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&p.1:Summary. Bone contains several growth factors, in-
cluding bone morphogenetic proteins (BMPs), trans-
forming growth factor beta (TGF-β), insulin-like
growth factors I and II (IGF-I and IGF-II), platelet
derived growth factor (PDGF) and basic and acidic
fibroblast growth factor (bFGF and aFGF). Spatial
and temporal variations in the expression and secre-
tion of the various growth factors have been demon-
strated in osteoblastic cultures and in various experi-
mental and clinical in vivo models, including fracture
healing in humans. Local application of various
growth factors influences proliferation, differentiation
and protein synthesis in osteoblastic cultures and
bone formation in different animal models, including
experimental fractures and skeletal defects. The
BMPs are the only growth factors known to provoke
bone formation heterotopically by making undifferen-
tiated mesenchymal cells differentiate into osteoblasts
(osteoinduction). BMPs and other growth factors,
soon to become commercially available for clinical
use, need a delivery system for their sustained re-
lease, as the factors are otherwise rapidly absorbed.
Some existing systems inhibit bone formation by in-
ducing chronic inflammation or physically by unre-
sorbed carrier obstructing bone formation. New de-
livery systems are being investigated.

&p.1:Résumé.L’os contient plusieurs facteurs de crois-
sance notamment: la protéine morphogénétique os-
seuse (BMPs), le facteur de croissance bêta (TGF-B),
les facteurs de croissance insuline-like I et II (IGF-I
et IGF-II), le facteur de croissance plaquettaire

(PDGF) et les facteurs de croissance fibroblastique
basique et acide (bFGF et aFGF). Des variations
spatiales et temporelles de la secrétion des différents
facteurs de croissance ont été démontrées dans les
cultures ostéoblastiques et dans différent modèle
expérimental et clinique notamment, la consolidation
de fracture chez l’homme. L’application locale des
différents facteurs de croissance influence la proli-
fération, la différenciation et la synthèse protéique
dans les cultures d’ostéoblastes ainsi que la
formation osseuse dans les différents modèles
animaux avec notamment fracture expérimentale et
perte de substance squelettique. Les BMPs sont les
seuls facteurs de croissance connus pour provoquer
une formation d’os hétérotopique par différenciation
en ostéoblastes des cellules mésenchymateuses
indifférenciées (ostéoinduction). Les BMPs et les
autres facteurs de croissance seront bientôt
commercialement disponibles pour l’usage clinique
ce qui nècessitera des systèmes de distribution
particuliers pour leur préservation. Il existe déjà des
systèmes inhibant la formation osseuse de façon phy-
sique ou en induisant une inflammation chronique.

Introduction

In 1938, Levander found that an acid alcohol extract
of bone and callus induced heterotopic cartilage and
bone when injected intramuscularly in rabbits and
concluded that bone regeneration takes place as the
result of some specific bone-forming substance acti-
vating the nonspecific mesenchymal tissue [38].
However, the study of growth factors in bone was
hampered because these factors are sequestered in
abundant extracellular matrix which has to be re-
moved before further purification can be done. Mod-
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ern laboratory techniques, including recombinant
DNA technology, have made it possible to identify
several bone growth factors in recent years, including
bone morphogenetic proteins (BMPs), insulin-like
growth factors I and II (IGF-I and IGF-II), transform-
ing growth factor beta (TGF-β), platelet derived
growth factor (PDGF) and basic and acidic fibroblast
growth factor (bFGF and aFGF).

Growth factors are polypeptides that are generally
synthesised by specific tissue where, in very low con-
centrations, they act as local regulators of cell func-
tion. Most growth factors are released as high mole-
cular weight precursors which are split by proteolysis
and produce active factors which are generally of low
molecular weight. Growth factors elicit their action
by binding to specific large transmembrane receptors
on the cell surface of the target cell. Binding to the
extracellular domain of the receptor triggers the intra-
cellular domain, which generally activates a protein
kinase. The kinase cascade activates transcription of a
gene into mRNA, which is then translated into pro-
teins to be used within the cell or exported [71]. Gen-
erally, the number of active receptors of a cell de-
creases when the growth factor is present in excess
(down regulation), whereas it increases when there is
a deficiency (up regulation).

Most of the knowledge about the effect of growth
factors on osteogenic cells derives from studies on
cultures of osteoblast-like cells from embryonic bone
tissue of the rat or mouse, or from osteosarcoma cell
lines. Less is known about the physiological effect of

the different growth factors in vivo, but some studies
have been done on immunolocalisation and expres-
sion of different growth factors in fracture healing
(Table 1).

BMPs

Urist believed that osteoinduction by demineralised
bone [72], was caused by a contained factor which he
named bone morphogenetic protein (BMP), and in
1979 the group isolated an extract of osteoinductive
glycoproteins [73]. In 1988, Wozney et al. extracted
40 µg inductive proteins from 40 kg of bone. Chro-
matography showed that the extract contained several
proteins, but further purification was not possible.
The proteins were tryptinized, cDNA was cloned, re-
combinant human peptides were made in Chinese
hamster ovary (CHO) cells and three proteins were
demonstrated, BMP-1, BMP-2A and BMP-3 [80].
Later, more BMPs were identified, and there are at
present at least 15. The BMPs, except BMP-1, are
part of the TGF-β supergene family. They are impor-
tant in both extraskeletal and skeletal organogenesis,
bone generation and regeneration, and are involved in
certain disease processes; mutations of their genes
may cause developmental anomalies [54].

BMP receptors have been identified [50], and up-
regulation of the expression of BMP receptors during
bone formation in embryonic development and frac-
ture healing have been demonstrated [34]. A large

Table 1.Growth factors and fracture healing&/tbl.c:&tbl.b:

Stage of healing Growth factor Source, localisation and action References

Immediate BMP-2/4 Found in mesenchymal cells in hematoma and cambium layer of periosteum [16, 48]
injury adjacent to fracture. BMP-4 mRNA is present in osteoprogenitor cells of the 
response proliferating periosteum, the medullary cavity and the muscles near the fracture. [14, 37]

TGF-β Released by platelets and inflammatory cells into the fracture hematoma. 
Stimulates proliferation of mesenchymal cells in cambium layer of periosteum.

PDGF Released by platelets and inflammatory cells into the fracture hematoma. [14, 17]
Found in macrophages close to the periosteum 2 days post-fracture, decreases 
from day 3. Stimulates proliferation of mesenchymal cells in cambium layer 
of periosteum.

aFGF Found in cells of the expanded cambium layer and associated with rapid increase [17]
in mesenchymal cells.

Intramembranous BMP-2/4 Found in osteoblasts lining primitive (woven) bone by 6 days after fracture. [16]
bone formation Decreases as the bone matures.

TGF-β Found in proliferating mesenchymal cells, in osteoblasts lining new bone [37]
and in the matrix.

PDGF Released by platelets and stimulates intramembranous bone formation. [14]

Chondrogenesis BMP-2/4 Chondroid precursor cells stain intensly just prior to becoming immature chondrocytes. [16]
TGF-β Found in mesenchymal cells, young chondrocytes and mature chondrocytes. [37]
IGF-I Found in young chondroblasts at the edge of the cartilage mass replacing fibrous tissue. [17]
aFGF Synthesized by chondocytes, their precursors and macrophages. Stimulates chondrocyte [14]

proliferation and is probably important for chondrocyte maturation.

Endochondral BMP-2/4 Intense intracellular staining of osteoblasts lining the calcified cartilage matrix. [16]
ossification TGF-β Found in the matrix surrounding hypertrophic chondrocytes. [37]

TGF-β Found in chondrocytes at the edge of the ossification front. [17]
bFGF Probably produced by chondrocytes and is important for endochondral bone formation. [14]

&/tbl.b:
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number of binding sites for BMP-2 have been found
not only on osteoblastic cells but also on various oth-
er normal cells and tumour cells [35].

Recombinant human BMP-2 in rat inactive demin-
eralised bone matrix carrier implanted subcutaneous-
ly in rats induces cartilage by 5 days, some new bone
by 7 days and an ossicle with marrow at 21 days [75].
When the concentration of BMP-2 is increased, bone
formation is observed earlier and cartilage and bone
are formed concurrently. The osteoinductive response
by BMP-4 and BMP-5 seems to be weaker than that
of BMP-2 [79]. Cartilage and bone formation is in-
duced in athymic mice by CHO cells transfected with
the murine BMP-6 gene [29] or BMP-4 gene [58].

The ability of implanted BMPs to induce hetero-
topic osteogenesis in primates is still not clear. As-
penberg et al. found that rhBMP-2 combined with de-
mineralised bone induced heterotopic osteogenesis in
squirrel monkeys, whereas demineralised bone alone
did not [9]. However, the amount of induced bone
was small. In a recent study, rhBMP-2 and bovine
type I collagen implanted intramuscularly in squirrel
monkeys resulted in an osteoinductive response that
was small, inconstant and partly dependent on plac-
ing the implants close to the muscle aponeurosis [8].

Several BMPs, including BMP-2, BMP-3, BMP-4,
BMP-6 and BMP-7 converted the differentiation
pathway of different pluripotent mesenchymal cell
lines into that of an osteoblast lineage [2, 3, 81].
BMP-7 (OP-1) can make different pluripotent mesen-
chymal cell lines differentiate into both chondroblas-
tic and osteoblastic cells, depending on the stage and
potential of the target cell [6]. Messenger RNAs for
BMP-2 and BMP-4 are expressed in foetal rat calvar-
ial osteoblasts as they differentiate in primary cul-
tures prior to forming mineralised bone nodules coin-
ciding with expression of osteocalcein, osteopontin
and alkaline phosphatase [31]. BMPs have been
shown to be involved in fracture healing (see Table 1)
[16, 48].

Implanted rhBMP-2 enhances the healing of: (1)
defects of the femur of rats [82] and sheep [28]; (2)
defects of the mandible of rats (in combination with
membranes) [41], dogs [70] and rhesus monkeys
[18]; and (3) lumbar intertransverse process fusion in
rabbits [55] and dogs [32]. Recombinant human
BMP-7 (OP-1) enhances the healing of segmental ul-
nar defects in rabbits [24], dogs [23] and African
green monkeys [25]. Recently, rhBMP-2 has been
shown to stimulate the repair of bone and hyalin-like
cartilage in experimental osteochondral defects in
rabbits [57].

Recombinant human BMP-2 is currently being
evaluated in clinical studies in humans for augmenta-
tion of the floor of the maxillary sinus to increase the
bone height and allow the placement of dental im-
plants. It is expected that in the next few years,
rhBMPs in suitably delivery systems will be evaluat-
ed in clinical studies for a number of other indica-
tions in orthopaedic and cranio-maxillofacial trauma
and disease.

TGF-β

The TGF-βs are members of the TGF-β superfamily.
So far, five subtypes have been demonstrated. TGF-
β4 is found in chickens, TGF-β5 in amphibians. The
TGF-βs are 25 kDa homodimers sharing 60 to 80%
similarity in their amino acid sequence. TGF-βs in-
fluence a variety of tissues, generally stimulating
cells of mesenchymal origin and inhibiting cells of
ectodermal origin [39]. TGF-β is produced by osteo-
blasts and is stored in the bone matrix, making bone
the largest reservoir of TGF-β in the body [15]. Os-
teoblasts have the highest number of TGF-β receptors
[39].

TGF-βs mediate tissue embryogenesis, normal
cellular physiology, inflammation and tissue repair
[27]. TGF-β1 is found in the periosteum at an early
stage in fractures, both in experimental fractures in
animals [14] and clinically in humans [4]. TGF-β1
enhances the proliferation of mesenchymal cells and
osteoblasts in fractures as well as in experimental
bone defects [10, 14, 65].

Whereas BMPs induce bone in heterotopic sites,
stimulation of bone formation by TGF-β depends on
orthotopic application, for example, subperiosteal in-
jection [65]. TGF-β1 enhances the healing of experi-
mentally created defects of the skull in rabbits [11,
47] and bone ingrowth in porous titanium rods [64]
and tricalcium phosphate coated implants in dogs
[40].

PDGF

PDGF is a dimer of two peptides, A and B, sharing
60% amino acid sequence homology. Dependent on
the combination of peptides, the molecular weight
varies between 28 and 35 kDa. PDGF-BB homodimer
is more biologically active than the two other dimers.
PDGF-BB and AB act as systemic growth factors,
whereas PDGF-AA acts as a local growth factor in
bone. Normal human and rat bone cells express only
the PDGF-A gene under unstimulated culture condi-
tions, whereas osteosarcoma cells express both
PDGF-A and B genes. Alpha2 macroglobulin binds
PDGF and may act as a transport protein [21].

PDGF is synthesised by blood platelets, mono-
cytes, macrophages and endothelial cells and influ-
ences most mesodermal cells. It increases DNA syn-
thesis, cell replication, collagen and non-collagen
protein synthesis in cultures of rat calvarial cells. The
mitogenic effect, however, is not specific for cells of
the osteoblastic lineage, as PDGF-BB also stimulates
the replication of non-skeletal fibroblasts [1, 21]. Two
PDGF receptor subunits have been demonstrated, al-
pha and beta, and the two subunits form dimers in re-
sponse to PDGF binding as part of the receptor acti-
vation process. PDGF-B polypeptide binds to both
the alpha and beta subunits, while PDGF-A polypep-
tide binds primarily to the alpha subunit. Activation
of both receptor subunits may be needed for maximal



response. IL-1, TNF-α and TGF-β1 affect the bind-
ing of PDGF [21].

PDGF-BB is probably released by platelets at the
wound site during platelet aggregation and is impor-
tant for normal healing of wounds and fractures (see
Table 1). Locally applied PDGF enhances deminerali-
sed bone-induced heterotopic osteogenesis in rats
[33], healing of tibial osteotomies in rabbits [49] and
formation of bone and cement in conventional peri-
odontal surgery in dogs (combined with IGF-I) [44].

FGF

The FGF family consists of nine members of structur-
ally related polypeptides. Most abundant and best
characterised in man are acidic FGF (FGF-1) of 16
kDa and basic FGF (FGF-2) of 17 kDa [76]. FGF is
synthesised by various cells, including monocytes,
macrophages, osteoblasts and chondrocytes and af-
fects most mesodermal and neuroectodermal cells.
The two FGFs have 55% structural homology and
bind to the same receptor. As opposed to TGF-β1,
bFGF is stored in matrix in an active form [30]. It
probably initiates the normal embryonic limb bud
formation [22] and contributes to normal wound [62]
and fracture [14] healing (see Table 1).

Jingushi et al. found that repeated injections of
aFGF into the fracture-site in rats induced cartilage
enlargement and decreased mRNA expression for
type II procollagen and proteoglycan core protein
[36]. In rats, bFGF enhances demineralised bone-in-
duced heterotopic osteogenesis [7] and the incorpora-
tion of bone grafts and porous hydroxyapatite im-
plants [76–78]. Human recombinant aFGF in agarose
promotes the healing of rat parietal critical size de-
fects [26].

IGF I–II

IGF-I (somatomedin-C; 7.5 kDa) and IGF-II (skeletal
growth factor; 8.7 kDa) are produced by different
types of cells, including osteoblasts. IGF-II is the
growth factor found in the highest concentration in
bone matrix. IGF-I is 4 to 7 times more potent than
IGF-II [39]. Cortisol inhibits IGF-I production,
whereas PTH, GH, prostaglandin E2 and BMP-2 stim-
ulate IGF-I production in cultured osteoblast-like
cells. The biological actions of the IGFs are modulat-
ed in a cell-specific manner by six IGF-binding pro-
teins (IGPBP) that are all expressed by osteoblasts.
The expression and secretion of both IGFBPs [13] and
IGF-I and IGF-II [12] changes during the develop-
ment sequence of rat osteoblast cultures. IGF-I stimu-
lates bone DNA, collagen and non-collagen protein
synthesis in cultures of foetal rat calvaria [20]. IGF-I
and IGF-II increase bone collagen synthesis and de-
crease collagen degradation in intact rat calvaria in
vitro [45] and stimulate proliferation of osteoblasts in
serum-free cultures of human bone cells [46].

Endothelial and mesenchymal cells expressed
IGF-II mRNA at the granulation tissue stage of heal-
ing fractures in humans [5]. At the stage of bone and
cartilage formation, osteoblasts and non-hypertrophic
chondrocytes expressed mRNA for both IGF-I and II.
The findings support a role for IGFs in the local cel-
lular regulation in human fracture healing.

IGF is important in demineralised bone-induced
heteropic osteogenesis. Prisell et al. found that IGF-I
mRNA was expressed in correlation with the recruit-
ment and proliferation of mesenchymal cells, where-
as IGF-II mRNA was activated later, at the start of
the calcifying process during endochondral bone for-
mation [53]. Yu and co-workers found that an IGF-II
(M-6-P) receptor was present in implants from day 1
to day 21; the highest levels were expressed on day
11 during bone differentiation [83].

IGF-I enhanced the healing of experimental defects
of the skull [66] and the zygomatic arch [68], the lon-
gitudinal growth of diaphyseal bone [69] and induced
premature closure of the frontal suture [67] in rats. We
found enhanced healing of experimental calvarial de-
fects in rats by polyorthoester membranes for guided
tissue regeneration containing IGF-I [19].

Delivery systems

A system for the delivery of osteo-inducing agents
should preserve the shape and bulk of reconstructions
and assure local, sustained release of the factors
which may otherwise be rapidly absorbed before in-
stituting their effect. Advanced systems (polymers)
may allow accurate dosage and combining factors to
be delivered concurrently or at different points of
time. The ideal material should be biocompatible, be
resorbed and replaced by bone within 6 weeks [74]
and not inhibit bone formation by inducing a chronic
inflammation or physically obstructing bone forma-
tion by incomplete resorption.

Several biodegradable materials have been investi-
gated, including (1) organic materials such as inactive
demineralized bone proteins, collagen, fibrin sealant,
fibrin-collagen paste, squalene and glycerol; (2) ce-
ramics, including β-tricalcium phosphate and plaster
of Paris (calcium sulphate); and (3) synthetic poly-
mers such as polylactic acid [42], polyactide-polygly-
colide co-polymer [56], polyanhydride [43] and poly-
orthoester [51, 61].

Some existing delivery systems do not fulfil the
above criteria. Unresorbed β-tricalcium phosphate
[74], co-polymer of polylactide-polyglycolide [56]
and polylactic acid [42] were detected at 4 months,
24 weeks and 6 months, respectively. Fibrin-collagen
paste and fibrin sealant were incompletely absorbed,
induced a chronic inflammation and inhibited hetero-
topic osteoinduction [52, 61]. We have evaluated
the effect of a bioerodible polyorthoester made
for sustained delivery on heterotopic [51, 61] and
orthotopic [59, 60, 63] osteogenesis. The polyortho-
ester does not inhibit bone formation, it induces
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little tissue reaction and it is mostly resorbed by 4
weeks.

In the near future we will probably be able to treat
skeletal defects and pseudarthrosis by implants of
growth factors in a resorbable sustained delivery
system. However, the prerequisite to such treatment is
more knowledge about the importance of various
growth factors in the different steps of the osteoin-
duction cascade and the different stages of impaired
bone healing, the relative importance of lack of
growth factors as opposed to the lack of osteoprogen-
itor cells in impaired bone healing, and the character-
istics of the ideal biodegradable systems for sustained
delivery of osteogenic growth factors.
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