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To assess ecological consequences of bushmeat hunting in African lowland

rainforests, we compared paired sites, with high and low hunting pressure,

in three areas of southeastern Nigeria. In hunted sites, populations of impor-

tant seed dispersers—both small and large primates (including the Cross

River gorilla, Gorilla gorilla diehli)—were drastically reduced. Large rodents

were more abundant in hunted sites, even though they are hunted.

Hunted and protected sites had similar mature tree communities dominated

by primate-dispersed species. In protected sites, seedling communities were

similar in composition to the mature trees, but in hunted sites species with

other dispersal modes dominated among seedlings. Seedlings emerging

1 year after clearing of all vegetation in experimental plots showed a similar

pattern to the standing seedlings. This study thus verifies the transforming

effects of bushmeat hunting on plant communities of tropical forests and

is one of the first studies to do so for the African continent.
1. Introduction
Habitat destruction is regarded as a major threat to primate populations and

global biodiversity [1,2]. Over recent decades, it has become clear that defauna-

tion of otherwise undisturbed tropical forests is an additional and severe threat

[3–5]. Losses of populations of large frugivores by hunting have occurred in

Asia and South America as well as in Africa [2,4,6–8]. Two factors are primarily

responsible for this phenomenon. First, growing human populations in the tro-

pics, rural and urban, increase the demand for meat [6,9]. Secondly, improved

infrastructure, partly as a consequence of logging in remote forest areas and

for the transportation of agricultural products to urban markets, facilitates the

transportation of hunted animals from the forest to urban consumers [10,11].

Large frugivores may decline even in structurally intact forest reserves as a

result of illegal hunting, and in extreme cases, the decline may lead to a forest

empty of large vertebrates [12]. In several cases, the loss of large frugivores has

been followed by an increase in small seed predators, which are less sensitive

to hunting [5,13]. There is strong evidence showing that where large vertebrate

frugivores are reduced by illegal hunting and other anthropogenic disturbances,

their seed dispersal services are also disrupted [14–16].

Large primates are among the largest frugivores in African forests and play a sig-

nificant ecological role through primary seed dispersal [17,18]. They are particularly

important dispersers of large-seeded plants and may be the sole dispersers of some

tropical plant species [15,19,20]. This means that seed dispersal and subsequent

recruitment of many plant species may be severely disrupted without the large

primates. Although it is still not clear if their dispersal role will be fully, or even

partially, compensated by other frugivores in the event of total extirpation, present

evidence suggests that it is unlikely [5,21]. It is therefore likely that the more effective

a frugivore is at dispersing seeds, the greater the consequence of its decline on

tropical plant community regeneration, demography and forest structure.
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The Janzen–Connell model [22,23] provides a framework

to make predictions for some consequences of altering seed

dispersal. Specifically, it predicts that provided seed dispersal

is not restricted, recruitment will be highest at some distance

away from the parent tree. This is because the higher density

of fruits and seeds near the tree attracts predators and

pathogens, causing disproportionate mortality of conspecific

propagules. Without effective dispersal agents, most animal-

dispersed plants will experience depressed recruitment.

Recent studies corroborate that recruitment is influenced by

density-dependent processes (seed predation beneath parent

trees and sibling competition among clustered seedlings

beneath parent trees) and that the decline in effective seed dis-

persers may affect the recruitment of plants [14,24]. Dispersal

of large-seeded species by mammals reduces dispersal limit-

ation [25–27] and is therefore critical for the successful

recruitment of these species. In defaunated forests, we would

expect increased recruitment of species with other dispersal

modes as a consequence of the absence of the mammal dis-

persed species. However, both seed predators and smaller

seed dispersers may increase in the absence of the large frugi-

vores [5] and the eventual outcome in terms of plant

recruitment can be difficult to accurately predict.

Recent studies from the Neotropics have demonstrated com-

positional changes in the forest understory associated with

the decline in populations of large dispersers [5,13,28–31]. At

present, such evidence is rare in African forests (but see

[20,32,33]). Given the widespread occurrence of the bushmeat

harvest and habitat loss and their effects on tropical forest

biodiversity [4], quantifying the impact of the decline of large

frugivores on community-wide regeneration in structurally

intact forests is important. In addition, with a few exceptions

from the Amazon [5,31], previous studies have not been suffi-

ciently replicated or designed as mensurative experiments. At

least some replication is needed for making generalizations of

the results possible, and as true experiments of the effects of

hunting would not be feasible, nor desirable, well-controlled

mensurative experiments are the best alternative.

Here, we present a combined field survey and manipula-

tive experiment from a set of paired, replicated field sites in

Nigerian rainforests, that are either relatively well protected

from hunting, or not. The overall aim is to quantify the effects

of hunting on the abundance of mammals and plant

seedlings using a robust study design.

We hypothesize that primates, especially the large

species, will be severely affected by hunting. Other species

may or may not benefit from hunting depending on relative

importance and severity of hunting pressure experienced

versus their potentially increased food availability in the

absence of primates

If hunting leads to decline in primate numbers and

primate-dispersed plant species are severely dispersal lim-

ited, we predict lower densities of seedlings of such species

in hunted sites relative to intact sites, at least away from fruit-

ing trees. Under fruiting trees, fruits will be aggregated in

high densities owing to lack of seed dispersal, which may

either result in high seed mortality by host-specific natural

enemies, or in some cases may result in dense aggregations

of conspecific seedlings [27,34]. However, this scenario is

not explored in this study. Plants with other dispersal

modes should benefit from hunting, as less space and other

resources are taken up by primate-dispersed species, which

may often be the superior competitors [35]. We thus predict
that reduced dispersal of primate-dispersed species should

lead to increased abundance of species with other dispersal

modes, among standing seedlings in the forest. Without com-

petition for space or resources between seedlings, recruitment

should be more closely related to the seed rain of the different

groups of species. To minimize the effect of competition

among seedlings, we cleared experimental plots of all veg-

etation and studied the recruitment 1 year later. In these

cleared plots, we predict lower abundance of primate-

dispersed seedlings in the hunted sites, owing to reduced

dispersal. However, the dispersal of seedlings of other dis-

persal modes should be unaffected by hunting; and

therefore, we would expect to find comparable densities in

the cleared plots in hunted as in protected sites.
2. Material and methods
(a) Study sites
Our study area is situated in Cross River state, southeastern

Nigeria (approx. 68150 N, 9800 E; figure 1). This is a large area

classified as closed evergreen lowland forest according to the

Global Land Cover 2000-map of Africa [37] with several protected

areas [36]. Not all the area outside reserves that is classified as

closed forest by the land cover map is structurally intact forest,

but intact forests still extend far outside the protected areas

(E. O. Effiom and O. Olsson 2009–2012, personal observations).

We established pairs of study sites in three different but adjacent

protected areas: (i) Mbe Mountain Community Forest (MMCF,

total area 80 km2); (ii) Afi Mountain Wildlife Sanctuary (AMWS,

total area 100 km2); and (iii) Okwangwo division of the Cross

River National Park (CRNP, total area 920 km2). One of the sites

in each pair was relatively well protected from hunting (hereafter,

the protected site) and the other was poorly protected (hereafter,

the hunted site). There is very little documented information

about the history of hunting in these areas. Some hunting at low

levels might have occurred for a long time, but human popula-

tions in the region are increasing rapidly [38,39]. According to

the information we have been able to obtain from locals and

officials (at Cross River Forestry Commission and Wildlife Conser-

vation Society), the sites we use have had the same hunting status

for the last 10–20 years. To date, all sites are structurally intact

forest, undisturbed by logging [8,40]. The distances between the

different pairs of sites are 10–20 km. Each site within a pair was

at least 4–5 km across and at least 4–5 km from the other site in

the pair. As the sites are situated within larger continuous forest

areas they should be considered as samples of those areas,

rather than distinct entities. The two sites in a pair were chosen

relatively close to be as edaphically and floristically similar as

possible to each other. They are still far enough apart that habitat

selection and/or population processes of mammals could generate

different population densities with little movement between sites,

and seed dispersal between sites would be negligible.

Study sites are naturally structured moist tropical lowland

rainforest [8,40]. The study area is characterized by two distinct

seasons, one dry season (November to March) and one wet

season (April to October) with a peak of rainfall from June to

August. Rainfall averages 3000 mm yr21, and humidity is high

(rarely less than 90%) with daily temperatures ranging from

158C to 338C, with minor seasonal differences.

(b) Wildlife censuses
To estimate mammal abundance, we performed diurnal standar-

dized line transect censuses [41], during the rainy seasons in May

and June 2009 and 2010. The mammals in these forests do not

have any strong seasonal migration or movement patterns, and
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we assume that our estimates from May and June represent the

whole year well. Four transects, each of 1 km, were made in

all sites. Diurnal counts on transects were conducted during

both mornings (06.00 to 11.00) and afternoons (14.00 to 17.00),

i.e. the transects were walked up during the morning hours and

down again later during afternoon hours. Although the survey

was conducted during the rainy season, the survey was not dis-

turbed by the rains, as rains came late in the evenings after

fieldwork. Animals seen or heard were recorded by a team of

three observers. The data used for subsequent analyses were the

number of observed groups (of one or more individuals). This

choice was based on the fact that the number of individuals was

highly over-dispersed, which could lead to inflated type I errors.

Using the number of groups is conservative, but might increase

type II error risk. Given the high topographic heterogeneity of

the study sites, we used recce walks [42]. The recce walk

method relaxes the rules of a line transect by allowing deviations

from transects for ease of movement [42]. Like the line transect

method, recce walks also allow for the quantification of obser-

vations per kilometre, thus providing estimates of wildlife

abundance [42]. Observers moved at a pace of 1 km h21.

Mammals recorded were classified into four ‘guilds’: (i) Large

primates (gorillas, Gorilla gorilla diehli; chimpanzee, Pan troglodytes
ellioti; and drill, Mandrillus leucophaeus); (ii) Other monkeys (putty-

nosed monkey, Cercopithecus nictitans; Mona monkey, Cercopithecus
mona and red-eared monkey, Cercopithecus erythrotis); (iii) Large

rodents (squirrels, Anomalurus spp.; brush-tailed porcupine,

Atherurus africanus) and (iv) Ungulates (blue duiker, Philantomba
monticola; other duikers Cephalophus spp.; red river hog,
Potamochoerus porcus).

For several reasons, detectability probably varies strongly

between the guilds which means that we cannot use our esti-

mates to compare abundances between guilds. However, as the

forest structure was similar between sites, the estimates are

useful for comparisons between sites for each of the guilds.

Elephants were not included in our analysis as only a single

feeding sign was recorded in one of the sites. Bats are con-

sidered much less important as dispersers in Africa, as they
disperse few plants when compared with the Neotropics [43].

Therefore, we did not perform any censuses of bats.

(c) Plant censuses
Mature trees were surveyed to assess the densities of trees with

different dispersal modes. We identified and counted mature

trees (greater than or equal to 10 cm at dbh) within a 10 m

distance on each side of the same transects used for the mam-

mal counts. Tree censuses were only initiated after the mammal

counts were completed in order to avoid disturbance.

Seedling counts were conducted to enable a community-

wide quantification of the regeneration cohort. All plants (includ-

ing herbs) with true leaves and less than or equal to 1 m tall in

plots of 25 m2 (5 � 5 m) were identified and recorded in May

through June 2009 (in CRNP and AMWS) and 2010 (in

MMCF). Two plots were placed along each transect, i.e. a total

of 48 plots. All plots were randomly located in fully shaded

understory, but with the constraint that no plot was established

directly beneath adult primate-dispersed trees, to avoid possible

aggregations of seedlings of a single species. One of the plots at

each transect was randomly selected to be cleared and the other

to be left intact. In the 24 experimental plots, all vegetation was

cleared after the initial seedling identification and recording. In

these experimental plots, all emergent seedlings were identified

and counted 1 year after the plots were cleared (i.e. in 2010

and 2011, respectively). In cases where seedlings could not be

identified in the field, leaf samples from the same species, outside

the plots, were taken to the Cross River State Forestry Commission,

Nigeria and the Forestry department of the University of Calabar,

Nigeria for identification.

Plant species were classified according to dispersal mode into

three different groups: (i) dispersed primarily by large and

medium primates, (ii) dispersed primarily by other animals

and (iii) dispersed primarily by wind or ballistic ejection and

those dispersed by vegetative means (hereafter, ‘abiotic’). Disper-

sal mode was primarily determined from literature sources.

A complete list of all species, their dispersal modes and
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references for these are provided in the electronic supplementary

material, S1. Where we have been unable to locate literature to

determine dispersal, we based our classification on knowledge

by local people or on the type of fruit (e.g. fleshy and edible

for humans, or winged nuts, etc.). When such information was

unavailable or ambiguous, we left the dispersal mode of the

species as unknown, and removed the species from the dataset

before analysis. Some species had more than one dispersal

mode. In those cases, we identified which of those was the pri-

mary, and used that in our main analyses. However, we also

ran models in which we used the secondary dispersal modes

of those species, to evaluate the effect of this ambiguity.

(d) Data analysis
The datasets are available at datadryad.org (doi:10.5061/dryad.

g3n23) [44]. We analysed data using generalized linear mixed

effects models (GLMM) with Poisson or quasi-Poisson distribu-

ted error terms, using glmer from package lme4 [45] in R

v. 2.11.1 [46]. To represent the field design, we used a random

structure with random intercept terms for area, sites and transect.

For the trees and seedlings data, we additionally used random

intercept terms for sections or plots, respectively. For mammals,

the fixed factors considered were hunting and guild, and for

plants it was hunting and dispersal mode. All models with

these factors, alone, in combination, with their interaction, as

well as with just the intercept were considered. To select best

model structure for the fixed and random part of the models,

we followed Bolker et al. [47], and based our selection on AICC

(i.e. corrected for small sample sizes, or quasi-AICC when data

were over-dispersed). From the best models, we calculated esti-

mated marginal means and 95% CIs for the means, based on

5000 simulations, using package arm in R [48].

To test if competition from primate-dispersed seedlings deter-

mined the number of abiotically dispersed seedlings recruiting, we

ran Poisson regressions separately in hunted and protected sites

using glm in R. That is, we treated each individual study plot as

an independent observation, without accounting for study area.

We chose this approach to maximize power of the test, as a signifi-

cance would indicate that our assumption for the clearing

experiment was false. Although we use an information theoretic

approach for the other analyses, we here chose to explicitly test

the null hypothesis that our assumption of no relation is true.
3. Results
Mammal communities differed between hunted and pro-

tected sites (figure 2). The best model for the number of

observed groups showed that there was a difference depend-

ing on hunting, a difference between guilds and an

interaction between these two factors. The AICC-weight of

this model was w ¼ 0.99999, and alternative models had

w � 1025 (DAICC . 20 in all cases). Complete fit statistics of

all models analysed are provided in the electronic sup-

plementary material, S2. Number of primate groups, both

large and smaller, were reduced to less than half in the

hunted sites, whereas the rodents were much more abundant

in the hunted sites (figure 2). For all these three guilds,

there was a significant effect of hunting as the mean values

in one type of site did not overlap with CI of the other.

For ungulates, there was no clear pattern. The effect size of

hunting corresponded to 3.16 times more groups of large

primates in protected forests (unstandardized log-scale

effect size of hunting EH ¼21.15, with s.e. + 0.33), 2.05

times as many groups of smaller primates in protected sites

(EH ¼20.72 + 0.19), 14.0 times as many rodents in hunted
sites (EH ¼ þ 2.64 + 0.73) and 2.00 times as many ungulates

in hunted sites (EH ¼ þ 0.69 + 0.39). As stated above, the

latter effect is not different from zero. The interaction in this

analysis is largely a consequence of the different effects of

hunting on the rodents and ungulates on the one hand,

when compared with the primates on the other. To investi-

gate if the large and smaller primates react differently to

hunting, we ran a new analysis, on only the two primate

guilds. The best model did not include the interaction but

had an AICC-weight of only w ¼ 0.68, and the second best,

with the interaction had w ¼ 0.26 (DAICC ¼ 1.94), which indi-

cates that these two models fit the data similarly. The log

likelihood of both models is very similar (219.9 and 219.6,

respectively, electronic supplementary material, S2) and this

means that the interaction guild � hunting is a pretending

variable, which does not truly improve model fit [49]. The

proportional change of both guilds in response to hunting

was very similar. The number of observed groups of both

large and smaller primates was less than half (on average

44%) in the hunted sites.

Mature trees of different dispersal modes were similarly

represented among all sites, and regardless of hunting intensity

(figure 3a). Most individual trees were primate-dispersed.

Approximately, half as many were abiotically dispersed, and

even fewer were dispersed by other animals than primates.

The best model (w¼ 0.72) had dispersal mode as its only

fixed factor. The second best model (DAICC ¼ 2.08, w¼ 0.25)

also included hunting, but the quantitative effect was very

weak: 3 per cent lower density of trees in protected sites. As

DAICC only differs by approximately 2 and log likelihood of

the two models is similar (2459.4 in both cases, electronic sup-

plementary material, S2) hunting is only a pretending variable.

A model also including the interaction between dispersal mode

and hunting provided a poorer fit to the data (DAICC ¼ 6.2,

w¼ 0.03), and models with only hunting or the intercept as

fixed factors had provided very poor fit (DAICC . 130, w � 0).

datadryad.org
http://dx.doi.org/10.5061/dryad.g3n23
http://dx.doi.org/10.5061/dryad.g3n23
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In intact plots, standing seedlings of different dispersal

modes were differently represented in hunted and in protec-

ted sites (figure 3b). In protected sites, the representation was

similar to that of mature trees (primate dispersed . dispersed

by other animals . abiotically dispersed). However, in hun-

ted sites, primate-dispersed species were less abundant than

the other dispersal modes (dispersed by other animals �
abiotically dispersed . primate dispersed). The best model

was the full model, including the interaction between dispersal

mode and hunting (w¼ 0.9999). All other models fit the

data poorly (DAICC . 19, w , 1024). Primate-dispersed seed-

lings were 2.41 times as common in protected sites as in

hunted (EH¼20.88 + 0.38), seedlings dispersed by other

animals were 1.86 times more common in hunted sites

(EH¼þ0.62+ 0.39) and abiotically dispersed seedlings were

4.82 times more common in hunted sites (EH¼þ1.57+ 0.46).

In experimentally cleared plots, the representation of

emerging seedlings was similar to that of the standing

seedlings in intact plots. The effect of hunting was very dif-

ferent between dispersal modes, i.e. the number of seedlings

per 25 m2 was significantly higher for species dispersed by
other animals and species with abiotic dispersal, in the

hunted sites when compared with the protected sites. By

contrast, hunted sites had significantly lower densities of

primate-dispersed seedlings. The full model with the inter-

action term provided a superior fit (w . 0.9999) than

alternative models (DAICC . 48, w , 10210). Primate-

dispersed seedlings were 2.55 times more common in protected

sites (EH ¼20.93 + 0.16), seedlings dispersed by other

animals were 4.37 times more common in hunted sites

(EH ¼ 1.47+ 0.23) and abiotically dispersed seedlings were

14.2 times more common in hunted sites (EH ¼ 2.65 + 0.27).

There was no indication that the number of abiotically disper-

sed seedlings in the plots declined with increasing number

of primate-dispersed seedlings. This was the case in both

hunted (regression coefficient with s.e., b ¼20.02 + 0.041,

x2 ¼ 0.42, d.f. ¼ 1, p ¼ 0.5) and in the protected sites

(b ¼ 2 0.11 + 0.13, x2 ¼ 0.79, d.f.¼ 1, p ¼ 0.4).

Some plant species had ambiguous dispersal modes (see

the electronic supplementary material, S3). To account for

this, we ran a series of analyses in which we used the second-

ary, rather than the primary, dispersal mode for those species

and also analyses where we formed a new group of those

species with mixed dispersal mode. These analyses are fully

described in the electronic supplementary material, S3. In

none of the cases did this ambiguity change our conclusions,

and it was always the same model that came out best.
4. Discussion
The seedling layer in hunted sites was strikingly different

from that in protected sites. In protected sites, seedlings dis-

persed by primates dominated, but in the hunted sites, the

other dispersal modes were more common. However, the

densities of mature trees were similar between hunted and

protected sites, for all dispersal modes. We therefore con-

clude that the difference of the seedling layer is caused by

the paucity of large mammalian dispersers in the hunted

sites, possibly in combination with the increase in large

rodent seed predators in hunted sites.

It is notable that the surveys of the intact study plots and

the clearing experiment showed the same pattern: that the

difference in seedling layer regeneration is largely associated

with the difference in hunting pressure. Our results strongly

suggest that in hunted forests, there are differences in dispersal

and/or seed predation that appear to inhibit the regeneration

of primate-dispersed species compared with sites protected

against hunting. The depletion of primates, as well as the effects

on the seedling communities in our study, are similar to those

of other studies from Africa and the Neotropics [5,31,32].

The results can be interpreted in the light of the Janzen–

Connell (J–C) model [22,23]. The J–C model is based on two

functions. The first is the seed shadow, which indicates that

seed density declines sharply with increasing distance from

the seed source. The second is the escape curve, which indi-

cates that the probability that a seed will avoid predation or

infection increases with distance from the parent tree or, for

that matter, any conspecific adult trees. As a result, germina-

tion is expected to peak at an intermediate distance from the

parent tree where the two curves cross. Near conspecific

trees, the chances for a seed to survive until it has germinated

are reduced, because it is more easily found by both specialist

and generalist seed predators or pathogens [50]. In a forest
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with primates present, more large seeds are dispersed into

safer areas, and as a result more of these seeds can germinate

to form seedlings. In a forest with primates, large-seeded

species will be better represented among seedlings, whereas

in an ‘empty’ forest they will be rarer [12,15,30].

Our mammal surveys showed that in hunted areas pri-

mates were decimated, but large rodent seed predators

were more common than in protected sites (figure 2). We

may then assume that in the hunted sites we have both a

truncated seed shadow curve and higher rates of seed preda-

tion. Our data concur with the predictions generated by the

J–C model: in the protected forests where primates are still rela-

tively abundant, large-seeded and primate-dispersed species

are the most common among the seedlings (figure 3b,c), just

as they are among mature trees (figure 3a).

The results from the intact seedling plots seem to fit an

explanation based on restricted dispersal of large-seeded

species [51–53]. Even in faunally intact forests, dispersal is

often fecundity limited [27], and few seeds reach safe sites

where they can germinate. In the hunted sites, this small frac-

tion of seeds is nearly completely lost for primate-dispersed

species. Quantitatively, restricted seed dispersal occurs

when dispersers’ activity is insufficient to disperse all seeds

away from parents [53,54]. If the species with restricted

dispersal are the dominant competitors, less competitive

species might win in their absence; a situation described by

Hurtt & Pacala [51] as winning by forfeit and recently

tested by Terborgh et al. [27].

The results from the cleared plots suggest some

additional conclusions. Comparing seedlings in cleared

plots in hunted sites, with those in the protected (figure 3c),

we find a pattern very similar to that of the comparison of

intact plots. However, the cleared plots represent germina-

tion and establishment during only 1 year at artificially low

densities, whereas the intact plots represent the standing

composition at higher and more stable densities. Germination

in the intact plots is probably not the same as in the cleared.

In the cleared plots, we find that primate-dispersed seedlings

are more common in protected sites, whereas seedlings of

both of the other dispersal modes are more common in

hunted sites. For the primate-dispersed seedlings, as well as

for seedlings dispersed by other animals, this may well be

explained by dispersal limitation, as in the case of the intact

plots. However, the seed rain of abiotically dispersed species

should not differ between hunted and protected sites, and the

seedling communities in cleared plots are not likely to be

structured by competition, as the number of abiotically dis-

persed seedlings in the cleared plots was unrelated to the

number of primate-dispersed seedlings. Therefore, it is sur-

prising that in the cleared plots, abiotically dispersed

seedlings have much higher densities in hunted than in pro-

tected sites. At this point, we can only speculate about the

causes for this, but it is something that future studies

should try to shed light on. A possibility is that seed preda-

tion is different between hunted and protected sites. In the

hunted sites, primate-dispersed seeds are likely aggregated

below fruiting trees [27], where they can be more profitably

exploited by seed predators, than if they were more evenly

dispersed on the forest floor [55,56]. This could cause large

seed predators to switch towards primate-dispersed seeds

away from abiotically dispersed seeds [57,58], which are

often smaller [32]. This would then be a case of apparent

competition [59] among seeds of different sizes.
Seed predation can certainly have strong effects. Similar to

several other studies [5,13,26], we found that the large rodent

seed predators were more common in the hunted sites, despite

the fact that these are also hunted. We have no data on the

smaller, mostly nocturnal, rodents, which might quantitatively

be even more important seed predators [29].

The results indicate that the most common group of tree

species, the large seeded and primate dispersed, is on a trajec-

tory to become considerably rarer. At the moment, it does not

appear that the remaining dispersing animals (birds or mam-

mals) compensate for the primates lost. That is, there is no

indication that primates are redundant in this forest ecosystem.

Tree species with abiotic dispersal, and those dispersed by other

animals, appear to benefit in hunted forests. However, accord-

ing to Keay [60], many wind-dispersed species in the area

have light-demanding seedlings. They are therefore rarer in a

closed forest understory because they become shaded out by

large trees. Thus, it is difficult to predict the long-term conse-

quences for the forest community composition and dynamics.

This study, in agreement with several other studies

[5,15,32,61], identifies the critical ecosystem function that

primates have in tropical forests. They are an important com-

ponent of biodiversity that provides benefits for other groups

of organisms. They might also enhance biodiversity in the

areas where they occur. In addition, several of the fruits

that primates use, and which rely on primates for dispersal,

are also used for human consumption [13,26]. This is a provi-

sioning ecosystem service, which has hitherto not been

quantified. Loss of the primates could eventually lead to

the reduction or loss of this service.

Plants with different functional traits, such as leaf econ-

omics [62], may also have different ecosystem properties

[63,64]. Thus, as the loss of primates leads to changed commu-

nity composition, this may potentially lead to consequences

for ecosystem functioning such as net-primary productivity

and carbon sequestration [64–66].

We are aware that it is not straightforward to extrapolate

from seedlings to future mature tree composition, as e.g.

density-dependent mortality may affect which seedlings survive

to later stages [53]. Nevertheless, the strongly different represen-

tation of dispersal modes among seedlings that we find between

hunted and protected sites are highly likely to constrain future

outcomes of the forest regeneration processes [53,67].

We find that hunting is severely depressing the regener-

ation of tree species whose dispersal depend on less

common and often more vulnerable specialists [33,68]. Eval-

uating ecological redundancy among smaller frugivores is

critical, as it may offer hope of ameliorating the impact of

the loss of large frugivores and may lead to the design of con-

servation interventions that mitigate changes in forest

composition and structure [63,68].

In conclusion, our results support the hypothesis that a

forest empty of large seed dispersers is likely to face drastic

changes in tree community over the next few tree generations

[5,13,30,67]. The predicted future state is a forest with few, if

any, large-seeded species dispersed by primates. At that

point, such a forest will not only lack primates, but also be

unsuitable to them owing to fewer food resources. Hence,

this state may be stable and only reversed through large-

scale active reintroduction of fruiting trees as well as primates.

Our results demonstrate that the decline of large primates is a

major threat to tropical biodiversity. In addition, there is a criti-

cal need to maintain primate populations for the persistence of
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many tree species with large, fleshy fruits, which sustain

population of many frugivores, including humans.
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