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b-Arrestins are intracellular scaffolding proteins that modulate specific cell signaling pathways. Recent
studies, in both cell culture and in vivo models, have demonstrated an important role for b-arrestin-1 in
inflammation. However, the role of b-arrestin-1 in the pathogenesis of inflammatory bowel disease
(IBD) is not known. Our goal was to investigate the role of b-arrestin-1 in IBD using mouse models of
colitis. To this end, we subjected wild-type (WT) and b-arrestin-1 knockout (b-arr-1�/�) mice to colitis
induced by trinitrobenzenesulfonic acid or dextran sulfate sodium and examined the clinical signs,
gross pathology, and histopathology of the colon, as well as inflammatory components. The b-arr-1�/�

mice displayed significantly attenuated colitis, compared with WT mice, in both models. Consistent with
the phenotypic observations, histological examination of the colon revealed attenuated disease
pathology in the b-arr-1�/� mice. Our results further demonstrate that b-arr-1�/� mice are deficient in
IL-6 expression in the colon, but have higher expression of the anti-inflammatory IL-10 family of
cytokines. Our results also demonstrate diminished ERK and NFkB pathways in the colons of b-arr-1�/�

mice, compared with WT mice. Taken together, our results demonstrate that decreased IL-6 production
and enhanced IL-10 and IL-22 production in b-arrestin-1edeficient mice likely lead to attenuated gut
inflammation. (Am J Pathol 2013, 182: 1114e1123; http://dx.doi.org/10.1016/j.ajpath.2012.12.025)
Supported in part by the NIH (grants HL095637, AR055726, and
AR056680 to N.P.).
Arrestins are scaffolding proteins now classified into a and
b arrestin families.1 The b-arrestins were discovered for their
role in binding to phosphorylatedG-protein coupled receptors
(GPCRs) to evoke receptor desensitization. Of the four
members of the b-arrestin family, b-arrestin-1 (originally
arrestin-2) and b-arrestin-2 (originally arrestin-3) are ubiqui-
tously distributed. Even though their role in receptor desen-
sitization has been well characterized and has been shown to
have pharmacological and therapeutic implications, recent
studies indicate that b-arrestins have a much broader role in
cell signaling related to both GPCRs and non-GPCRs.2 In
addition, although several members of the arrestin family are
present during development, the crucial ones are b-arrestins 1
and 2, because deletion of both results in embryonic lethality.3

Several studies have shown that b-arrestins, by virtue of
regulating cell signaling, are able to modulate a variety of cell
biological processes including gene expression, chemotaxis,
proliferation, and apoptosis. Although b-arrestin-1 and -2
have been shown to have many overlapping cellular func-
tions, they also have unique roles of their own.2
stigative Pathology.

.

Because of their critical role in many cellular functions,
b-arrestins are crucial in the pathogenesis of many different
diseases, including Parkinson’s disease, multiple sclerosis,
cardiovascular disease, rheumatoid arthritis, sepsis, and all-
ergic asthma.4e8 In this context, we recently showed that
b-arrestin-1 and -2 have differential and overlapping roles in
endotoxin- and adenovirus-induced inflammatory responses
in vivo.9,10 In addition, other researchers have also shown that
b-arrestin-2 plays a crucial role in sepsis and arthritis models
of inflammatory disease.7,11 Although it is clear that b-arrestins
are important modulators of inflammation, nonetheless the
role of b-arrestins in gastrointestinal inflammation is not
known.
Inflammatory bowel disease (IBD) affects more than 1.4

million people in the United States and accounts for more
than $1.7 billion dollars in health care costs.12 IBD broadly
includes both Crohn’s disease and ulcerative colitis, both of
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b-Arrestin-1 Mediates Colitis
which are characterized by chronic relapsing inflammation
of the gastrointestinal tract.13 Importantly, IBD requires
lifetime care and currently has no medical cure. Under-
standing the mechanisms involved in the pathogenesis of
IBD is crucial for developing new therapeutic strategies to
prevent or cure this inflammatory disease. In this regard,
recent studies have shown that activation of Toll-like
receptors (TLRs) and production of inflammatory cyto-
kines are important mediators in the pathogenesis of colitis,
including in mouse models of chemically induced col-
itis.14e17 Previous studies from our laboratory have
demonstrated that b-arrestin-1 mediates TLR signaling and
the consequent inflammatory cytokine production in vivo.9

Based on these data, we hypothesized that b-arrestin-1 is
an important and critical regulator of colitis pathogenesis.
Using two different colitis models, we demonstrate here that
b-arrestin-1 is a crucial mediator of colitis pathogenesis in
mice. Deficiency of b-arrestin-1 almost completely abro-
gated the development of intestinal inflammation in the
dextran sulfate sodium (DSS) model of colitis, whereas
inflammation was significantly attenuated in the trini-
trobenzenesulfonic acid (TNBS) model. Furthermore, our
results also demonstrate that lack of b-arrestin-1 leads to
diminished production of IL-6 but enhanced production of
cytokines IL-10 and IL-22, and in combination these likely
result in a favorable outcome for intestinal inflammation.
The present study implicates a b-arrestin-1emediated sig-
naling pathway as a potential molecular target in the treat-
ment of colitis.

Materials and Methods

Animals

Mice deficient in b-arrestin-1 (b-arr-1�/� mice, kindly pro-
videdbyDr.Robert Lefkowitz,DukeUniversity) andWTmice
were maintained at Michigan State University. These mice
have been described previously.9 All animals were housed in
a pathogen-free facility with a 12-hour lightedark cycle and
were given mouse chow and water ad libitum. Groups of mice
were age-matched (8 to 12weeks) and sex-matched.All animal
procedures were approved by the Michigan State University
Institutional Animal Care and Use Committee and conformed
to NIH guidelines (8th edition, 2011).

Mouse Models of Colitis

DSS-Induced Colitis
Mice were subjected to 2% (w/v) DSS (reagent-grade DSS
salt; molecular mass, 36 to 50 kDa; MP Biomedicals, Solon,
OH) in drinking water for 7 days, with a change of DSS
every 2 days.18

TNBS-Induced Colitis
Mice were presensitized by epicutaneous application of 1%
TNBS (5% stock solution; Sigma, St. Louis, MO) in acetone
The American Journal of Pathology - ajp.amjpathol.org
and oil mixture in a volume of 150 mL. At 7 days after TNBS
application, mice were anesthetized by an intraperitoneal
injection of xylazine/ketamine, followed by intrarectal
administration of 70 mL of TNBS (2.75 mg/mouse) dissolved
in 50% ethanol. Control mice received 70 mL of 50% ethanol
under the same conditions.18
Determination of Clinical Scores

The clinical colitis score was calculated using a modified
scoring system based on body weight, stool consistency, the
presence of occult blood, coat appearance, crusty eyes, and
hunched posture.19 The baseline clinical score was deter-
mined on day 0. Scoring was as follows. Weight loss, relative
to baseline: 0 Z no weight loss, 1 Z 1% to 5% weight loss,
2 Z 5% to 10% weight loss, 3 Z 10% to 20% weight loss,
and 4 Z >20% weight loss. Stool consistency: 0 Z well-
formed pellets, 2 Z pasty and semiformed stools, and 4 Z
liquid stools. Presence of fecal blood: 0 Z no blood, 2 Z
positive fecal occult blood test findings, and 4 Z gross
bleeding. Coat appearance: 0 Z normal, and 1 Z ruffled/
rough coat. Crusty eyes: 0Z no crusting, 1Z one eye, 2Z
both eyes. Posture: 0 Z no hunching, and 1 Z hunched
posture. These scores were summed and divided by 6.
Histopathology

Distal and proximal colonic tissues were collected from
mice subjected to DSS or TNBS. Tissues were flushed with
phosphate-buffered saline (PBS). Tissues were fixed in 10%
formalin overnight, embedded in paraffin, and then were
sectioned and stained with H&E. The degree of inflamma-
tion on longitudinal sections of the colon was scored by
a Board-certified pathologist (P.C.L.) in a masked manner.
Specifically, for each colon section, a determination was
made of the percentage of the mucosal surface area involved
with severe damage (defined as complete mucosal ulcera-
tion/epithelial denudation and associated marked inflam-
mation), moderate damage (defined as partial crypt damage/
partial epithelial destruction and associated modest inflam-
mation), or minimal damage (defined as slight/focal cryptitis
or essentially normal mucosa).
Myeloperoxidase Activity Assay

Tissue myeloperoxidase (MPO) activity was measured as
described previously.20 Briefly, snap-frozen colon tissues
were homogenized in 50mmol/L potassium phosphate buffer
(pH 6.0). After centrifugation, the pellets were incubated in
50 mmol/L potassium phosphate buffer (pH 6.0) containing
0.5% hexadecyltrimethylammonium bromide. An aliquot of
the supernatant was incubated at 25�C in 50 mmol/L potas-
sium phosphate buffer (pH 6.0) containing 0.0005% H2O2

and 167 mg/mL o-dianisidinehydrochloride. MPO activ-
ity was determined spectrophotometrically by measuring the
1115
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change in absorbance at 450 nm over time using a 96-well
plate reader as described previously.20

Cytokine Measurements

To determine relative levels of cytokines from colonic tissue,
tissues were snap-frozen in liquid nitrogen and homogenized
in PBS. Levels of TNF-a, IFN-g, IL-6, IL-10, IL-17A, and
IL-22 in homogenates were analyzed using an enzyme-linked
immunosorbent assay (ELISA) kit from eBioscience (San
Diego, CA). Cytokine levels were normalized to the total
protein and expressed as picograms per milligram of total
protein as described previously.20 Plasma cytokine levels
were determined as described previously.21

Western Blot Analysis

Tissue samples as described above were subjected to SDS-
PAGE, followed by Western blotting, as described previ-
ously.22Blotswereprobed for p-ERK1/2,p-IkBa, p-NFkBp65,
p-JNK, and p-P38 using an Odyssey infrared imaging system
(Li-Cor, Lincoln, NE) as described previously.22

qPCR

For quantitative real-time PCR (qPCR), total RNA was ex-
tracted from colonic tissues and cDNA synthesized as des-
cribed previously.23 cDNA (1 mL) was amplified by PCR in
a final volume of 25 mL using iQ SYBRGreen supermix (Bio-
Rad Laboratories, Hercules, CA) with 10 pmol of each primer
(Integrated DNA Technologies, Coralville, IA). IL6 was
amplified using the primers 50-ATCCAGTTGCCTTCTTG-
GGACTGA-30 and 50-TAAGCCTCCGACTTGTGAAGT-
GGT-30.23 HPRT was used as a non-modulated control gene
and was amplified using the primers 50-AAGCCTAAGAT-
GAGCGCAAG-30 and 50-TTACTAGGCAGATGGCCACA-
30.23 qPCRwas performed for 40 cycles (95�C for 15 seconds,
60�C for 30 seconds, and 72�C for 30 seconds), using an
iCycler thermal cycler, and data were evaluated using the
manufacturer’s iCycler software version 3.1 (Bio-Rad Labo-
ratories). RNA-free samples, a negative control, did not
produce amplicons. Melting curve and gel analyses (sizing,
isolation, and sequencing) were used to verify single products
of the appropriate base-pair size.

Cell Isolation from Lamina Propria

Colons were harvested, rinsed with PBS, and feces and mes-
enteric fat tissue were removed. The colon was then washed
in Hank’s balanced salt solution (free of calcium and mag-
nesium) and incubated twice in Hank’s balanced salt sol-
ution containing 5 mmol/L EDTA for 15 minutes at 37�C.
After incubation, the epithelial cell layer and intraepithelial
lymphocytes were removed by intensive vortexing and
passing through a 100-mm cell strainer. The tissue was then
washed inHank’s balanced salt solution, cut into 1-mmpieces,
1116
and placed in 10 mL digestion solution containing 10% fetal
calf serum, 0.5 mg/mL collagenase D (Roche Diagnostics,
Indianapolis, IN). Digestion was performed by incubating
the pieces at 37�C for 2 hours. After incubation, the solution
was passed through a 100-mm cell strainer, and the cell pellet
was washed in cold PBS containing 10% fetal calf serum,
resuspended in 10 mL of the 40% fraction of a 40:80 Percoll
gradient (GE Healthcare, Little Chalfont, UK), and overlaid
on 5 mL of the 80% fraction in a 15-mL tube. Lamina propria
cells were collected at the interphase of the Percoll gradient,
washed once, and resuspended in cell culture medium at
a density of 106 cells/mL.

Antibodies and Flow Cytometry

Antibodies against CD3 (145-2C11), CD19 (1D3), and CD4
(GK1.5) were purchased from eBioscience. Antibody against
IL-22 (Poly5164) was purchased from BioLegend (San
Diego, CA). For intracellular cytokine staining, cells were
restimulated with 50 ng/mL phorbol 12-myristate 13-acetate,
1000 ng/mL ionomycin, and GolgiPlug protein transport
inhibitor (BD Biosciences, San Jose, CA) for 5 hours. Cells
were first stained with fixable viability dye to remove dead
cells and stained for surface antigens. Cells were then
permeabilized with Cytofix/Cytoperm solution (BD Bio-
sciences) according to the manufacturer’s recommendations.
Intracellular cytokine staining was performed using antieIL-
22 antibody. A Foxp3 antibody reagent kit (eBioscience)
was used for intracellular Foxp3 staining according to the
manufacturer’s instructions and using the manufacturer’s
fixation/permeabilization solution and permeabilization
buffer. All surface antibody staining was performed in the
presence of anti-CD16/32 (2.4G2, eBioscience), to block
nonspecific binding of antibody. Flow cytometry was per-
formed using an LSR II system (BD Biosciences), and data
were analyzed using Flow Jo software version 9.4 (Tree Star,
Ashland, OR).

Statistical Analysis

Data are expressed as means � SEM. Data were analyzed
and statistical tests were performed using GraphPad Prism
software version 5.0b (GraphPad Software, La Jolla, CA).
The Student’s t-test (two-tailed) was used to compare mean
values between two experimental groups; analysis of vari-
ance with post hoc Bonferroni correction was used for
comparing more than two groups. A P value of <0.05 was
considered significant.

Results

b-Arrestin-1 Mediates Weight Loss and Clinical Signs
during Experimental Colitis

To investigate the role of b-arrestin-1 in the pathogenesis of
IBD, we initially tested the effect of DSS-induced colitis on
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Diminished weight loss and clinical
disease severity in b-arrestin-1edeficient mice
after DSS- or TNBS-induced colitis. A and C: Mice
were subjected to colitis induced by DSS (A) or
TNBS (C), and body weight was monitored daily
from 0 to 7 days. B and D: Clinical scores for disease
severity in mice subjected to colitis induced by DSS
(B) or TNBS (D) were determined as described in
Materials and Methods. Data are expressed as means
� SEM, pooled from 2 or 3 independent experi-
ments. n Z 11 (DSS); n Z 14 or 15 (TNBS). *P <

0.05, **P < 0.01, and ***P < 0.001 versus cor-
responding WT treatment and time point. b-ARR1,
b-arrestin-1; KO, knockout.

b-Arrestin-1 Mediates Colitis
body weight in wild-type (WT) and b-arrestin-1 knockout
(b-arr-1�/�) mice. Mice were fed with 2% DSS in drinking
water for 7 days, followed by regular drinking water. As
expected, the WT mice lost considerable body weight over
the course of the study (Figure 1A). The b-arr-1�/� mice,
however, were strikingly protected from the body weight loss
induced by DSS administration (Figure 1A). To confirm that
these effects were not model-dependent and to delineate
potential mechanisms, we then induced colitis in mice of both
genotypes using TNBS. Previous studies have shown that,
whereas DSS-induced colitis can occur in the absence of T
and B lymphocyte, TNBS-induced colitis is characterized by
T helper 1 (Th1) cytokine patterns.24e27 Consistent with the
lack of weight loss in b-arr-1�/� mice observed in the DSS
model, b-arr-1�/� mice were significantly protected from
weight loss also in the TNBS model (Figure 1C). We further
clinically scored the mice based on body weight loss, pres-
ence of fecal blood, coat appearance, crusty eyes, and
hunched posture. Consistent with the weight loss data, the
severity of clinical signs induced by either DSS or TNBS
administration was significantly attenuated in b-arr-1�/�

mice, compared with WT mice (Figure 1, B and D).

b-Arrestin-1 Mediates Inflammation in the Colon

To evaluate the extent and severity of pathological changes
in the colon, we measured the length of colons from mice
subjected to colitis in both DSS and TNBS models. Even
though DSS-induced colitis led to colon shortening in both
The American Journal of Pathology - ajp.amjpathol.org
WT and b-arr-1�/� mice, the colon was still significantly
longer in b-arr-1�/� mice than in WT mice (Figure 2, A and
B). Similar results were also observed in the TNBS model;
that is, colon length shortening due to colitis was significantly
attenuated in the b-arr-1�/� mice (Figure 2, F and G).

To further verify the clinical assessment, we measured
MPO activity and performed histological examination of the
colon from both genotypes of mice subjected to colitis. In the
DSS model, as expected, MPO activity in the colon was
decreased significantly in b-arr-1�/� mice, compared with
WT mice (Figure 2C). In the TNBS model, however, MPO
activity was similar in the two genotypes (Figure 2H).
Healthy mice of either genotype displayed no significant
MPO activity (data not shown). Consistent with the overall
phenotypic differences in body weight loss, clinical signs,
and gross colon morphology, H&E-stained microscopic
sections of the colon revealedmarked differences between the
diseased b-arr-1�/� and WT mice (Figure 2, D, E, I, and J).
Specifically, histological analyses showed that b-arr-1�/�

mice were significantly protected from colitis, compared with
WT mice. Although both strains showed the same overall
pattern of chronic mucosal ulceration and associated inflam-
mation, the number and extent of ulcers were significantly
reduced in the b-arr-1�/�mice. There were some differences
in the extent of severity between the two models. In the DSS
model, severity of inflammation was markedly reduced in
both the proximal and the distal colon of b-arr-1�/� mice. In
the TNBS model, however, severity was significantly
reduced only in the distal colon of b-arr-1�/� mice,
1117
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Figure 2 Diminished gross and histopatho-
logical disease assessment in b-arrestin-1e
deficient mice after DSS- or TNBS-induced colitis:
A, B, F, and G: Colon length in WT and b-arr-1�/�

mice at 8 days after DSS treatment (A) or at 3 days
after TNBS treatment (F), with representative gross
morphology for DSS treatment (B) and TNBS
treatment (G). C andH: MPO activity in the colon of
mice subjected to DSS (C) or TNBS (H) colitis. D, E,
I, and J: Distal and proximal colon histopathology
from WT and b-arr-1�/� mice subjected to DSS (D)
or TNBS (I) colitis, with quantitation for histo-
pathological assessment of DSS-treated (E) and
TNBS-treated (J)mice. Data are expressed asmeans
� SEM, pooled from 2 or 3 independent experi-
ments. nZ 10 or 11 (DSS, all); nZ 8 or 11 (TNBS,
H); n Z 14 or 15 (TNBS, F and J). *P < 0.05,
***P < 0.001. Original magnification, �100
(D and I).

Lee et al
compared with WT mice. Taken together, these results
demonstrate that the pathogenesis of colitis induced by DSS
or TNBS is significantly attenuated in b-arrestin-1 deficiency.

Regulation of IL-6 and the IL-10 Family of Cytokines
by b-Arrestin-1 in Experimental Colitis

Our results thus far had demonstrated an important role for
b-arrestin-1 in the pathogenesis of colitis in the mouse models
studied. To further understand the inflammatory mechanisms
by which b-arrestin-1 mediates this effect, we examined the
cytokines modulated by colitis in the two mouse genotypes.
Cytokines are critical mediators of the innate and adaptive
immune responses inmucosal inflammation.Although several
cytokines have been implicated in both DSS and TNBS
models of colitis, studies have shown that TNF-a, IL-6, IL-10,
1118
IFN-g, IL-17A, and IL-22 in particular play critical roles in the
pathogenesis of both animal and human colitis.17 To examine
whether the mechanism by which b-arrestin-1 deficiency
protects mice from colitis is mediated by influence on these
cytokines, we measured the tissue levels of these cytokines in
the colon from mice of the two genotypes. As predicted, IL-6
levels were elevated in the WT colons in both models of
disease (Figure 3, A and B). IL-6 levels were undetectable in
healthymice (data not shown). Interestingly, induction of IL-6
was markedly blocked in the b-arr-1�/� mice subjected to
eitherDSSorTNBS treatment (Figure 3,A andB). Expression
of other cytokineswasmore variable between genotypes in the
twomodels of colitis (Figure 3, A and B). Production of IL-22
(a member of the IL-10 family) was higher in b-arr-1�/�mice
with DSS-induced colitis, compared with the corresponding
WT mice. Interestingly, IL-10 was enhanced in the colon of
ajp.amjpathol.org - The American Journal of Pathology
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b-arr-1�/� mice in the TNBS model. Both of these cytokines
(IL-10 and IL-22) have been shown to have protective effects
in gut inflammation models.28e32

To further identify cell types in the gut that likely mediate
expression of these cytokines, we obtained lamina propria
cells from DSS-treated mice of both genotypes and exam-
ined the immune cell populations, as well as expression of
IL-6 and IL-22, using flow cytometry. Interestingly, the
percentage of CD3þ T cells but not CD19þ B cells was
significantly enhanced in the b-arr-1�/� mice treated with
DSS (Supplemental Figure S1). Staining for IL-6 was
unsuccessful because of high nonspecific staining (data not
shown). IL-22 staining, however, clearly demonstrated
a significant increase in the percentage of IL-22þCD4þ T
cells in the lamina propria of b-arr-1�/� mice, compared
with WT mice (Supplemental Figure S2). As predicted from
the IL-10 cytokine data for the DSS model, the percentage of
FoxP3þCD4þ T cells (ie, regulatory T cells) did not differ
between genotypes in the DSS model (Supplemental
Figure S3). Because IL-6 levels were inhibited in both
models of colitis, and because IL-6 has been shown to be a key
regulator of colitis in both of these models as well as in human
colitis,33 we subsequently focused on this cytokine. Previous
studies have shown that serum IL-6 levels correlate well with
clinical activity in IBD, and are also predictive for the risk of
relapse in IBD.34 We therefore measured plasma IL-6 levels
in the two models of colitis. In the DSS model, plasma IL-6
levels were decreased in b-arr-1�/� mice, compared with
WT mice, but the difference did not reach statistical signifi-
cance (Figure 3C). In the TNBSmodel, however, plasma IL-6
was significantly inhibited in b-arr-1�/� mice, compared
with WT mice (Figure 3D). To further understand the
mechanism by which IL-6 levels are regulated in the colon by
b-arrestin-1, we determined the mRNA expression of IL-6, to
assess whether the regulation occurs at the level of tran-
scription. Levels of IL-6mRNAwere significantly inhibited in
b-arr-1�/�mice, compared withWTmice, in both models of
colitis (Figure 3, E and F). Taken together, these results
suggest that b-arrestin-1 mediates IL-6 expression in the
colon in both DSS and TNBS models of colitis.

Diminished ERK and NFkB Activation in b-Arrestin-1
Knockout Mice

Previous studies in cell-culture models have shown both
positive and negative regulatory roles for b-arrestins in
Figure 3 Diminished IL-6 levels in b-arrestin-1edeficient mice after
experimental colitis. A and B: Distal colonic tissues were collected from
mice treated with DSS (A) or TNBS (B), proteins were extracted, and various
cytokines were assayed using ELISA. C and D: Plasma was collected from
mice treated with DSS (C) and TNBS (D) and ELISA for IL-6 was performed.
E and F: Distal colonic tissues were collected from mice treated with DSS (E)
and TNBS (F), RNA was extracted, and IL-6 mRNA determined. Data are
expressed as means � SEM, pooled from two (DSS, all; TNBS, B and F) or
three independent experiments (TNBS, D). n Z 11 (DSS); n Z 14 or 15
(TNBS). *P < 0.05, ***P < 0.001.
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Figure 4 Decreased ERK and NFkB pathway in
b-arrestin-1edeficient mice after DSS-induced
colitis. Distal colonic tissues (as in Figure 3)
from b-arr-1�/� and WT mice were subjected to
Western blotting for p-ERK, p-p105, p-IkBa, p-
NFkBp65, p-JNK, and p-P38, with tubulin as the
loading control, and the relative values were
quantitated. Each lane represents a sample from
different mouse. Data are expressed as means �
SEM. n Z 6. *P < 0.05, **P < 0.01.

Lee et al
MAPK and NFkB signaling.2 Furthermore, studies have
also shown that MAPK and NFkB pathways are critical
mediators of inflammatory signaling in models of IBD.35,36

We therefore hypothesized that b-arrestin-1 knockout mice
may display altered activation of these pathways in the colitis
model, which might be associated with the observed changes
in IL-6 and IL-22 cytokines. We focused on the DSS model
for these studies and examined the phosphorylation levels of
the ERK (p-ERK1/2 and p-P105, an upstream regulator of
ERK22), NFkB (p-IkBa and p-NFkBp65) pathways, as well
as JNK and P38 in the colon tissue lysates, using Western
blot analysis. Interestingly, levels of p-ERK1/2, p-P105,
p-IkBa, and p-NFkBp65weremarkedly inhibited inb-arr-1�/�

mice subjected to colitis, compared with the corresponding
WT mice (Figure 4). These results suggest deficient activa-
tion of the ERK and NFkB pathways in the colon of b-arr-
1�/� mice. These results are specific for these pathways,
because p-JNK levels did not differ between the two geno-
types, and p-P38 levels were enhanced in the b-arr-1�/�

mice (Figure 4). Consistent with NFkB activation in the
colon (and its role in IL-6 production in macrophages22),
lipopolysaccharide-induced NFkB activation in peritoneal
macrophageswas significantly attenuated inb-arr-1�/�mice,
compared with WT mice (Supplemental Figure S4). Further
studies will be needed to determine the cell typeespecific
roles of b-arrestin-1 in colitis, as well as the molecular
mechanisms that likely stimulate these signaling pathways in
a b-arrestin-1edependent manner in colitis models.
Discussion

Although the etiology and pathogenesis of IBD in humans
have not been fully elucidated, it is clear that the disease
might be attributed to complex mucosal immune responses
to commensal intestinal bacteria.37 Despite some differe-
nces between human IBD and mouse models of colitis, the
1120
DSS- and the TNBS-induced colitis models in mice have
generally been useful in determining the roles of signaling
proteins in the pathogenesis of IBD.38 TheDSS-induced colitis
model is especially useful in determining the contribution of
innate immunity in the development of colitis,24e26 whereas
TNBS-induced colitis has been well characterized for its T
helper 1 (Th1) cytokine patterns.27 With the present study, we
provide the first evidence that the scaffolding cell signaling
protein b-arrestin-1 plays an important role in both these
models of colitis. Even though b-arrestin-1 was originally
discovered for its role in GPCR desensitization, recent studies,
including some from our laboratory, demonstrate that b-
arrestins have a much broader role in cell signaling, one that is
not restricted to GPCR desensitization. In this regard, we
recently reported that b-arrestin-1 positively regulates the
in vivo inflammatory response after stimulation with bacterial
lipopolysaccharide, as well as by adenovirus.9,10 We therefore
hypothesized that, in a TLR-dependent disease process such as
intestinal inflammation,15 pathogenesis of colitis would
be attenuated in b-arrestin-1edeficient mice. As predicted, in
two distinctly different models of colitis, b-arrestin-1 defici-
ency significantly attenuated disease development.
Even though the TNBS and DSS models of colitis involve

different pathogenic mechanisms, IL-6 has been shown to
play a critical role in disease progression in both models of
colitis.39,40 IL-6 deficiency can ameliorate experimental
colitis, whereas IL-6 administration in IRF-4edeficient mice
(which have reducedmucosal IL-6) can reverse the protective
effect of IRF-4 deficiency on colitis.41e43 Recent human
studies have also shown an increased presence of IL-6 in
colonic tissue from IBD patients.39,44e46 Importantly, IL-6
serum levels have been shown to correlate with clinical and
histopathological severity of disease activity.34 In the present
study, b-arrestin-1edeficient mice had strikingly lower levels
of IL-6 in both colon and plasma. Our studies also suggest that
this regulation of IL-6 by b-arrestin-1 may occur at the level
of IL-6 transcription, because IL-6 mRNA levels were also
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significantly lower in the b-arrestin-1edeficient mice in
both DSS and TNBS models. It would be of interest from
a mechanistic standpoint to test whether b-arrestin-1 regulates
IL-6 transcription directly, or indirectly through regulation
of other receptor signaling (eg, the NFkB pathway). Our
results demonstrate that activation of ERK and NFkB path-
ways, but not JNK, is regulated by b-arrestin-1 in the colon.
Whether this occurs because of interaction of b-arrestin-1with
receptors such as TLRs or via GPCRs remains a subject for
future study. However, preliminary work using peritoneal
macrophages reveals thatb-arrestin-1 is an importantmediator
of TLR4-induced NFkB activation (Supplemental Figure S4).

Given the complexity of cell types in the in vivo colitis
model, it would also be important to determine whether there
is a cell typeespecific effect of b-arrestin-1. The present
study demonstrates that deficiency of b-arrestin-1 enhances
a specific T-cell population that produces IL-22, an anti-
inflammatory cytokine that has been shown to have protec-
tive effects in colitis. How b-arrestin-1 negatively regulates
IL-22 remains to be determined. Previous studies have shown
that the function of b-arrestin-1 is dependent not only on the
disease model being examined, but also on the receptor
signaling pathway and the cell type being examined. Thus,
b-arrestin-1 has been shown to be a mediator of endotoxemia,
pulmonary fibrosis, and autoimmune diseases such as exp-
erimental autoimmune encephalomyelitis.9,47,48 Even though
previous studies using cell lines have shown a negative
regulatory role for b-arrestin-1 in TLR signaling at the
cellular level,49,50 in vivo data suggest that this may not be the
case (at least not in the models examined to date). One recent
study showed that hyaluronic acideinduced IL-6 production
in fibroblast-like synoviocytes is mediated by b-arrestin-1.7

Although multiple molecular mechanisms could be at play
in how b-arrestin-1 mediates colitis, we demonstrate here that
b-arrestin-1 is important in mediating colonic ERK and
NFkB phosphorylation. Whether these changes are sufficient
or necessary for the observed phenotype remains to be ex-
amined in future studies.

IL-6 is a multifunctional cytokine with many different
actions, including regulation of hematopoiesis, inflamma-
tion, and immune responses.40 Recent studies have identi-
fied IL-6 as an important regulator of the differentiation of
T helper cells producing IL-17 (Th17 cells).51 The primary
function of Th17 cells has been shown to be clearance of
pathogens that are not controlled by Th1 and Th2 cells.52,53

However, accumulating evidence also suggests that Th17
cells may be associated with pathogenesis of many auto-
immune diseases.54e56 Indeed, IL-17 was increased in pat-
ients with active ulcerative colitis or active Crohn’s disease,
compared with patients with inactive disease.57 We there-
fore reasoned that, because IL-6 is markedly attenuated in
b-arrestin-1edeficient mice, IL-17A expression might be
also be inhibited. In the present study, however, we did
not observe any difference in IL-17A levels between WT
and b-arr-1�/� mice in either the DSS or the TNBS model
of colitis. Although the reasons for this finding are not clear,
The American Journal of Pathology - ajp.amjpathol.org
one possibility is that other factors (eg, TGF-b, IL-21, and
IL-23) may still be able to drive IL-17.51

Among the other cytokineswe examined, regulation of IL-10
and IL-22 (both belonging to the IL-10 family) were differen-
tially regulated in the two models, especially in the b-arr-1�/�

mice. Although IL-10 was enhanced in the b-arr-1�/� mice in
the TNBSmodel, it was decreased in the DSSmodel, compared
with the corresponding WT mice. IL-22, however, was
enhanced in b-arr-1�/� mice in the DSS model but not in the
TNBS model. Both IL-10 and IL-22 have been shown to be
protective in the context of colitis development. Thus, it is
possible that, in addition to a decrease in IL-6 expression,
enhanced expression of IL-10 or IL-22 may contribute to the
overall beneficial phenotype of the b-arrestin-1edeficient mice
in DSS- and TNBS-induced colitis. Even though IL-10 was
enhanced in theb-arrestin-1edeficientmice in theTNBSmodel,
the number of T-regulatory cells (an important source of IL-10)
in the colon did not differ between the two genotypes. Previous
studies have shown an anti-apoptotic role for IL-22 in gut
mucosa.32 In accord with that report, we observed that expres-
sion of anti-apoptotic genes in the colon of b-arr-1�/�micewas
significantly enhanced, compared with WT mice (data not
shown). However, when we examined annexin-V/propidium
iodide staining by flow cytometry, we did not observe any
difference between the two genotypes (data not shown).
Whether this could be related to the kinetics of the disease is not
clear and remains to be determined in future studies.

In conclusion, our results demonstrate that b-arrestin-1 is
a critical mediator of experimental colitis and that this likely
occurs via regulation of IL-6, and possibly also IL-10 family
members. Further studies are needed to determine whether
b-arrestin-1 regulates these cytokines in a cell typeespecific
manner in these disease models, as well as to further
elucidate the molecular mechanisms by which b-arrestin-1
mediates these functions. Identification of such mechanisms
could prove useful for therapeutically targeting b-arrestin-1
and/or IL-6 in the treatment of IBD.
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