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Abstract
Nuclear intermediate filament networks formed by A- and B-type lamins are major components of
the nucleoskeleton that are required for nuclear structure and function, with many links to human
physiology. Mutations in lamins cause diverse human diseases (‘laminopathies’). At least fifty-
four partners interact with human A-type lamins directly or indirectly. The less studied human
lamins B1 and B2 have twenty-three and seven reported partners, respectively. These interactions
are likely to be regulated at least in part by lamin post-translational modifications. This review
summarizes the binding partners and post-translational modifications of human lamins and
discusses their known or potential implications for lamin function.
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Lamins are major components of the nucleoskeleton in multicellular animals (metazoans),
not found in plants or fungi (Dittmer and Misteli 2011). Lamins tether chromatin, bind
signaling proteins and support epigenetic regulation, mechanotransduction, development,
transcription, replication and DNA damage repair (Dechat et al. 2008; Dittmer and Misteli
2011; Simon and Wilson 2011). How lamins contribute to such a remarkable range of
activities is for the most part unknown: a new saga in biology that begins with a seemingly
simple structural polymer. Lamins form highly stable filament networks near the inner
membrane of the nuclear envelope and are also distributed throughout the nucleoplasm
except for the nucleolus (Gerace and Huber 2012; Dittmer and Misteli 2011; Simon and
Wilson 2011). Mammals express two types of lamins, the B-type (lamins B1, B2 and B3)
encoded by LMNB1 and LMNB2 (Dittmer and Misteli 2011; Schumacher et al. 2006), and
A-type (lamins A, C, AΔ10, C2, and AΔ50, also known as ‘progerin’) generated by
alternative splicing of LMNA (Dittmer and Misteli 2011; Bokenkamp et al. 2011).

Mutations in lamins cause a variety of diseases, collectively termed laminopathies (Worman
2012; Butin-Israeli et al. 2012). So far nearly 400 different disease-causing mutations in A-
type lamins have been identified, underscoring their significance to cell and tissue biology
and human physiology. Diseases are now also being mapped to B-type lamins. Duplication
of the LMNB1 gene can cause leukodystrophy (Padiath et al. 2006; Schuster et al. 2011;
Brussino et al. 2010; Molloy et al. 2012) or leucoencephalopathy (Brussino et al. 2009), and
certain mutations in LMNB2 correlate with increased susceptibility to acquired partial
lipodystrophy (Hegele et al. 2006).
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Both A- and B-type lamins are synthesized as precursors that are post-translationally
processed prior to filament assembly. All lamins except lamin C are first farnesylated at the
cysteine of the C-terminal CaaX motif (Beck et al. 1990; Farnsworth et al. 1989), then
proteolytically cleaved by either Rce1 or Zmpste24, and finally carboxymethylated by Icmt1
(Nigg et al. 1992; Young et al. 2005; Maske et al. 2003; Varela et al. 2005). The lamin A
precursor (pre-lamin A) is further processed by Zmpste24-dependent cleavage after Tyr-646
to generate mature lamin A (Pendas et al. 2002; Bergo et al. 2002; Barrowman et al. 2012).

Lamin proteins have a small N-terminal ‘head’ domain, a long coiled-coil ‘rod’ domain and
a large C-terminal ‘tail’ that includes a globular Ig-fold domain (Dechat et al. 2008; Dittmer
and Misteli 2011). Lamin assembly was successfully reconstituted in vitro only recently
(Ben-Harush et al. 2009). Studies of purified lamins show that they first dimerize via their
rod domain; dimers then associate head-to-tail to form linear polymers, which in turn
associate laterally in groups of three or four in a staggered anti-parallel manner to form ~10
nm-diameter filaments (Ben-Harush et al. 2009; Herrmann et al. 2004; Gerace and Huber
2012). The actual organization of lamina networks in somatic cells is unknown.

A- and B-type lamins can interact directly in vitro (Ye and Worman 1995; Schirmer and
Gerace 2004), but in living cells appear to preferentially form independent filament
networks. High-resolution microscopy of endogenous lamins A/C and B1 (Shimi et al.
2008) as well as FRET analysis of exogenous lamins A and B1 (Delbarre et al. 2006)
support the existence of separate lamin A/C or B1 homopolymers in close contact with each
other. The spatial separation of lamin A and B1 homopolymers was lost in cells that also
expressed lamin A bearing the Hutchinson-Gilford progeria (HGPS)-causing Δ50 deletion
(‘progerin’) (Delbarre et al. 2006). Remarkably, biochemical analysis suggests lamins A and
C (the first 566 residues of which are identical) also form homodimers and homopolymers
preferentially in vivo, via unknown mechanisms (Kolb et al. 2011).

In the nucleus lamins reportedly bind many partners (Wilson and Foisner 2010; Zastrow et
al. 2004). Lamin A is the most extensively studied with at least 29 reported direct binding
partners (Figure 1, Table 1), and at least 24 proteins identified by co-immunoprecipitation
from cells or other indirect methods (Table 2). Many new potential partners are being
uncovered (Roux et al. 2012; Kubben et al. 2010). The B-type lamins are less studied, with
23 reported direct or indirect partners for lamin B1 (Table 3) and only 7 for lamin B2 (Table
4). Lamin partners in other animals, including Drosophila JIL-1 kinase (Bao et al. 2005) and
Xenopus α-importin (Adam et al. 2008), are conserved in humans and may therefore also
associate with human lamins.

The functional association of many certain partners including LEM-domain proteins, BAF,
Rb and LINC complex components has been confirmed genetically or in cells as discussed
in recent reviews (Wilson and Foisner 2010; Simon and Wilson 2011; Dechat et al. 2010;
Dittmer and Misteli 2011). Biochemical and biological validation will be crucial to move
this field forward, since many partners identified in vitro lack proven biological relevance,
and ‘associated’ proteins (e.g., those identified by co-immunoprecipitation from cells in
Table 2) lack evidence that binding is direct. Nuclear lamina networks are largely insoluble
under typical co-immunoprecipitation conditions, and some methods (e.g., sonication) can
create small ‘chunks’ of lamina that appear soluble (e.g., not pelleted by 12,000g
centrifugation) but might contain dozens or hundreds of different proteins that co-
immunoprecipitate together. Another confounding issue is that lamins can bind DNA
(Stierle et al. 2003). Hence one must rule out the possibility that ‘direct’ binding of certain
partners to lamins is actually mediated by DNA in the reaction. For example, this artifact
caused two proteins (Cone-rod homeobox [Crx]; HIV-1 matrix [MA]) and one polypeptide
(C-terminal domain of MAN1) to be misidentified as direct partners for the dsDNA-binding
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protein BAF, and was corrected by NMR analysis of protein-protein binding and by re-
testing under DNA-free conditions (Huang et al. 2011). A related artifact can be solved by
using the DNA intercalator, ethidium bromide, to ‘bump off’ proteins (e.g., PARP1;
Ku70/80) that bind DNA ends nonspecifically (Lai and Herr 1992).

A major unanswered question is how lamin associations with specific partners are regulated.
To facilitate further studies, this review focuses on post-translational modifications of
human lamins, including the few cases where the functional consequences of specific
modifications are known.

Phosphorylation
Following the discovery that lamins are reversibly disassembled during mitosis (Gerace and
Blobel 1980), early studies focused on lamin phosphorylation during mitosis. The head
domain of all lamins includes an evolutionarily conserved site phosphorylated by the mitotic
cyclin-dependent kinase CDK1 (Peter and Stick 2012). Peptide sequencing identified this
site as Ser-22 in human lamins A/C, Ser-23 in lamin B1 and Ser-37 in lamin B2 (Figure 2A).
The first mammalian lamin B2 cDNA to be studied, thought to be the physiological form,
was actually missing 20 N-terminal residues and hence dominantly disrupted nuclear lamina
organization in transfected cells (Schumacher et al. 2006); please note that these 20 ‘new’
residues are included when numbering lamin B2 residues in this review. Lamin
phosphorylation by CDK1 impedes assembly of head-to-tail polymers but does not disrupt
lamin dimer formation (Heitlinger et al. 1991; Peter et al. 1991). CDK1 targets two regions
important for head-to-tail association of lamin A dimers (Strelkov et al. 2004);
phosphorylation at Ser-22, and at Ser-392, Ser-404 and Ser-406 at the opposite end of the
coiled-coil domain, are required to depolymerize lamin filaments during mitosis (Heald and
McKeon 1990; Peter et al. 1990; Ward and Kirschner 1990; Eggert et al. 1991; Enoch et al.
1991; Thompson and Fields 1996; Schneider et al. 1999; Figure 2B). Phosphorylation of the
A-type lamin in Drosophila, named lamin C, at Ser-37 (homologous to human lamins A/C
Ser-22) increases the solubility of the lamin protein and eliminates its ability to interact with
chromatin in vitro (Zaremba-Czogalla et al. 2012).

The Protein Kinase C (PKC) family also regulates lamins during mitosis (Peter et al. 1990;
Hocevar et al. 1993). In zebrafish, lamins are phosphorylated by PKC first (Collas 1999),
suggesting PKC phosphorylation might ‘unmask’ sites for CDK1 phosphorylation (Buendia
et al. 2001). Supporting this idea, PKC- and CDK1-mediated disassembly of lamin B1 in
HeLa cells is triggered by the diacylglycerol (DAG) generating enzyme lipin (Mall et al.
2012). In mouse erythroleukemia cells lamin B1 phosphorylation by PLCβ1 promotes
mitotic lamin filament disassembly (Fiume et al. 2009; Guo et al. 2005). Conversely, lamin
filament assembly in HeLa cells during early G1 requires dephosphorylation of B-type
lamins by AKAP149-PP1 (Steen et al. 2003). However, mitosis also involves
dephosphorylation: in Xenopus oocytes, unidentified PKA site(s) must be dephosphorylated
for lamin filaments to disassemble (Molloy and Little 1992).

Recent high throughput proteomic studies revealed further, extensive human lamin
phosphorylation during mitosis (Olsen et al. 2010; Daub et al. 2008; Malik et al. 2009;
Wang et al. 2008; Wang et al. 2010; Figure 2, Table 5). Many mitotic phosphorylation sites
are clustered in the head domain and near the Nuclear Localization Signal (NLS) (Figure 3).
However, it is important to note that some mitotic sites are also targeted during interphase
(Table 5) as discussed below. With 61 known phosphorylation sites (Figure 3, Table 5)
lamins A/C have more than twice as many known sites as lamin B1 (32 sites; Figure 3,
Table 6) or lamin B2 (28 sites; Figure 3, Table 7). Two sites are unique to the lamin C
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isoform (Table 5). In general, the head and tail domains account for most phosphorylation
sites, with the highest density between the rod domain and NLS (Figure 3).

PKC family members also regulate non-mitotic functions of lamins. PKC phosphorylation
of B-type lamins in sea urchin sperm triggers lamina disassembly prior to fertilization
(Collas et al. 1997). Lamin A/C Ser-525, in the Ig-fold domain, is reportedly phosphorylated
only during interphase (Table 5; Eggert et al. 1993). In human dermal fibroblasts, PKC
specifically modifies at least one site in lamin B2 during S-phase (Kill and Hutchison 1995).
In leukemia cells increased lamin B2 phosphorylation is proposed to extend G1 phase
(Meier et al. 1997). PKC phosphorylation of chicken lamin B2 inhibits lamin B2 import into
the nucleus during interphase (Hennekes et al. 1993). Finally, both PKCα (Shimizu et al.
1998) and PKCδ (Cross et al. 2000) phosphorylate B-type lamins at unknown sites during
apoptosis.

Other kinases that target lamins include PKA, S6-kinase II and Akt (Tables 5, 6). Ser-50
phosphorylation of the B-type lamin in Drosophila, named lamin Dm0, by PKA inhibits
head-to-tail dimerization (Stuurman 1997); interestingly, among human lamins this
modification appears to be detectably conserved only in lamin B1, on Ser-28 (Table 6; Olsen
et al. 2010; Rigbolt et al. 2011). Human lamins A/C are phosphorylated by S6-kinase II at
Ser-404; the functional significance of this modification is unknown (Ward and Kirschner
1990), but it has since been detected under a variety of cellular conditions (Table 5). For
example, following insulin treatment, the Akt kinase phosphorylates lamins A/C at Ser-404
in HEK 293T cells (Cenni et al. 2008). Cells that express lamin A bearing either the S404A
mutation or a nearby R401C Emery-Dreifuss muscular dystrophy (EDMD)-causing
mutation have disorganized lamina networks and nuclear blebbing (Cenni et al. 2008).

Phosphorylation of lamins A/C is generally reduced in myoblasts from EDMD and limb
girdle muscular dystrophy (LGMD) patients (Cenni et al. 2005). The N-terminus of lamins
A/C is phosphorylated in cycling C2C12 myoblasts, and insulin treatment specifically
increases phosphorylation of lamin A, but not lamin C (Cenni et al. 2005). Insulin
stimulation also increases phosphorylation of lamins A/C in quiescent baby hamster kidney
fibroblasts (Friedman and Ken 1988). Neither the kinase(s) responsible for phosphorylating
lamins A/C in response to insulin signaling in myoblasts or kidney fibroblasts, nor their
target sites, have been identified.

A study of lamin B2 in DLD-1 colorectal cancer cell lines using phospho-site specific
antibodies revealed differential phosphorylation of five sites during the cell cycle (Kuga et
al. 2010). Thr-34 and Ser-37 are phosphorylated during prophase until late anaphase.
Ser-405 phosphorylation levels increase during prophase and are maintained until late G1,
whereas Ser-407 is phosphorylated only during G1 and prophase, and Ser-421 is
phosphorylated during the S-to-G2 transition (Kuga et al. 2010). Of these five lamin B2
phosphorylation sites, four are conserved in both lamins A/C and B1 (corresponding to
lamin B2 residues Thr-34, Ser-37, Ser-405, and Ser407), and the fifth site (lamin B2
Ser-421) is conserved in lamins A/C (Figure 2). High-throughput proteomic studies showed
lamins are also phosphorylated in cells treated with EGF (Olsen et al. 2006) or MAPK
inhibitors (Pan et al. 2009), and in human colon adenocarcinoma cells (Kim et al. 2005),
human epithelial cancer cells (Moritz et al. 2010), and differentiating human embryonic
stem cells (ESCs) (Rigbolt et al. 2011; Van Hoof et al. 2009) (Figure 2, Tables 5-7). The
criterion for including modifications in this review was access to supporting (published)
evidence. Updated information about modifications and sites, both published and
unpublished, can be found online (e.g., Phosphosite database at www.phosphosite.org).
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Twelve phosphorylation sites are conserved in all three human lamins (Figure 2); all but one
are located in head or tail regions important for mitotic lamin depolymerization (lamins A/C
residues Thr-19, Ser-22, Thr-24, Ser-390, Ser-392, Thr-394, Ser-395, Ser-398, Ser-403,
Ser-404, Ser-407; Figure 2). The other conserved phosphorylation site is lamin A/C residue
Ser-303 in the coil 2B region (Figure 2). Four additional phospho-sites are conserved
between lamins A/C and B1 (lamin A residues Thr-3, Ser-18, Ser-277, Ser-652); lamins A/C
and B2 share six additional sites (lamin A residues Thr-64, Ser-71, Ser-301, Ser-406,
Thr-409, Ser-458), and lamins B1 and B2 share four (lamin B1 residues Ser-232, Tyr-359,
Ser-401, Ser-406) (Figure 2), potentially reflecting phospho-dependent regulation of other
conserved functions. By contrast, unique phosphorylation sites are likely to reflect the
differential regulation of lamins in diverse tissues (Vergnes et al. 2004; Coffinier et al. 2010;
Takamori et al. 2007; Coffinier et al. 2011; Kim et al. 2011b).

Several other differences in the patterns of phosphorylation of human lamins stand out.
Lamins A/C have many phosphorylation sites in coils 1A and 1B, the L1 linker in the rod
domain, and the Ig-fold, whereas homologous regions in lamins B1 and B2 have few or no
known sites (Figure 3). On the other hand, lamin B1 has eight phosphorylation sites in coil
2B, whereas lamins A/C have only four and lamin B2 three (Figure 2). Only five
phosphorylated Tyr residues have been identified (lamin A Tyr-81, lamin B1 Tyr-359 and
Tyr-377, lamin B2 Tyr-374 and Tyr-515); we assume more sites exist, since Tyr
phosphorylation tends to be labile under the experimental conditions used in many previous
studies.

Lamin A residues 560-649, which have no counterpart in B-type lamins, are extensively
phosphorylated and all eleven known phospho-sites in this region are eliminated by the
HGPS-causing Δ50 deletion (loss of residues 608-658), pointing to lamin A misregulation
as another likely consequence of this ‘accelerated aging’ mutation (Figure 2). Among the
nearly 400 disease-causing mutations in lamin A (Dittmer and Misteli 2011), remarkably
only four disrupt known phosphorylation sites (Thr-10, Ser-303, Ser-395, Thr-505).
However, many known phosphorylation sites are located near disease-causing mutations and
might be affected indirectly. For example, lamin A Ser-458 is phosphorylated in muscle
cells from EDMD and LGMD patients who have mutations specifically in the Ig-fold
domain, which can be up to seventy residues away from Ser-458 (Mitsuhashi et al. 2010).

The CDK1 phosphorylation sites on lamins are exploited by both herpes simplex virus and
Epstein-Barr virus to disassemble lamins and thereby enable nascent virus particles to bud
through the nuclear envelope (Lee and Chen 2010). The Epstein-Barr virus encodes its own
kinase, BGLF4, which targets CDK1 sites on lamins A/C. The nuclear exit of Epstein-Barr
virus is inhibited in cells that overexpress lamin A bearing five Ser-to-Ala substitutions at
Ser-22, Ser-390, Ser-392, Ser-652, and Ser-657 (Lee et al. 2008). Four of these sites (all but
Ser-657) can also be phosphorylated in uninfected cells (Table 5). Intriguingly, the nuclear
export of large ribonucleoprotein complexes in response to Wnt signaling in Drosophila
muscle cells also involves direct ‘budding’ through the nuclear envelope (Speese et al.
2012).

O-GlcNAcylation
O-GlcNAc (β-O-linked N-acetylglucosamine) is a reversible single sugar modification of
Ser or Thr residues that can compete or cooperate with phosphorylation to regulate
signaling, transcription and mitosis (Hart and Copeland 2010). This modification is found on
both nuclear and cytoplasmic proteins (Hart and Copeland 2010). In mitotic spindles
isolated from HeLa cells, lamin A was O-GlcNAcylated at Ser-612 and Thr-643 (Wang et
al. 2010). Both residues are located in the unique C-terminal region of lamin A (Figure 3). In
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mouse brain tissue, lamin A is O-GlcNAcylated at Ser611 and Ser613 (Alfaro et al. 2012);
mouse Ser-613 is homologous to human lamin Ser-612. The functional consequences of
lamin A O-GlcNAcylation are unknown. Lamins were first reported to be glycosylated over
20 years ago (Ferraro et al. 1989), but whether this represents O-GlcNAcylation or a
different modification(s) is unknown.

Oxidation
Reactive oxygen species (ROS) are produced during oxygen metabolism and can regulate
many pathways including cell senescence (Bartz and Piantadosi 2010). In primary human
dermal fibroblasts, lamin A tail domain residues Cys-522, Cys-588 and Cys-591 can be
oxidized, yielding both intra- and inter-molecular disulfide bridges (Pekovic et al. 2011). In
cells that overexpress lamin A bearing the triple C522A/C588A/C591A mutation, nuclei are
misshapen and cells enter senescence prematurely in response to oxidative stress (Pekovic et
al. 2011; Sieprath et al. 2012). Premature senescence was also reported in lamin A null
fibroblasts (Pekovic et al. 2011), suggesting A-type lamins are an important ‘sink’ for ROS
that helps protect cells.

SUMOylation
SUMO (small ubiquitin-like modifier) proteins are covalently and reversibly attached to Lys
residues on target proteins (Gareau and Lima 2010). SUMO modifications can regulate the
localization, function and interactions of target proteins, and influence many pathways
including nuclear import/export, transcription, apoptosis, cell cycle regulation, and protein
stability (Geiss-Friedlander and Melchior 2007). The enzymes that add or remove SUMO
localize mostly at the nuclear envelope or in the nucleus (Wilkinson and Henley 2010;
Zhang et al. 2002; Mingot et al. 2001). However, at least one, the SUMO-specific
isopeptidase SENP2, associates dynamically with nuclear pore complexes (Goeres et al.
2011) and is regulated by shuttling between the nucleus and cytoplasm (Itahana et al. 2006).
Many cytosolic proteins are controlled by SUMOylation including mitochondrial proteins,
plasma membrane proteins and (in yeast) septins, all of which are unlikely to shuttle into the
nucleus.

Human lamins A/C are modified by SUMO2 at Lys-201, both in vitro and in vivo. This
modification is important for lamin A localization and filament assembly; both activities are
disrupted by K201R or by nearby cardiomyopathy-causing E203G or E203K mutations,
which also decrease cell viability (Zhang and Sarge 2008). A-type lamins can also be
modified by a different SUMO, SUMO1 at two positions, Lys-420 (in the NLS) and
Lys-486 (in the Ig-fold) both in vitro and in vivo (Simon et al. 2012). SUMOylation of the
Ig-fold residue Lys-486 is disrupted by the familial partial lipodystrophy-causing G465D
and K486N mutations (Simon et al. 2012). Lys-420 is alternatively modified by SUMO3 in
HEK293 cells (Galisson et al. 2011).

In contrast to lamin A/C residues Lys-201 and Lys-420, which are located at canonical
SUMOylation consensus sites, Lys-486 is not. Instead, Lys-486 represents a proposed
‘conformational’ consensus SUMOylation site, recognition of which is proposed to require
Gly-465 and negatively charged residues Glu-460 and Asp-461, located directly beneath
Lys-486 in the Ig-fold domain structure (Krimm et al. 2002; Simon et al. 2012). Lamins A/C
and lamin B1 were also identified as potential targets of SUMO4 in serum-starved HEK293
cells (Guo et al. 2005).

At any given time only a few percent, at most, of lamins are SUMOylated (Zhang and Sarge
2008; Simon et al. 2012), similar to other characterized SUMO substrates (Johnson 2004;
Hay 2005). This scarcity suggests the enzymes that add and remove SUMO either have
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limited access to lamin A, or are tightly controlled by other regulators in the nuclei of
specific cell types. The timing and extent to which lamin A is SUMOylated in human tissues
affected by FPLD disease (Simon et al. 2012) or cardiomyopathy (Zhang and Sarge 2008),
and the downstream consequences of modification by SUMO1, SUMO2 or SUMO3 are
open questions.

Acetylation
First discovered as a modification of histones, many other proteins are now known to be
acetylated, including some (e.g., tubulin) that reside in the cytoplasm (Glozak et al. 2005).
Both A- and B-type lamins were reportedly acetylated in high-throughput studies of HeLa
cells (Kim et al. 2006) and a human acute myeloid leukemia cell line (MV4-11 cells;
Choudhary et al. 2009). Eight acetylation sites were identified in A-type lamins: six in the
rod domain (Lys-97, Lys-108, Lys-114, Lys-270, Lys-311, Lys-378), one in the NLS
(Lys-417) and one in the Ig-fold (Lys-450) (Figure 3). Lamin B1 has six acetylation sites
(Lys-33, Lys-123, Lys-157, Lys-181, Lys-271, Lys-483) and lamin B2 has four (Lys-47,
Lys-81, Lys-393, Lys-520) (Figure 3). All three human lamins have one known acetylation
site in the Ig-fold domain. Both B-type lamins have a known acetylation site at the border
between the head domain and coiled-coil rod (Figure 3; Choudhary et al. 2009). Nothing is
known about the timing or functional consequences of lamin acetylation. However, since
lamins associate with LEM-domain proteins (emerin and LAP2β) and HDAC3 to tether
silent chromatin (Somech et al. 2005; Guelen et al. 2008; Zullo et al. 2012; Reddy et al.
2008; Demmerle et al. 2012), we speculate lamin acetylation might influence chromatin
tethering.

Ubiquitylation
Ubiquitin was the first discovered small protein modification of other proteins. Like SUMO,
it is covalently attached to Lys residues on target proteins; two enzymes (E1, E2) first
prepare ubiquitin for transfer, with target specificity dictated by a variety of ubiquitin ligase
(E3) enzymes (Neutzner and Neutzner 2012). Ubiquitin can be attached to another ubiquitin,
creating a ‘chain’ that marks the target for proteolytic degradation. By contrast, attachment
of a single ubiquitin is known to influence target proteins in diverse ways and regulates
many specific cellular pathways and nuclear functions (Strieter and Korasick 2012). The
impact of poly- and mono-ubiquitinylation, which can have major roles in the regulation of
protein function and the spatial and temporal coordination of pathways, on the functions of
lamins A/C, B1 and B2 are essentially unknown.

High throughput mass spectrometry analysis of ubiquitylated proteins in HEK293T cells
(Wagner et al. 2011) and HCT-116 cells, a colon adenocarcinoma cell line (Kim et al.
2011a), revealed widespread ubiquitylation of human lamins A/C, B1 and B2. Most
ubiquitylation sites are located in the rod domain (Figure 3) and might therefore influence
lamin dimerization or filament assembly. Whereas poly-ubiquitylation is assumed to
influence lamin turnover, the functional consequences of lamin mono-ubiquitylation are
unknown.

Several residues can be either ubiquitylated or acetylated as reported for seven lamin A
residues (Lys-97, Lys-108, Lys-270, Lys-311, Lys-378, Lys-417, Lys-450), four lamin B1
residues (Lys-123, Lys-157, Lys-271, Lys-483), and two lamin B2 residues (Lys-81,
Lys-520). Lamin A/C Lys-201 can be either ubiquitylated or SUMO2-modified and Lys-486
can be either ubiquitylated or SUMO1-modified (Simon et al. 2012). Lamin A/C Lys-420,
located in the NLS, can be either ubiquitylated, SUMO1-modified or SUMO3-modified.
These competing modifications may differentially regulate lamin interactions and functions
in specific tissues.
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Lamins, as major structural proteins of the cell, are targeted for destruction early in
apoptosis. They are directly cleaved by caspases 1 and 6 (Takahashi et al. 1996), granzymes
A and B (Zhang et al. 2001), and CRNSP (Ca+2-regulated nuclear scaffold protease;
Clawson et al. 1992) at sites located near many ubiquitylation sites (Figure 3).

Conclusion and perspectives
In humans, ninety-two residues in lamins A/C, fifty-two in lamin B1, and fifty-one in lamin
B2 are reportedly post-translationally modified, yet the only well-defined functional
consequence (mitotic disassembly) was discovered more than 20 years ago. Lamins are
probably also regulated by other modifications not discussed here, including ADP-
ribosylation (Adolph 1987). Furthermore, lamin modifications in other organisms might
differ from those in human lamins both in detail (e.g., due to amino acid sequence
differences; e.g., mouse lamin A/C phosphosites Ser-5, Thr-199, Thr-480, Ser-572; Eggert et
al. 1993) and in substance, as diverging metazoan lineages evolved. Indeed, species-specific
posttranslational modifications might explain why some lamin A mutations that cause a
specific human disease, yield a different phenotype in mice (Stewart et al. 2007).

Modifications have the potential to regulate all aspects of lamin function, from filament
assembly to the nuanced binding of tissue-specific partners. However, one must keep these
modifications in perspective – even rare modification sites can be detected by modern mass
spectrometry, giving the erroneous impression that lamins are always modified. Lamin
modifications in living cells are likely to be relatively rare and transient due to the constant
interplay between different modifying and de-modifying enzymes, with one known
exception: mitosis, when many specific residues are phosphorylated at >80% stoichiometry
(Olsen et al. 2010; Ward and Kirschner 1990; Peter et al. 1990; Kill and Hutchison 1995).
Huge gaps in knowledge about the nature, regulation and consequences of these
modifications must be filled to understand how lamins function, and how specific mutations
lead to disease.
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Figure 1. Lamin A molecule and direct binding partners
Diagram of major domains of human lamin A and mapped regions involved in binding to
specific partners. The rod domain is subdivided into four coiled-coil regions (1A, 1B, 2A,
2B), which are separated by linker regions L1, L12 and L2. NLS, nuclear localization signal.
Question marks indicate partners whose binding region on lamin A is unmapped.
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Figure 2. Conservation of known phosphorylation sites in human lamins
Sequence alignment of the rod and head domains (A) or tail domains (B) of human lamins A
(including precursor-specific C-terminal residues), B1 and B2 based on accession numbers
NP_733821.1, NP_005564 and NP_116126 respectively. The locations of all known
phosphorylation sites are indicated above; squares, circles and triangles indicate residues
phosphorylated in lamins A, B1 or B2, respectively. Arrow indicates the Zmpste24 cleavage
site in pre-lamin A (plamA cleavage). Underlined residues in (B) comprise the lamin Ig-fold
domain (Dhe-Paganon et al. 2002; Krimm et al. 2002; Ruan et al. 2012).
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Figure 3. Post-translational modifications of human lamins
Lamin schematics indicating specific residues that are post-translationally modified by
phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, ubiquitylation, or oxidation.
Arrows indicate sites cleaved by the pre-lamin A processing protease Zmpste24, or
apoptotic proteases Caspase 1 (Csp1), Caspase 6 (Csp6), Granzyme A (GzmA), Granzyme
B (GzmB), or CRNSP.
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Table 1

Reported direct binding partners of lamin A.

Protein Lamin A residues Method Reference

Lamin B1
ND

*
Recombinant Affi-bead pulldown Schirmer & Gerace 2004

Lamin B2 ND

F-actin 461-536 & 564-608 Recombinant high-speed pelleting Simon et al. 2010

Titin 461-536 Recombinant pulldown Zastrow et al. 2006

Nesprin1α ND Blot overlay Mislow et al. 2002

Nesprin2 243-387 & 384-566 Recombinant pulldown Libotte et al. 2005

LCO1 394-572 TnT pulldown Vlcek et al. 2004

SUN1 389-664 TnT pulldown Haque et al. 2006

SUN2 389-646 TnT pulldown Crisp et al. 2006

Nup153 436-544 TnT pulldown Al-Haboubi et al. 2011

Nup88 243-664 Recombinant pulldown Lussi et al. 2011

LAP2α 319-566 Blot overlay Dechat et al. 2000

MAN1 394-664 Blot overlay/Microtiter assay Mansharamani & Wilson 2005

LEM2 319-566 Blot overlay Brachner et al. 2005

Emerin 384-566 Yeast-2-Hybrid/Blot overlay Sakaki et al. 2001
Lee et al. 2001

PCNA 436-544 Recombinant pulldown Shumaker et al. 2008

DNA 411-553 Blot overlay/cosedimentation Stierle et al. 2003

Histones 396-430 Microtiter assay Taniura et al. 1995

BAF ND Microtiter assay Holaska et al. 2003

Rb 247-355 TnT pulldown Ozaki et al. 1994
Mancini et al. 1994

SREBP1 389-664 Recombinant pulldown Lloyd et al. 2002

RBBP4 562-646 Recombinant pulldown
Pegoraro et al. 2009

RBBP7 ND TnT pulldown

c-FOS 81-219 & 243-388 & 453-571 Recombinant pulldown Ivorra et al. 2006

hnRNP E1 ND TnT gel shift Zhong et al. 2005

E1B 19K 252-390 TnT pulldown Rao et al. 1997

Cyclin D3 383-474 Recombinant pulldown Mariappan et al. 2007

PKCα 500-664 Blot overlay Martelli et al. 2002

NARF 389-664 TnT pulldown Barton & Worman 1999

*
ND, not determined.
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Table 2

Examples of proteins that associate with lamin A (direct binding untested).

Protein Lamin A residues Method Reference

LAP1 ND Cosedimentation from membrane fraction Foisner & Gerace 1993

UBC9 ND In vitro SUMOylation, Yeast-2-Hybrid & CO-IP Zhang and Sarge 2008
Zhong et al. 2005

MRPS26 ND

Yeast-2-Hybrid

Zhong et al. 2005

Filamin A ND

Unc13D ND

EGF ND
Yeast-2-Hybrid & CO-IP

Mel18 ND

SREBP2 379-664 Yeast-2-Hybrid Lloyd et al. 2002

12-(R) Lipoxygenase 463-664 Yeast-2-Hybrid Tang et al. 2000

Supervillin 221-448 Yeast-2-Hybrid Smith et al. 2010

MOK2 243-387 GST pulldown from cells Dreuillet et al. 2002

TonEBP ND CO-IP from cells Favale et al. 2007

PP2A ND CO-IP from cells Van Berlo et al. 2005

LUMA ND CO-IP from cells Bengtsson & Otto 2008

ERK1/2 247-355 CO-IP from cells Gonzalez et al. 2008

Pro-amphiregulin 247-355 CO-IP from cells Isokane et al. 2008

Ing1 ND CO-IP from cells Han et al. 2008

αII spectrin ND

CO-IP from cells Sridharan et al. 2006βIV spectrin ND

Protein 4.1 ND

nMyo1c ND CO-IP from cells Holaska & Wilson 2007

PP1 ND
CO-IP from cells Steen & Collas 2001

AKAP149 ND

Smad3 ND CO-IP from cells Grimsby et al. 2004

Prx1 ND CO-IP from cells Kubben et al. 2010

CO-IP, Co-immunoprecipitation. ND, not determined.
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Table 3

Examples of proteins that interact directly or indirectly with lamin B1

Protein Lamin B1 residues Method Reference

Lamin A ND
Recombinant Affi-bead pulldown Schirmer & Gerace 2004

Lamin C ND

F-actin 463-537 Recombinant high-speed pelleting Simon et al. 2010

CDK1 ND In vivo kinase Goss et al. 1994

PKC 1-588 Recombinant pulldown Tabellini et al. 2002

LAP2 78-258 Yeast-2-Hybrid Furukawa & Kondo 1998

LBR ND Pulldown of native Ye & Worman 1994

Plectin ND Blot overlay Foisner et al. 1991

LAP1β ND CO-IP from cells Maison et al. 1997

LCO1 395-586 TnT pulldown Vlcek et al. 2004

MELK ND In vivo kinase Beullens et al. 2005

Emerin 1-188 TnT pulldown Vaughan et al. 2001

Nudel ND CO-IP from cells Ma et al. 2009

DNA 412-554 Blot overlay/cosedimentation Stierle et al. 2003

Histones 397-432 Microtiter assay Taniura et al. 1995

Nup153 244-586 TnT pulldown Al-Haboubi et al. 2011

Titin 463-538 Recombinant pulldown Zastrow et al. 2006

PCNA 244-586 Recombinant pulldown Shumaker et al. 2008

MAN1 394-586 Blot overlay/Microtiter assay Mansharamani & Wilson 2005

PP1 ND
CO-IP from cells Steen & Collas 2001

AKAP149 ND

PLCβ1 ND CO-IP from cells Fiume et al. 2009

Oct-1 ND CO-IP from cells & FRET Malhas et al. 2009

CO-IP, Co-immunoprecipitation.
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Table 4

Examples of proteins that interact directly or indirectly with lamin B2

Protein Lamin B2 residues Method Reference

Lamin A ND
Recombinant Affi-bead pulldown Schirmer & Gerace 2004

Lamin C ND

PKC ND In vivo kinase Kasahara et al. 1991

Supervillin 161-342 Yeast-2-Hybrid Smith et al. 2010

PP1 ND
CO-IP from cells Steen & Collas 2001

AKAP149 ND

Nup153 258-620 TnT pulldown Al-Haboubi et al. 2011

CO-IP, Co-immunoprecipitation.
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