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Abstract

The development of amphetamine dependence largely depends on the effects of amphetamine in the brain reward
systems. Ghrelin, an orexigenic peptide, activates the reward systems and is required for reward induced by alcohol,
nicotine, cocaine and amphetamine in mice. Human genetic studies have shown that polymorphisms in the pre-proghrelin
(GHRL) as well as GHS-R1A (GHSR) genes are associated with high alcohol consumption, increased weight and smoking in
males. Since the heritability factor underlying drug dependence is shared between different drugs of abuse, we here
examine the association between single nucleotide polymorphisms (SNPs) and haplotypes in the GHRL and GHSR, and
amphetamine dependence. GHRL and GHSR SNPs were genotyped in Swedish amphetamine dependent individuals
(n = 104) and controls from the general population (n = 310). A case-control analysis was performed and SNPs and
haplotypes were additionally tested for association against Addiction Severity Interview (ASI) composite score of drug use.
The minor G-allele of the GHSR SNP rs2948694, was more common among amphetamine dependent individuals when
compared to controls (pc = 0.02). A significant association between the GHRL SNP rs4684677 and ASI composite score of
drug use was also reported (pc = 0.03). The haplotype analysis did not add to the information given by the individual
polymorphisms. Although genetic variability of the ghrelin signalling system is not a diagnostic marker for amphetamine
dependence and problem severity of drug use, the present results strengthen the notion that ghrelin and its receptor may
be involved in the development of addictive behaviours and may thus serve as suitable targets for new treatments of such
disorders.
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Introduction

Amphetamine and its derivatives are widely abused drugs and

amphetamine dependence is of great concern in today’s society.

The development of drug dependence, such as for amphetamine,

largely depends on the effects of amphetamine in the brain reward

systems including the mesolimbic dopamine system (for review see

[1]). These systems are important in mediating the rewarding

properties of natural incentives, e.g. food, as well as of drugs, such

as alcohol and amphetamine [2–4]. The drug response to

amphetamine is heterogeneous and depends on factors such as

expectancies of the drug, psychiatric disorders or personality traits,

gender differences as well as genetics (for review see [5]). The

heritability factor underlying drug dependence is shared between

different drugs of abuse [6–8], and we hypothesize that ghrelin

and its receptor, growth hormone secretagogue receptor (GHS-

R1A), may be common denominators.

Ghrelin, a circulating orexigenic stomach-derived hormone,

regulates energy homeostasis mainly via hypothalamic GHS-R1A

[9–13]. Centrally or peripherally administered ghrelin has also

been shown to activate the reward systems, specifically the

cholinergic-dopaminergic reward link [14–18], and may thereby

increase the incentive value of motivated behaviours such as food

seeking. Supportively, ghrelin signalling has been implicated in

hedonic feeding as well as in food-motivated behaviours [19–24].

In addition, central ghrelin signalling is required for the

reinforcing properties of drugs of abuse as supported by preclinical

findings (for review see [25] or [26]). Specifically, a GHS-R1A

antagonist attenuates the rewarding properties of alcohol, nicotine,

cocaine and amphetamine as measured by locomotor stimulation,

accumbal dopamine release and condition place preference [27–
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29]. In rodents, ghrelin has been shown to enhance cocaine-

induced locomotor stimulation, to condition a place preference for

cocaine and to induce cocaine-seeking behaviours [30–32].

Moreover, ghrelin increases, and a GHS-R1A antagonist

decreases the consumption and operant self-administration of

alcohol in rodents [28,33,34].

We have obtained support for these preclinical data in human

genetic studies in which single nucleotide polymorphisms (SNPs)

and haplotypes in the pre-proghrelin (GHRL) as well as GHS-R1A

(GHSR) genes were associated with high alcohol consumption,

increased weight and smoking in males as well as with personality

traits related to alcohol use disorder in males with an alcohol use

disorder [35–37]. Additionally, associations between a GHRL

haplotype and paternal heredity of alcohol use disorder in females

as well as increased weight in alcohol dependent males has been

reported [37]. Haplotypes of the ghrelin signalling system have

also been linked to increased sucrose consumption [23]. Given the

shared genetic contribution to drug abuse, that polymorphisms in

ghrelin related genes are associated with alcohol intake and

smoking and that GHS-R1A antagonists blocks amphetamine-

induced reward in mice, we hypothesise that genetic variations in

the GHRL and GHSR may be associated with amphetamine

dependence in humans. Thus, in the present association study

SNPs and haplotypes of the GHRL and GHSR were investigated in

Swedish individuals with a Diagnostic and Statistical Manual of

Mental Disorders, 4th edition, (DSM-IV) diagnosis of amphet-

amine dependence and who had additionally been assessed using

the Addiction Severity Index (ASI).

Methods

Subjects
All individuals with a history of amphetamine dependence (26

women, 78 men) were recruited at the Stockholm Centre for

Dependency Disorders (Beroendecentrum Stockholm), Sweden.

The individuals had a DSM-IV diagnosis of amphetamine

dependence and reported amphetamine as their primary drug of

choice. They did not have a current diagnosis of any other major

psychiatric disorders (such as bipolar, schizophrenia) or major

somatic disorder (e.g. heart disease). Subjects testing positive for

any other illicit substance were excluded. Data on nicotine use was

not systematically collected on all patients, however, a majority

(85%) were dependent on nicotine. The mean age of the patients

was 40.3 years (SD 10.5, range 20–60). All patients gave their

written informed consent to the study and the protocol was

approved by the regional ethics review board at Karolinska

Institutet, Stockholm, Sweden.

The control subjects consist of individuals (214 women, 96 men)

randomly selected among a larger sample of low alcohol

consuming individuals (i.e. self-reported alcohol consumption of

0.3–2.3 g alcohol/day) recruited for the INTERGENE study (see

[36] for detailed description of this selection). These controls are

Caucasians and did not self-report any drug use. However, 54 (out

of 308 i.e. 17.8%) reported that they were current smokers.

INTERGENE is a population based research program with the

main objective of assessing the INTERplay between GENEtic

susceptibility and environmental factors in the risk of developing

chronic diseases in western Sweden [38–40]. The mean age of the

selected control subjects was 56.6 years (SD 13.5, range 20–76).

All control subjects gave their written informed consent to the

study and the protocol was approved by the regional ethics review

board at University of Gothenburg, Gothenburg, Sweden.

Clinical Assessment
The individuals in the present study are Caucasians and fulfilled

the diagnosis of amphetamine dependence based on the DSM-IV

criteria. In addition to the DSM-IV interview, patient alcohol and

drug usage patterns were measured via the Addiction Severity

Interview (ASI), a structured interview which maps the severity

and duration of dependence across seven sub-scales [41]. 27

subjects were not interviewed with the ASI. All individuals

included had the DSM-IV diagnosis of current amphetamine

dependence. They did not have co-diagnosis of any other

substance dependence (Table 1). 51 of 62 individuals met ASI

criteria for previous heavy alcohol consumption (more than 4

drinks for women and 5 for men, per occasion) in the past year.

The urine toxicology of the patients confirmed that all patients

were current D/L-amphetamine users. The average length of use

was 13 years of regular usage (.4 days per week). Consumption

ranged between 1–2 grams per occasion (average consumption of

6 grams per week). These amounts are typical for chronic

amphetamine dependent individuals treated at the clinic. See

table 1 for data on patient substance abuse characteristics.

SNP selection and genotyping
The Tag SNP selection procedure has been described in detail

previously [37]. Briefly, genotyping data for the pro-ghrelin and

GHS-R1A genes for the Caucasian CEPH population was

downloaded from the International Haplotype Mapping Project

web site (http://www.hapmap.org). Six Tag SNPs in the pro-

ghrelin gene (rs4684677, rs42451, rs35680, rs3491141, rs696217,

and rs26802) and four Tag SNPs in the GHS-R1A gene

(rs2948694, rs572169, rs2232165, and rs495225) were selected

by using the Tagger function in the Haploview software with the r2

set to a minimum of 0.80 (for their location and the SNPs which

they tag). Out of these SNPs rs4684677 rs3491141, rs696217,

rs572169, and rs495225 were force-included due to previous

studies (for refs, see [37]).

The genotyping procedure has been described in detail

previously [37]. Human genomic DNA was extracted from blood

samples from both patients and controls using the QIAamp 96

DNA Blood Blood Kit (Qiagen, Hilden, Germany). The studied

SNPs were genotyped from the obtained genomic DNA using

TaqMan Pre-Designed SNP Genotyping AssaysH (Applied Bio-

systems, Foster City, CA) on the ABI PRISM 7900HT Sequence

Detection System (Applied Biosystems) using the TaqMan Allelic

Discrimination technology [42]. In the TaqMan Pre-Designed

SNP Genotyping AssaysH a polymerase chain reaction amplifies

the region around the SNPs. This polymerase chain reaction also

includes two oligonucleotide probes, specific for one SNP allele

each. These probes are labelled with one fluorescent reporter dye

each (VIC and FAM) at one end and a quencher that absorbs

fluorescence at the other end. When the DNA polymerase extends

the newly synthesized DNA strand, it cleaves any probe that is

tightly bound to the DNA, causing an increase in fluorescence.

After polymerase chain reaction amplification the signal strength

of each reporter molecule is measured and displayed in a scatter

plot with the fluorescence of the probes are plotted on the X- and

Y-axis. Given that each point represents one sample the genotype

of each sample can be determined. For details on the studied Tag

SNPs and the TaqMan assay ID, see table 2.

Statistical analyses
Deviation from Hardy-Weinberg equilibrium (HWE) was

assessed for all genotyped SNPs in cases and controls separately.

Allele frequencies were compared between amphetamine depen-

dent patients and controls using Chi2-test. Homogeneity of odds
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ratios was tested with a Breslow-Day test. The possible influence of

the studied SNPs on the ASI composite score of drug use was

investigated using linear regression with sex and age as covariates.

For each gene, haplotype analyses were performed including all

SNPs using stepwise logistic regression in the case-control analysis

and linear regression including sex and age as covariates in the

ASI composite score of drug use analysis. Haplotype frequencies

were estimated using the expectation-maximisation algorithm

[43]. A significance level of 0.05 was used. Due to LD between

SNPs correction for multiple testing was carried out using 10 000

permutations in each gene (i.e. six in GHRL and four in GHSR1).

Corrected p-values are designated as pc. The statistical analysis was

carried out using SPSS for Mac (Version 19.0.0.1, SPSS, Chicago,

IL, USA) and HelixTree (Version 6.3, Golden Helix, Bozeman,

MT, USA).

Results

All studied SNPs in both the patient and control group had a

HWE p-value.0.01. As seen in table 3, the minor allele of the

rs2948694 SNP located in intron 1 of the GHSR gene was

associated with amphetamine dependence (pc = 0.02, allelic OR

1.84). When men and women were analysed separately for

rs2948694 the ORs were 1.48 and 2.11 respectively, but not

significantly different (p = 0.5). When the control group was split

into non-smokers and current smokers the minor allele frequencies

were 10.0% and 13.0% respectively. Pairwise comparisons of the

Table 1. Patient Substance Abuse Characteristics.

n = 62–77* Mean (SD)

Age of onset amphetamine abuse 20.1 (7.5)

ASI Composite score for drug use1 0.17 (0.1)

Usage2 (%) Mean (SD)3

Amphetamine 100 15.3 (10.3)

Intravenous usage4 76.0 15.6 (11.7)

Any alcohol 75.8 13.4 (11.6)

Heroin 16.6 4.8 (4.7)

Pain relievers (opiates or equivalent) 24.3 4.3 (4.0)

Sedatives 29.7 6.4 (6.1)

Cocaine 25.0 2.9 (2.1)

Cannabis 62.0 10.2 (8.3)

Hallucinogenics 21.4 3.5 (4.5)

Inhalants 10.4 3.1 (4.8)

Multiple drug use 57.6 12.1 (10.4)

ASI, addiction severity index.
*Variation in n due to variation in number of individuals responding to the ASI items.
1The composite score ranges from 0 (no problems) to 1 (severe problems).
2Percentage users out of valid responses.
3Data expressed as mean (SD) of number of years in life that the drug has been abused (subjects who had not taken the given drug were excluded).
4The ASI does not specify which drug was used intravenously.
doi:10.1371/journal.pone.0061242.t001

Table 2. Studied Single Nucleotide Polymorphisms.

Gene SNP Position1 Alleles SNP location SNP type TaqMan SNP assay

GHRL rs4684677 10328453 A/T Exon 3 Missense (Gln90Leu) C__25607748_10

rs42451 10330377 G/A Intron 2 Intron C____965982_10

rs35680 10330564 G/A Intron 2 Intron C___3151002_10

rs696217 10331457 G/T Exon 2 Missense (Leu72Met) C___3151003_20

rs34911341 10331548 T/C Exon 2 Missense (Arg51Gln) C__25607739_20

rs26802 10332365 G/T Promoter Intron C___3151004_10

GHSR rs2948694 172165163 A/G Intron 1 Intron C__16174361_10

rs572169 172165727 G/A Exon 1 Silent mutation C___1079489_20

rs495225 172166033 T/C Exon 1 Silent mutation C___1079488_1_

rs2232165 172166144 C/T Exon 1 Silent mutation C__15857645_10

GHRL = pre-proghrelin gene; GHSR = growth hormone secretagogue receptor gene; SNP = single nucleotide polymorphism.
1Position on chromosome 3 for the studied SNPs in GHRL and GHSR.
doi:10.1371/journal.pone.0061242.t002
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three groups then gave: Amphetamine users vs smokers

(OR = 1.47,p = 0.25), smokers vs non-smokers (OR = 1.33,

p = 0.37) and amphetamine users vs non-smokers (OR = 1.96,

p = 0.004).

Single marker analysis also showed association between the

minor allele (90Leu) of the GHRL SNP rs4684677 and increased

ASI composite scores for drug use (table 4).

Although associations were found both between a haplotype in

the GHSR gene and diagnosis as well as a haplotype in the GHRL

gene and ASI composite scores for drug use these analyses did not

contribute to additional information next to the single marker

analysis.

Discussion

The present study is, to our knowledge, the first investigating the

GHRL and GHSR genes, encoding ghrelin and its receptor, in

relation to amphetamine dependence and problem severity of drug

use. We found that the minor allele of a SNP located in GHSR

(rs2948694) is associated with amphetamine dependence. This

finding was strengthened by the fact that the control smokers had

an allele frequency intermediate between non-smokers and

patients. We also found a significantly higher ASI drug composite

score in patients carrying the minor allele of a GHRL SNP

(rs4684677).

Common neurobiological mechanisms for the rewarding

properties of both drugs of abuse and food have been suggested

in both animal and human studies [4,44,45], and the ghrelin

signalling system could be one of the mediators of this effect. This

may be one reason for the high co-morbidity between eating

disorders and drug dependence [46]. Both preclinical and human

genetic findings have previously suggested an important role for

GHS-R1A in drug-induced reward (vide infra). Specifically, the

ability of alcohol, nicotine, cocaine as well as amphetamine to

induce locomotor stimulation, increase accumbal dopamine

release and to condition a place preference, are attenuated by

GHS-R1A antagonists in mice [28,29,47]. Previous human

genetic studies have reported association between SNPs and

haplotypes of the GHSR gene and heavy alcohol consumption as

well as body mass index in heavy alcohol consuming individuals

[37]; smoking and type II alcohol dependence in women [36] as

well as with self-directedness in alcohol dependent individuals

[35]. Collectively, these data suggest that GHS-R1A may be

involved in drug reward, drug intake as well as characteristic traits

of addictive behaviours and the receptor may therefore be a

potential target for treatment of various addictions. It has been

suggested that either the constitutive activity of the GHS-R1A [48]

or the ability of the GHS-R1A to form a heterodimer with

dopamine D1-like or D2 receptors [49,50] may affect the set point

of the mesolimbic dopamine system. The functional role of the

studied SNP is not known and the significance of these results

cannot be determined. However, we hypothesize that the SNP in

the GHS-R1A gene could, tentatively, influence the activity of

tegmental dopamine neurons and thereby influence the ability of

these dopamine neurons to be activated by addictive drugs.

However, this needs to be further elucidated.

We also found that patients with the uncommon variant (90Leu)

of the GHRL SNP (rs4684677) have higher ASI composite scores

for drug use. Our previous human genetic studies have reported

associations between SNPs and haplotypes of the GHRL gene and

body mass index in heavy alcohol consuming individuals [37];

paternal alcohol dependence and withdrawal symptoms in female

alcohol-dependent individuals [36] and with self-transcendence in

alcohol dependent individuals [35], and ghrelin may thus be

implicated in mechanisms underlying drug use. Preclinical data

support an important role of ghrelin in drug intake and drug-

reward. In mice, ghrelin administration into brain ventricles or

locally into reward nodes (ventral tegmental area or laterodorsal

tegmental area) increases the intake of alcohol [28] and alcohol-

induced reward is attenuated in ghrelin knockout mice [47].

Moreover, the ability of cocaine to increase locomotor activity and

Table 3. Distribution of minor allele frequencies (%) of the
studied SNPs in controls and in amphetamine dependent
individuals.

Allele Controls Cases OR p-value1 pc-value

minor
(major)

n = 275-
308*

n = 103**

GHRL SNPs

rs4684677 A (T) 9.3 9.2 0.99 0.98 1

rs42451 A (G) 24.2 28.6 1.26 0.21 0.70

rs35680 G (A) 45.6 43.7 0.92 0.63 1

rs696217 T (G) 10.9 8.3 0.73 0.28 0.84

rs34911341 T (C) 1.5 1.0 0.66 0.59 0.99

rs26802 G (T) 26.6 30.1 1.19 0.33 0.88

GHSR SNPs

rs2948694 G (A) 10.6 18.0 1.84 0.006 0.02

rs572169 A (G) 35.0 31.6 0.86 0.37 0.81

rs495225 C (T) 26.6 27.7 1.05 0.77 0.99

rs2232165 T (C) 2.9 1.9 0.65 0.44 0.88

GHRL = pre-proghrelin gene; GHSR = growth hormone secretagogue receptor
gene; SNPs = single nucleotide polymorphisms.
*Variation in n due to failed genotyping (n = 275 for rs42451 and rs35680 and
n$306 for the remaining SNPs). Total n for controls is 310.
**one sample failed genotyping.
1Chi-square test of allele frequencies.
doi:10.1371/journal.pone.0061242.t003

Table 4. Association between ASI composite score for drug
use among amphetamine dependent individuals and GHRL
and GHSR SNPs.

b1 (95% CI) p-value2 pc-value

GHRL SNPs

rs4684677 0.07(0.02–0.12) 0.007 0.03

rs42451 20.01(20.04–0.03) 0.723 0.99

rs35680 20.01(20.04–0.02) 0.336 0.88

rs696217 0.10(20.10–0.30) 0.344 0.89

rs34911341 0.02(20.04–0.07) 0.512 0.98

rs26802 0.01(20.04–0.03) 0.731 0.99

GHSR SNPs

rs2948694 0.00(20.04–0.04) 0.921 1

rs572169 0.01(20.03–0.04) 0.719 0.99

rs495225 0.01(20.03–0.04) 0.700 0.98

rs22232165 20.03(20.14–0.09) 0.655 0.98

CI = confidence interval; GHRL = pre-proghrelin gene; GHSR = growth hormone
secretagogue receptor gene.
1Change in ASI per minor allele.
2Linear regression controlling for age and sex.
doi:10.1371/journal.pone.0061242.t004
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condition a place preference is enhanced by ghrelin in mice and

high plasma levels of ghrelin is associated with cocaine-seeking

behaviours in rats [30–32]. Although hypothetical, it could be

speculated that this SNP, if resulting in higher ghrelin levels, could

lead to drug seeking or craving, as ghrelin plasma levels have been

previously shown to be higher during alcohol abstinence [51] and

craving for alcohol [52].

Interestingly ghrelin and its receptor appear to be important for

reward in general. Specifically, suppression of the GHS-R1A

reduces reward induced by, the intake of and motivation to

consume palatable foods [21,22]. It has also been shown that

ghrelin and its receptor regulates the intake of and motivation to

consume sucrose and saccharin [24,53,54], at the level of the

mesolimbic dopamine system [55]. Human functional magnetic

resonance imaging studies show that ghrelin administration

increases the natural response to food in reward related areas,

including the mesolimbic dopamine system [56]. In addition,

human genetic findings show an association between a haplotype

in the GHRL gene and high sucrose consumption [23]. Taken

together with the data regarding ghrelin, the GHS-R1A and drugs

of abuse it may be suggested that ghrelin and its receptor may have

an important role in regulating reward in general and that GHS-

R1A may be a potential target for new treatments of addictive

behaviours such as compulsive overeating.

The current study is faced with limitations, the main being the

small sample size, the possibility of a type 1 error and population

stratifications. Therefore our study should be considered as a pilot

study and additional studies replicating our data are warranted.

Another confounding factor may be that the controls self-reported

nicotine and alcohol usage via a questioner. Unreported usage of

addictive drugs could therefore tentatively affect the obtained

results. Additionally, the modest sample size may limit the power

to detect effects. However, the consistency in our findings where a

SNP in GHSR and GHRL were associated with amphetamine

dependence and ASI drug composite score, may suggests an

important role for ghrelin and its receptor in drug dependence.

Given previous reports showing associations between the studied

SNPs and heavy alcohol-use as well as smoking [37] and the

comorbidity between amphetamine, alcohol and nicotine depen-

dence, we cannot rule out the possibility of an interaction between

the studied SNPs and alcohol and/or nicotine dependence.

Additionally, the functional value of the studied SNPs is yet to

be determined. Although our research is highly hypothesis driven,

the findings reported here must be regarded as preliminary until

replicated.

In conclusion, even though genetic variability of ghrelin and its

receptor is not diagnostic marker for amphetamine dependence

and problem severity of drug use, the present results still

strengthen the notion that ghrelin and the GHS-R1A are involved

in some of the mechanisms underlying the development of

addictive behaviours.
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