of polar cardenolides, which are unable to passively

cross the gut membrane, yet in these species the guts are

even impermeable to the markedly non-polar cardenolide

digitoxin. As the NaþKþ-ATPase of D. nerii is highly suscep-

tible to cardenolides [10], additional mechanisms are needed

to avoid even low amounts penetrating into the haemolymph.

An earlier study on cardenolide-adapted caterpillars

revealed that NaþKþ-ATPase is largely restricted to the caterpil-

lars’ nervous tissue [11]. Accordingly, we found that D. nerii
caterpillars can tolerate high levels of ouabain if injected into

the larvae’s body cavity [10]. We, therefore, postulated a

mechanism that prevents cardenolides from reaching the

NaþKþ-ATPase within the nervous system and thus, focused

here on the interface between cardenolide-containing

haemolymph and the ventral nerve cord.

Our data revealed that ouabain gains access to the

NaþKþ-ATPase only when the nerve cord of D. nerii has

been treated with urea. As urea is believed to disrupt the
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Figure 4. Molecular characterization of M. sexta PGP-like transporters: (a) phylogenetic relationships among arthropod PGP-like transporters. Except for M. sexta,
available sequences were retrieved from GenBank and one was arbitrarily chosen if several sequences per genus existed. In accordance with previous studies, the
PGP-like transporters of D. melanogaster were named multi drug resistance (MDR) protein and the mammalian PGPs were used to root the phylogram [29,30].
Nodes with Bayesian posterior probabilities higher than 0.95 are indicated by filled black circles, and the scale bar equals 0.1 expected substitutions per site.
(b) Detection of PGP-like transporter encoding mRNAs in nervous and midgut tissue of M. sexta (biological triplicates under identical PCR-conditions).
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lepidopteran perineurium [17], our results provide evidence

that the native, intact perineurium is not permeable for oua-

bain and we can assume that this applies also to other

relatively polar cardenolides. Therefore, the target site of

cardenolides, the NaþKþ-ATPase, is shielded from polar

cardenolides present in the haemolymph. We here observed

a similar time-dependent increase of 3H-ouabain binding to

the urea-treated nerve cord as described by Rubin et al. [17]

for M. sexta to nerve cords of D. nerii, a species that actually

has to cope with dietary cardenolides.
The diffusion barrier is probably constituted by the cells

of the perineurium that form tight junctions [14] impeding

the paracellular pathway for diffusing compounds. This

barrier is most likely not selective for cardenolides, but rep-

resents a diffusion barrier for any polar compound. The

ionic composition of the haemolymph would not be suitable

for nervous function and thus, the perineurium is assumed to

be responsible for the maintenance of the necessary ion con-

centrations in the nerve cord’s extracellular space [14].

Therefore, the impermeability to ouabain of the perineurium
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Figure 5. Immunohistochemical detection of a PGP-like transporter and
NaþKþ-ATPase on sections of larval lepidopteran ganglia: (a) Frozen section
of a D. nerii ganglion treated with the anti-PGP antibody C219. Specific label-
ling (brown precipitation, black arrow) can be seen in the periphery of the
ganglion. Above, treatment; below, control ( primary antibody omitted). (b) Par-
affin section of a ganglion of a M. sexta caterpillar. Orange (white asterisk):
specific label of NaþKþ-ATPase by the antibody a5. Blue (white arrow):
nuclei stained with 40,6-Diamidino-2-phenylindole dihydrochlorid (DAPI).
(Online version in colour.)
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of D. nerii is likely not a specialization. Nonetheless, the LD50

of injected ouabain for Schistocerca and Periplaneta is as low as

4.4 and 0.6 mg per individual, respectively [36]. This might

mean that the perineuria of Schistocerca and Periplaneta are

not as tight to ouabain as the one of the hawk-moths.

However, the NaþKþ-ATPase in these insects may not be

restricted to the nervous tissue, but may also occur in other

tissues, e.g. in the gut and the Malpighian tubules [37–39].

However, coping with dietary cardenolides also implies

that non-polar forms have to be excluded from the nerve
cord. To test for the existence of an active barrier for non-

polar cardenolides in the hawk-moth perineurium, we used

the relatively non-polar cardenolide digoxin, which is

known to passively permeate cells. By the application of

the ionophores CCCP and 2,4-DNP, we aimed at blocking

the respiratory chain in our test tissue, thus interrupting the

supply of ATP. Consistent with the notion of an active barrier

that protects the NaþKþ-ATPase, we found a higher binding

of digoxin to the nerve cords when the metabolic inhibitors

CCCP or 2,4-DNP were applied. This fits with the hypothesis

of an active efflux mechanism: when the energy supply is

depleted, digoxin can no longer be actively removed from

the cells and reaches its target site.

Carriers of the PGP family are strong candidates to mediate

the observed effect: in the mammalian brain they constitute the

most important part of the blood–brain barrier by extruding

infiltrating compounds [19]. Furthermore, Mayer et al. [40]

demonstrated that PGP is responsible for excluding digoxin

from the brain of wild-type mice. PGPs are members of the

mdr gene family of which at least three genes are present in

the Drosophila genome ([41] and references therein). In

M. sexta (this study) and other lepidopteran species [28]

three PGP-like transporters were identified which are homolo-

gous to those of D. melanogaster. All of these are expressed in

the Manduca nerve cord, and are thus potential candidates

for the efflux carriers evidenced here.

To test whether PGP-like transporters are involved in the

energy-driven digoxin barrier, we incubated nerve cords of

M. sexta and D. nerii with two of the most widely used PGP

inhibitors, quinidine and verapamil. These compounds are

known to elevate the plasma level of digoxin in humans

when co-administered with this drug and this phenomenon

is primarily attributed to the inhibition of PGP ([40], and refer-

ences therein). Both in D. nerii and in M. sexta, the application of

verapamil increased the amount of digoxin bound to the ner-

vous tissue. These observations suggest that the efflux barrier

for digoxin is mediated by a PGP-like transporter. When com-

paring the data of the two hawk-moth species, it is conspicuous

that digoxin binding under control conditions is about twice as

high in M. sexta as in D. nerii. At this point, however, it is diffi-

cult to judge whether this difference is due to quantitative or

qualitative differences in the perineurial barrier of both species

and there may also size differences between both species.

The presence of a PGP-like transporter is furthermore

demonstrated by our immunohistochemical data that revealed

specific binding of the anti-PGP antibody C219 in the periphery

of D. nerii ganglia. The presence of this protein in the nervous

system of M. sexta was already demonstrated [15] though on

the whole, the data on the occurrence of PGP-like transporters

in insects is limited. Our knowledge about the involvement of

PGPs in the exclusion of plant compounds in herbivorous insects

is still insufficient, yet the excretion of nicotine in Malpighian

tubules of Manduca caterpillars [42] was already suggested to

be based on a PGP homologue [43]. Especially, the wide sub-

strate range suggests a potential key role for these transporters

in the resistance of herbivorous insects to toxic secondary plant

compounds. PGP-like transporters might, in addition, not only

be part of the blood brain barrier, but also be responsible for ren-

dering insect guts impermeable to some plant toxins. They could

in theory enable generalist species to cope with a wide array of

diverse toxic secondary plant compounds.

The mechanisms of cardenolide exclusion described here,

however, may not be the only mode of resistance to
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cardenolides. It is known that cardenolides are metabolically

modified within the insect body [16,44]. If regions of the mol-

ecule are affected, which mediate biochemical interactions,

metabolism also results in detoxification. In addition, excretion

by the Malpighian tubules can be expected to reduce

haemolymph levels of cardenolides. The situation is further

complicated by the fact that digoxin is not only substrate to

PGP, but also to organic anion transporting polypeptides

(Oatps) and potentially even additional carriers [45].

Thus, our picture of how specialists cope with cardenolides

appears to be a diversity of strategies, with several often used
together, but potentially with distinct combinations among

different herbivores.
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