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Pseudoxanthoma elasticum (PXE) is a multisystem ectopic mineralization disorder caused by mutations
in the ABCC6 gene. Warfarin, a commonly used anticoagulant, is associated with increased minerali-
zation of the arterial blood vessels and cardiac valves. We hypothesized that warfarin may accelerate
ectopic tissue mineralization in PXE, with clinical consequences. To test this hypothesis, we developed
a model in which Abcc6�/� mice, which recapitulate features of PXE, were fed a diet supplemented with
warfarin and vitamin K1. Warfarin action was confirmed by significantly increased serum levels of
oxidized vitamin K. For mice placed on a warfarin-containing diet, quantitative chemical and
morphometric analyses revealed massive accumulation of mineral deposits in a number of tissues. Mice
fed a warfarin-containing diet were also shown to have abundant uncarboxylated form of matrix Gla
protein, which allowed progressive tissue mineralization to ensue. To explore the clinical relevance of
these findings, 1747 patients with PXE from the approximately 4000 patients in the PXE International
database were surveyed about the use of warfarin. Of the 539 respondents, 2.6% reported past
or present use of warfarin. Based on the prevalence of PXE (approximately 1:50,000), thousands of
patients with PXE worldwide may be at risk for worsening of PXE as a result of warfarin therapy.
(Am J Pathol 2013, 182: 1139e1150; http://dx.doi.org/10.1016/j.ajpath.2012.12.037)
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The pathological processes of ectopic mineralization have
been linked to a number of diverse clinical conditions,
including such major causes of morbidity and mortality as
atherosclerosis, arteriosclerosis, cancer, and immunological
diseases.1e3 For example, a recent study examined the risk
of death associated with coronary artery calcification in
a cohort of 25,253 patients and found that coronary artery
calcification was an independent risk factor for death by up
to 12.5-fold.3,4 Ectopic calcification processes involving
peripheral connective tissues, particularly in the skin and in
arterial blood vessels, can result from two types of pro-
cesses. Metastatic calcification is associated with elevated
circulating levels of calcium and/or phosphate, as in chronic
renal failure, whereas dystrophic calcification is secondary
to a form of insult to the tissue, such as in autoimmune
stigative Pathology.

.

diseases and cancer. Metastatic calcinosis in the skin can be
characterized clinically by subcutaneous nodular mineral
deposits that often occur in periarticular distribution and are
reversible on correction of the calcium and/or phosphate
abnormalities.5 It is also observed in association with vas-
cular calcification, as in calciphylaxis, which has a very high
mortality rate.6 Dystrophic calcification occurs frequently in
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previously damaged or diseased tissue, and localized in-
volvement occurs in many cutaneous inflammatory lesions as
well as in benign and malignant neoplasms.1 Dystrophic
calcification occurs without calcium or phosphate abnor-
malities at plasma levels.

A number of Mendelian genetic disorders share pheno-
typic similarities with the acquired forms of metastatic and
dystrophic calcification. Ectopic mineralization, particularly
affecting the skin and cardiovascular tissues, has been linked
to mutations in familial tumoral calcinosis (both normo-
phosphatemic and hyperphosphatemic variants),5 generalized
arterial calcification of infancy,7 and CD73 deficiency.8 The
prototype of heritable ectopic mineralization disorders is
pseudoxanthoma elasticum (PXE), a multisystem disorder
with clinical manifestations primarily in the skin, the eyes,
and the cardiovascular system.9,10 A characteristic feature of
PXE is late-onset but progressive mineralization of con-
nective tissues, primarily the elastic structures in the affected
organs. Skin findings consist of yellowish papules that tend to
coalesce into plaques of inelastic and leathery skin at predi-
lection sites, such as the side of the neck and flexural areas of
the arms and legs.9 Diagnostic histopathology demonstrates
accumulation of pleiomorphic elastotic structures in mid-
dermis with mineral deposits consisting of hydroxyapatite.
The skin findings, although primarily of cosmetic concern,
predict development of ocular and vascular complications.
The characteristic finding in the eyes is the presence of
angioid streaks due to breaks in pathologically calcified
Bruch’s membrane, an elastin-rich sheath behind the retina.11

These breaks result in neovascularization and bleeding into
the eyes, leading to loss of visual acuity and occasionally to
blindness. The cardiovascular complications are a result of
mineralization of midsize arteries, leading to clinical
presentations with renovascular hypertension, intermittent
claudication, occasional hemorrhage from gastric arteries,
early myocardial infarcts, and stroke.12

The classic form of PXE is caused by mutations in the
ABCC6 gene, which encodes a transmembrane efflux
transporter expressed primarily in the liver and the kidneys.
Close to 600 distinct inactivating mutations in this gene
have been identified in families with PXE, representing
more than 1000 mutant alleles, and molecular genetics
findings have clearly established that PXE is an autosomal
recessive disorder.10,13,14 The precise pathomechanistic
pathways leading from mutations in the ABCC6 gene
(expressed primarily in the liver) to ectopic mineralization
of peripheral connective tissues are currently unknown, and
the nature of the substrate or substrates transported by
ABCC6 under physiological conditions remains to be
disclosed.15 It has been suggested that PXE is a metabolic
disorder and that, in the absence of functional ABCC6
transporter activity, the circulation becomes devoid of
factors that are required under normal homeostatic condi-
tions to prevent local precipitation of calcium and phos-
phate.10,15 Matrix Gla protein (MGP), a powerful local
antimineralization factor, has been proposed to play a role
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in PXE.16,17 Specifically, MGP needs to be activated by
g-glutamyl carboxylase, a vitamin Kedependent enzyme
that converts Gla proteins to their g-glutamyl carboxylated
forms.18 Based on these and related clinical observations, it
has been suggested that vitamin K or one of its derivatives is
physiologically transported from the liver by ABCC6 into
the circulation, and that, in the absence of a critical vitamin
K cofactor, g-glutamyl carboxylation of MGP does not
proceed in peripheral tissues, thus allowing progressive
mineralization to ensue.19

Much of our understanding of the pathological nature of
PXE has been derived from an animal model, the Abcc6�/�

mouse, developed by targeted ablation of the mouse homolog
to ABCC6.20,21 These knockout mice recapitulate the genetic,
histopathological, and ultrastructural features of PXE; specifi-
cally, they develop mineral deposits in the same organs (ie, the
skin, the eyes, and the arterial blood vessels) as in patients with
PXE. The mineralization process in the traditional Abcc6�/�

mouse (Abcc6tm1JfK), whichwas initially developed on amixed
129S1/SvImJ and C57BL/6J background and fed a standard
laboratorymouse diet, ensues at approximately 5 to 6 weeks of
age.20 The first site of mineralization is the connective tissue
sheath of vibrissae in the muzzle skin, and quantitative
assessment of the mineral deposits either by direct chemical
assay of calcium and phosphorus, by computerized morpho-
metric analysis of histopathological sections, or by small-
animal computed tomography (CT), serves as a biomarker
reflecting the progress of overall mineralization in these
mice.22,23 Recent studies have also indicated that changing the
genetic background of these mice or altering the mineral
content of the diet can modify the rate of onset and the severity
of mineralization.24e26

Warfarin, a powerful oral anticoagulant, inhibits g-glutamyl
carboxylation of Gla proteins, such as coagulation factors and
MGP, by interfering with the vitamin K cycle. Vitamin K
exists in three principal forms, in addition to some interme-
diate unstable forms: vitamin K (quinone), vitamin KH2

(hydroquinone), and vitamin KO (epoxide).18 The reduced
vitamin KH2 serves as a cofactor for g-glutamyl carboxylase,
resulting in KO as the end product of carboxylation. The KO
form is then reduced back to KH2 by enzymatic reactions
involving vitamin K epoxide reductase and quinone reductase,
enzymes that are inhibited by warfarin. Warfarin treatment
thus results in accumulation of KO, and the reduction of KH2

is accompanied by undercarboxylation of Gla proteins,
including coagulation factors in the liver and MGP in the
peripheral tissues.
One of the adverse effects of warfarin is cardiovascular

calcification; specifically, there is an increased prevalence of
mitral and aortic valve calcification, as well as mitral
annular calcium deposition, in patients with nonvalvular
atrial fibrillation treated with warfarin.27,28 Furthermore,
studies using a number of different animal models, and
particularly rat models, have demonstrated that warfarin can
elicit vascular mineralization.29e31 Considering the relation-
ship of warfarin and vascular calcification, we hypothesized
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Experimental Groups of Abcc6þ/þ and Abcc6�/� Mice by
Genotype and Diet

Group Genotype n Diety

Set 1 (29 weeks of follow-up)*
A Abcc6þ/þ 8 Control
B Abcc6þ/þ 9 Control þ W/K1
C Abcc6�/� 8 Control
D Abcc6�/� 9 Control þ W/K1

Set 2 (8 weeks of follow-up)*
E Abcc6�/� 8 Control
F Abcc6�/� 5 Control þ W/K1
G Abcc6�/� 7 Acceleration
H Abcc6�/� 9 Acceleration þ W/K1

*Mice 6 weeks of age at the start of experiments.
yAcceleration, a diet low in magnesium and enriched in phosphate;

control, a standard murine laboratory diet; þ W/K1, warfarin and vitamin
K1 supplementation.

Table 2 Plasma Warfarin and Serum Vitamin K1 Concentrations
in Abcc6þ/þ and Abcc6�/� Mice on Control or W/K1 Supplemen-
tation Diet

Group Warfarin (mg/L)

Vitamin K1

K1þKH2 (mg/L) KO (mg/L)

A BLD 0.57 � 0.05 BLD
B 12.04 � 6.96* 97.30 � 26.97* 308.41 � 116.41*
C BLD 0.71 � 0.07 BLD
D 7.27 � 2.28** 51.99 � 13.01** 241.05 � 32.58**

Detection limits for K (K1þKH2) and KO are 0.5 mg/L and 0.12 mg/L,
respectively. Detection limit for warfarin is 0.12 mg/L. Data are expressed
as means� SEM. nZ 8 (groups A and C, control diet) or 9 (groups B and D,
W/K1 supplementation diet).

*P < 0.05 versus group A (Abcc6þ/þ, control diet), **P < 0.01 versus
group C (Abcc6�/�, control diet).

BLD, below limit for detection.

Warfarin Accelerates Mineralization in PXE
that warfarin may accelerate ectopic tissue mineralization in
PXE, with clinical consequences. This hypothesis was based
in part on early report that high doses of warfarin can cause
focal calcification of elastic lamellae in rat arteries.30 In the
present study,wedeveloped a novelmousemodel inwhich the
effects of warfarin on ectopic mineralization were tested on an
Abcc6�/� background.

Materials and Methods

Mice

The Abcc6tm1JfK mouse, a model for PXE, was developed by
targeted ablation of the Abcc6 gene.20 Abcc6 wild-type
(Abcc6þ/þ) and knockout (Abcc6�/�) mice were made con-
genic by backcrossing heterozygous (Abcc6þ/�) mice on
a C57BL/6J background for 10 generations. Mice were
maintained under standard conditions at the Animal Facility
of Thomas Jefferson University. All protocols were approved
by the Institutional Animal Care and Use Committee of
Thomas Jefferson University. Proper handling and care were
practiced according to the animal welfare policies of the
Public Health Service.

Experimental Design and Diets

Mice were placed on specific diets at 6 weeks of age and
kept on the same diet for 29 weeks (set 1, Abcc6þ/þ and
Abcc6�/� mice) or for 8 weeks (set 2, Abcc6�/� mice).
Groups of mice in the two sets are characterized by geno-
type, experiment duration, and diet in Table 1.

In set 1, Abcc6þ/þ and Abcc6�/� mice were fed either
laboratory autoclavable meal rodent diet 5010 (PMI Nutri-
tion International, Brentwood, MO) (control diet; n Z 8 per
group) or the same diet supplemented with 3 mg warfarin
and 1.5 mg vitamin K1 per gram of food (W/K1 diet; n Z 9
per group). A 2-mm muzzle skin biopsy was performed
3 months after initiation of diets and every few weeks
thereafter, to monitor vibrissae mineralization. After 29
The American Journal of Pathology - ajp.amjpathol.org
weeks, the mice were euthanized and necropsied for addi-
tional analysis.

In set 2, Abcc6�/� mice were given one of four diets:
control diet (nZ 8), as in set 1; W/K1 diet (nZ 5), as in set 1;
acceleration diet (rodent diet TD.00442; Harlan Teklad,
Madison, WI) (n Z 7); or acceleration diet supplemented
with 3 mg warfarin and 1.5 mg vitamin K1 per gram of food
(acceleration þ W/K1 diet; n Z 9). After 8 weeks on
a specific diet, two mice from each group were imaged by
CT for evidence of mineralization. All mice were then
euthanized and necropsied for further analysis.

Histopathological Analysis

Biopsies from muzzle skin containing vibrissae and from
internal organs were fixed in 10% phosphate-buffered
formalin and embedded in paraffin. The tissues were
sectioned (6 mm thick), placed onto slides, and stained with
H&E, Alizarin Red, or von Kossa using standard proce-
dures. Slides were examined under light microscopy for
mineralization.

Quantitation of Tissue Mineralization by Computerized
Morphometric Analysis

Computerized morphometric analysis of mineralization was
performed on H&E-stained sections with a Nikon (Tokyo,
Japan) Te2000 microscope and an AutoQuant imaging
system (AutoQuant Imaging, Watervliet, NY). The area of
mineralization in vibrissae was expressed as a percentage of
the total area of vibrissae per mouse, and the average
percentage of mineralization was determined for each group.
All images were analyzed with Image-Pro Plus software
version 6.1 (Media Cybernetics, Rockville, MD).

Chemical Quantification of Calcium and Phosphate
Deposition

To quantify the mineral deposition in vibrissae, muzzle skin
was harvested and decalcified with 0.15 mol/L HCl for
1141
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Table 3 Calcium and Phosphorus Concentrations in the Serum of Abcc6þ/þ and Abcc6�/� Mice on Control or W/K1 Supplementation Diet

Parameter

Serum concentration

A B C D

Calcium (mg/dL) 10.69 � 0.12 11.63 � 0.35* 10.71 � 0.16 11.71 � 0.23y

Phosphorus (mg/dL) 10.85 � 0.44 11.51 � 0.80 9.68 � 0.79 10.97 � 0.51
Ca/P ratio 1.00 � 0.04 0.97 � 0.04 0.91 � 0.07 0.94 � 0.04

Data are expressed as means � SEM. n Z 8 (groups A and C, control diet) or 9 (groups B and D, W/K1 supplementation diet).
*P < 0.05 versus group A (Abcc6þ/þ, control diet).
yP < 0.01 versus group C (Abcc6�/�, control diet).

Li et al
48 hours at room temperature, and solubilized calcium and
phosphate contents were determined. Calcium and phos-
phate levels in serum samples were also determined.
Colorimetric analysis by the o-cresolphthalein complexone
method [calcium (CPC) LiquiColor; Stanbio Laboratory,
Boerne, TX] was performed to measure calcium content.
Phosphate content was determined with a Malachite Green
phosphate assay kit (BioAssay Systems, Hayward, CA). A
Bio-Rad model 680 microplate reader (Bio-Rad Laborato-
ries, Hercules, CA) was used to obtain absorbance values of
samples. The filter was set at 595 nm for calcium and 656
nm for phosphate measurements. Values were normalized to
tissue weight.

Immunofluorescence and Immunohistochemistry

Paraffin-embedded tissue sections (6 mm thick) were depar-
affinized in xylene and rehydrated in descending concentra-
tions of ethanol. Tissues were subject to antigen unmasking
by boiling in citrate-based unmasking solution (Vector
Laboratories, Burlingame, CA) for 15 minutes and then
permeabilized with 0.1% Triton X-100 in PBS. Slides were
washed in 0.1% Tween 20 in PBS (PBST), and sections were
blocked with 3% bovine serum albumin in PBST for 1 hour
at room temperature. After blocking, sections were incubat-
ed with primary antibody against a-fetuin (1:100; R&D
Systems, Minneapolis, MN) or osteopontin (1:20; R&D
Systems) overnight at 4�C. Negative controls were incubated
with 3% bovine serum albumin in PBST in place of the
primary antibody. Slides were washed again in PBST and
Table 4 Soft Tissue Mineralization in Abcc6þ/þ and Abcc6�/� Mice Pl

Group

Mineralization in soft tissues [n/N (%)]

Vibrissae Kidneys

A 0/8 (0) 0/8 (0)
B 1/9 (11) 0/9 (0)
C 8/8 (100)* 2/8 (25)
D 9/9 (100) 9/9 (100)z

E 8/8 (100) 0/8 (0)
F 5/5 (100) 5/5 (100)z

G 7/7 (100) 4/7 (57)y

H 9/9 (100) 9/9 (100)

Mineralization was determined by histopathologic examination of H&E-stained
*P < 0.01 versus group A (Abcc6þ/þ, control diet).
yP < 0.05, zP < 0.01 versus group C (Abcc6�/�, control diet).
xP < 0.01 versus group G (Abcc6�/�, acceleration diet without W/K1 suppleme
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incubated with Alexa Fluor 594 anti-goat IgG secondary
antibody (1:800; Life Technologies-Invitrogen, Carlsbad,
CA) for 1 hour. Fluorescence microscopy was immediately
performed using a Nikon Te2000 microscope.
Immunohistochemical staining was performed on paraffin-

embedded tissue sections and stained with either one of two
monoclonal MGP antibodies (Vascular Products, Maastricht,
The Netherlands). Briefly, sections were heated in 0.2% (w/v)
citric acid at pH 6.0 for 15 minutes before a PBS wash and
incubation with MGP antibodies. Anti-cMGP (1 mg/mL)
recognizing carboxylated MGP (cMGP), and anti-ucMGP
(1 mg/mL) recognizing uncarboxylated MGP (ucMGP),
respectively, were diluted in blocking reagent (Roche Diag-
nostics, Indianapolis, IN; Mannheim, Germany). Negative
controls were performed by either omitting the primary anti-
body or by substitution for an irrelevant antibody. Bio-
tinylated sheep anti-mouse IgG (Amersham; GE Healthcare,
Little Chalfont, UK) was used as a second antibody, followed
by incubation with avidin-linked alkaline phosphatase
complex (Dako, Glostrup, Denmark), and then by staining
with the alkaline phosphatase kit I (Vector Laboratories,
Burlingame, CA). Sections were counterstained with hema-
toxylin and mounted with Imsol mounting medium (Klini-
path, Duiven, The Netherlands) and Entellan rapid mounting
medium (Merck Millipore, Darmstadt, Germany).

Blood INR Measurements

Blood was collected in test tubes containing 3.2% buffered
sodium citrate (Medicago, Uppsala, Sweden), with a 9:1
aced On Different Diets

Heart Aorta Eyes

0/8 (0) 0/8 (0) 0/8 (0)
0/9 (0) 0/9 (0) 1/9 (11)
3/8 (38) 0/8 (0) 2/8 (25)
9/9 (100)z 9/9 (100)z 9/9 (100)z

2/8 (25) 0/8 (0) 1/8 (13)
0/5 (0) 0/5 (0) 3/5 (60)
6/7 (86)z 0/7 (0) 3/7 (43)
9/9 (100) 9/9 (100)x 3/9 (33)

tissue sections.

ntation).
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Figure 1 Enhanced mineralization in the dermal sheath of vibrissae and in the aorta, eyes, heart, and kidneys of Abcc6�/� mice fed the experimental W/K1
diet (group D), compared with Abcc6�/� mice kept on the control diet (group C). Mineral deposits (arrows) were visualized by H&E, Alizarin Red (AR), and von
Kossa (VK) stains. For vibrissae and aorta, images in the right column correspond to the boxed regions in the center column, at higher magnification (�300).
Original magnification: �100 (vibrissae, aorta, heart); �150 (eye, kidney).

Warfarin Accelerates Mineralization in PXE
volume ratio of blood to citrate buffer. Measurements of
international normalized ratio (INR) values and prothrombin
time were performed on an analyzer at the Cardeza Special
Hemostasis Laboratory of Thomas Jefferson University.

Measurement of Warfarin and K1 Intake

The serum concentration of K1 and KO was determined
using a modified high-performance liquid chromatography
method with postcolumn chemical reduction and fluorescence
detection, based on the method described by Davidson and
Sadowski.32 The lower limit of quantification for this assay
was typically 0.05 mg/L. Warfarin and the assay internal
standard (acenocoumarin) were extracted from serum into
methyl tert-butyl ether after acidification with HCl. After
centrifugation, the ethereal phase was concentrated and
subsequently reconstituted in mobile phase and injected into
the high-performance liquid chromatography column with
The American Journal of Pathology - ajp.amjpathol.org
detection by UV absorbance (270 nm and 310 nm). Serum
concentrations were determined from the linear calibration
plots (peak height ratios of warfarin to acenocoumarin against
the equivalent weight ratios) obtained on direct injection of
pure standards containing warfarin and acenocoumarin at
different weight ratios.

EDAX and Topographic Mapping

Sections of muzzle skin containing mineral deposits were
analyzed by energy dispersive X-ray (EDAX) analysis and
topographic mapping. Paraffin sections were mounted onto
carbon carriers. Specimens were imaged and analyzed for
elemental composition with a JEOL-T330A scanning elec-
tron microscope (JEOL, Tokyo, Japan) fitted with an EDAX
microanalysis analyzer. X-ray topographic maps of calcium
and phosphorus were acquired using NSS software, version
2.3 (Thermo Fisher Scientific, Swedesboro, NJ).
1143
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Figure 2 Quantitation of themineral deposits in themuzzle skin containing
the dermal sheath of vibrissae by direct chemical assay of calcium and phos-
phorus (A) and by computerized morphometric analysis of histopathological
sections (B) in groups A to D (both genotypes, control andW/K1 diets). Data are
expressed as means� SEM. nZ 8 (control) or 9 (W/K1). ***P< 0.001.

Li et al
Small-Animal CT

After 8weeks, twomice each fromgroups E toH (control diet,
W/K1 diet, acceleration diet, and acceleration þ W/K1 diet)
Figure 3 Noninvasive evaluationof themineralizationprocess in dermal sheath of
in single slices (bottom row). Three-dimensional reconstruction (top row) demonstrat
Abcc6�/�mice fed the acceleration diet (group G) or the acceleration dietþW/K1 (gro
type or knockout mice kept on the control diet (groups A and E, respectively). The Ab
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were examined formineralization byCT scanning.Micewere
anesthetized with a xylazineeketamineeacetopromazine
cocktail (160 mL per 25 g body weight of 10 mg/kg xylazine,
200 mg/kg ketamine, 2 mg/kg acetopromazine) and then
scanned in a MicroCAT II system (ImTek, Oak Ridge, TN).
To analyze mineralization in vibrissae, a three-dimensional
facial rendering was done for each mouse using Amira
version 3.1 software (Visualization Sciences Group, Bur-
lington, MA).

Clinical Survey

Of the approximately 4000 patients enrolled into the PXE
International registry, 1747patients forwhomane-mail address
was availablewere surveyedby e-mail regardingpresent or past
use of anticoagulants. Of the 539 respondents, 93 indicated
present or past use of anticoagulation therapy. These patients
were sent a detailed questionnaire regarding the type and length
of anticoagulation therapy and clinical progression of their
PXE disease while on this therapy. This survey was approved
by the Genetic Alliance Institutional Review Board.

Statistical Analysis

Student’s t-test was used to compare quantitative results of
morphometric analysis, calcium and phosphorus chemical
assay, and measurement of blood INR, warfarin, and
vitamin K1 intake. Fisher’s exact test was used to determine
the difference between proportions of mineralization in
organs of mice fed with different diets.
vibrissae bymicro-CT scan. Thepresence ofmineral deposits (arrows) is revealed
es the presence ofmineral deposits in the vibrissae (arrowheads), particularly in
up H). Nomineralization of dermal sheath of vibrissae was noted in either wild-
cc6�/� mice on the W/K1 diet (group F) showed extensive mineralization.
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Figure 4 Quantitation of mineralization in dermal sheath of vibrissae of
Abcc6�/�mice by direct chemical assay of calcium and phosphorous (A) and by
computerizedmorphometric analysis of histopathological sections (B) in groups
E to H. Data are expressed as means � SEM. nZ 5 (W/K1), 7 (acceleration), 8
(control), or 9 (accelerationþW/K1). *P< 0.05, **P< 0.01, and***P< 0.001.

Warfarin Accelerates Mineralization in PXE
Results

Development of a Novel Warfarin-Induced Ectopic
Mineralization Mouse Model

Previous studies have demonstrated that feeding rats with
warfarin can result in early vascular calcification.29e31 Also,
feeding ofApoE�/� knockoutmicewith awarfarin-containing
diet has been shown to accelerate atherosclerotic calcifica-
tion.33 There are no reports, however, on long-term feeding
of normolipidemic mice with warfarin. We therefore placed
Abcc6þ/þ and Abcc6�/� mice on a standard rodent diet with-
out (control diet) or with warfarin supplementation (W/K1

diet) at 6weeks of age, afterweaning, at the time just before the
Abcc6�/� mice develop overt mineralization of the dermal
sheath of vibrissae and of cardiovascular tissues. All the
warfarin-containing dietswere supplementedwith vitaminK1,
a strategy that prevents the warfarin-induced inhibition of the
vitamin K cycle in the liver and therefore does not affect the
g-glutamyl carboxylation of the coagulation factors. Thus,
these mice do not suffer from excessive bleeding.29

Two experimental designs were used, as described under
Materials and Methods, in eight groups of mice (Table 1).
In the first set of experiments, 6-week-old mice of both
genotypes were placed on the control or the W/K1 diet and
were monitored for 29 weeks. At this point, the mice were
sacrificed, subjected to blood analysis, and examined for
evidence of ectopic mineralization. Testing of plasma in the
The American Journal of Pathology - ajp.amjpathol.org
mice fed the W/K1 diet detected significant levels of
warfarin, up to 12 mg/L, whereas warfarin levels in the mice
fed the control diet were below the detection limit (<0.12
mg/L) (Table 2). The mice fed the W/K1 diet also exhibited
significantly elevated (up to 200-fold) levels of vitamin K1

(K1 þ KH2), compared with wild-type mice on the control
diet. Importantly, significant levels of KO were detected in
serum of mice fed the W/K1 diet (up to w300 mg/L),
whereas those on the control diet showed values below the
detection limit (<0.12 mg/L), indicating that the warfarin
treatment resulted in accumulation of KO due to inhibition
of the enzymatic reduction of KO to KH2 (Table 2).
Although these results confirmed that warfarin effectively
inhibited the vitamin K cycle, the expected inhibition of
coagulation factors in the liver was apparently overcome by
addition of vitamin K1 to the diet. Specifically, the INR and
prothrombin time, which reflect blood coagulation, were not
altered in mice fed the experimental diet, compared with
mice fed the control diet (data not shown). Finally, it should
be noted that the serum calcium concentration was slightly
elevated in mice fed the W/K1 diet, but the serum phos-
phorus levels and the accompanying Ca/P ratio were not
altered significantly (Table 3).

Histopathological examination of Abcc6þ/þ mice placed
on the W/K1 diet for 29 weeks (group B) revealed minimal
evidence of ectopic mineralization in the dermal sheath of
vibrissae and in the eyes (one mouse out of nine examined),
whereas the wild-type mice kept on the control diet (group A)
showed no evidence of soft tissue mineralization in the
vibrissae, kidneys, heart, aorta, or eyes (Table 4). Examina-
tion of Abcc6�/� mice kept on the control diet (group C)
demonstrated significant mineralization in the dermal sheath
of vibrissae, kidneys, heart, and eyes, consistent with
previous report20 (Table 4). However, Abcc6�/� mice on the
warfarin-supplemented diet (group D) exhibited a markedly
increased degree of mineralization, and each of the nine mice
examined showed mineral deposits in vibrissae, kidneys,
heart, aorta, and eyes (Figure 1 and Table 4). The degree of
mineralization was quantitated by chemical and morpho-
metric analysis of muzzle skin containing the vibrissae. The
results, both from direct assay of calcium and phosphate
content of the skin and from computerized morphometric
analysis of histopathological sections, revealed up to 16-fold
increases in ectopic mineralization in Abcc6�/� mice fed the
W/K1 diet, compared with Abcc6�/� mice on the control diet
(Figure 2). Thus, in our mouse model, warfarin clearly
increases the ectopic mineralization of peripheral connective
tissues and accelerates the mineralization process elicited by
Abcc6 deficiency.

Warfarin and a Diet Low in Magnesium and High in
Phosphate Independently Accelerate the
Mineralization Process

Previous studies have indicated that manipulation of the
mouse diet can alter the degree of mineralization in Abcc6�/�
1145
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Figure 5 Analysis of the mineral content in
deposits in dermal sheath of vibrissae of Abcc6�/�

mice on the control, acceleration, or acceleration þ
W/K1 diet (groups E, G, and H, respectively). Mineral
deposits identified in H&E-stained sections (arrows,
top row) were subjected to EDAX analysis. The
elemental spectrum (row 2) revealed the presence
of calcium and phosphorus as the principal ions in
approximately a 2.0:1 ratio in all samples. Topo-
graphic (RADAR) mapping identified calcium and
phosphorous (rows 3 and 4) in a colocalization
distribution, as shown by overlay maps (bottom
row). Scale bar Z 200 mm. Original magnification
(H&E stain), �100.
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mice. Specifically, a diet with reduced magnesium and
elevated phosphate content (the so-called acceleration diet)
has been shown to markedly enhance mineralization in these
mice.25,26 In a second set of experiments, we examined the
effect of warfarin in a short-term study in which 6-week-old
Abcc6�/� mice were placed on the control diet, the W/K1

diet, the acceleration diet, or the acceleration diet þ W/K1.
Mice were monitored for 8 weeks, and then examined for
mineralization. The degree of mineralization in the dermal
sheath of vibrissae was monitored by small-animal CT
scanning, which allows noninvasive evaluation of the
mineralization process.23 Our results suggested a minimal
degree of mineralization in Abcc6�/� mice at 8 weeks on the
control diet (group E), but this process was significantly
accelerated by the addition of warfarin to the diet (group F).
Abcc6�/� mice kept on the acceleration diet for 8 weeks
(group G) showed evidence of significant mineralization in
the dermal sheath of vibrissae, and addition of warfarin to
the diet resulted in massive mineralization (group H)
(Figure 3).

Histopathological examination of the Abcc6�/� mice
by routine H&E staining for calcification, as well as by
Alizarin Red and von Kossa staining, revealed marked
mineralization of the dermal sheath of vibrissae in all mice
1146
in set 2 (groups EeH), regardless of diet (Table 4).
However, mice kept on the control diet (group E) showed
only partial mineralization in the heart and eyes (25% and
13% of animals, respectively), and no mineralization was
noted in the kidneys and aorta. Supplementation of the
control diet with warfarin and vitamin K1 (group F)
increased the mineralization noted in kidneys to 100% of the
five animals examined (Table 4). The mice kept on the
acceleration diet (group G) exhibited extensive mineraliza-
tion in the kidneys, heart, and eyes. The degree of miner-
alization with the acceleration diet was further increased by
W/K1 supplementation (group H). All group H mice
exhibited mineral deposits in the dermal sheath of vibrissae,
the kidneys, the heart, and aorta (Table 4). The histologi-
cally observed increases in the mineral content were further
confirmed by direct calcium and phosphate chemical
measurements, and by computerized morphometric analysis
of the dermal sheath of vibrissae (Figure 4).

Characterization of Mineral Deposits

We have previously demonstrated that the mineral deposits
found in the dermal sheath of vibrissae of Abcc6�/� mice
kept on a standard laboratory diet consist of calcium
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Immunological demonstration of osteopontin (top row) and a-fetuin (middle row) associated with mineral deposits (arrows) in the dermal sheath
of vibrissae and aorta in Abcc6�/�mice fed the control diet (group C) or the W/K1 diet (group D). Mineral deposits (arrows, bottom row) were visualized by H&E.
Original magnification, �100.
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hydroxyapatite, with a calcium/phosphate ratio of approxi-
mately 2.0:1, consistent with hydroxyapatite in endochondral
bone.34 In the present study, we used energy dispersive X-ray
(EDAX) analysis with topographic (RADAR) mapping
capabilities to examine whether W/K1 supplementation of
the acceleration diet changes the composition of the mineral
deposits. The results indicated that, in Abcc6�/� mice fed the
acceleration diet without or with W/K1 supplementation
(group G and H, respectively), the principal components of
the mineral deposits were calcium and phosphorus, in a ratio
of approximately 2.0:1; this is similar to findings in Abcc6�/�

mice kept on the control diet (group E) (Figure 5). We further
demonstrated colocalization of calcium and phosphorus in
these deposits by topographic mapping (Figure 5), suggest-
ing that the mineral deposits consist of hydroxyapatite, the
principal mineral component of bone.

To further explore the nature of the mineralization
processes in this novel mouse model, the expression of two
mineralization-associated proteins, osteopontin and a-fetuin,
was examined in the dermal sheath of vibrissae depicting
ectopic mineralization ofAbcc6�/� fed the control diet (group
C) or theW/K1 diet (group D). Immunofluorescence revealed
increased presence (in group D, compared with the control,
group C) of both osteopontin and a-fetuin, colocalized with
the mineralized areas, and the amount of protein, as judged
semiquantitatively by the immunofluorescence signal, cor-
responded to the degree of mineralization (Figure 6). In aorta,
similar changes were present in group D (Figure 6). Thus, the
increase in mineralization, which has previously been shown
The American Journal of Pathology - ajp.amjpathol.org
to reflect increased mineral-to-matrix ratio as determined by
Fourier transform infrared imaging spectroscopy,34 suggests
that there is a progressivematuration of themineral deposits to
form hydroxyapatite, and that this process is accelerated
independently by Abcc6 deficiency, altered magnesium and
phosphate content of the diet, and dietary warfarin.

Evidence for the Pathomechanistic Role of MGP

Previous studies have suggested that the degree of
g-carboxylation of MGP due to altered vitamin K status
may play a role in ectopic mineralization in Abcc6�/�

mice.10,19 We therefore postulated that warfarin in diet of
Abcc6�/� mice might further increase mineralization by
preventing g-glutamyl carboxylation of MGP. Tissue
sections of aorta were stained with an antibody specifically
recognizing the uncarboxylated form of MGP (ucMGP) and
an antibody recognizing the carboxylated form of MGP
(cMGP). The results suggested a greater abundance of
ucMGP than cMGP in Abcc6�/� mice fed on the W/K1 diet
(Figure 7). This finding is consistent with recent demon-
stration of decreased expression of cMGP in the plaque of
ApoE�/� mice fed with warfarin.33

Clinical Perspective

To explore the clinical perspective of our findings on
warfarin-induced acceleration of mineralization in Abcc6�/�

mice, we analyzed the patient database maintained by PXE
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Figure 7 Analysis of cMGPanducMGP in aortaofAbcc6�/�micekept on the
control diet (group C) or the W/K1 diet (group D). Note mineralization in von
Kossa (VK)estained sections (arrows). Therewas a greater abundanceof ucMGP
(arrow) than cMGP in group D. Original magnification, �300.
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International, the premier patient advocacy organization for
this disease.35 The entire patient registry consists of
approximately 4000 individuals with PXE. A total of 1747
patients with PXE and with known e-mail addresses were
approached with a questionnaire as to their current or past
anticoagulation therapy (blood thinners), with specific
emphasis on warfarin (Coumadin). Of the 539 individuals
who replied, 93 indicated present or past use of anti-
coagulation therapy for various clinical indications. These
respondents were sent a detailed questionnaire regarding the
type and length of anticoagulation therapy and clinical
progression of their disease while on this therapy. Exami-
nation of the detailed drug history revealed that 13 indi-
viduals specifically reported warfarin use for an average of
4.05 � 3.41 years (means � SD; range, 0.08e14). Thus,
a total of 2.4% of PXE patients who responded to the initial
inquiry were identified as past or present users of warfarin,
possibly being at risk for accelerated mineralization.

Discussion

Pseudoxanthoma elasticum is a heritable mineralization
disorder with considerable morbidity and mortality. The
characteristic feature of this disease is ectopic mineralization
of peripheral connective tissues with primary clinical
manifestations in the skin, the eyes, and the cardiovascular
system.9,10 The classic form of PXE is caused by mutations
in the ABCC6 gene, which is expressed primarily in the liver
and the kidneys.10,36,37 PXE has been suggested to be
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a metabolic disorder at the interface of genome and envi-
ronment.38 Although the pathomechanistic details leading
from mutations in the ABCC6 gene into tissue mineraliza-
tion are currently unknown,15 it is clear that the clinical
manifestations are primarily due to ectopic mineralization,
manifesting in the skin as yellowish papules and inelastic
skin, in the eyes as angioid streaks due to breakage in
mineralized Bruch’s membrane, and in arterial blood vessels
due to mineralization of elastic lamina. Thus, factors that
modulate the extent of mineralization are expected to have
significant effects on the severity of the disease and devel-
opment of complications.
In the present study, we have demonstrated that warfarin,

a commonly used oral anticoagulant, has a major effect on the
degree of mineralization in Abcc6�/� mice, which serve as
a model system for PXE. These mice were fed a diet sup-
plemented with warfarin and vitamin K1, a combination that
has been shown to result in vascular mineralization in rats.29

Warfarin elicits its anticoagulation effects by preventing the
physiological activation of vitamin Kedependent coagula-
tion factors in the liver by g-glutamyl carboxylation, an
enzymatic reaction requiring vitamin K as a cofactor.
However, the experimentalW/K1 diet bypasses the inhibition
of g-glutamyl carboxylation in the liver,29 and consequently
the mice do not develop a coagulation disorder (as was
demonstrated in the present study by normal INR and
prothrombin time measurements). It is expected, however,
that g-glutamyl carboxylation of Gla protein, such as MGP,
in the peripheral tissues is inhibited by warfarin, a finding
consistent with the presence of ucMGP in peripheral
connective tissues of our mice. Thus, our results suggest that
lack of activated MGP, which physiologically serves as
a powerful, local antimineralization factor,39 is responsible
for the profound tissue mineralization exhibited by mice fed
the W/K1 diet.
Demonstration that warfarin increases the mineralization

has both pathomechanistic and clinical implications with
respect to understanding of various facets of PXE. First,
MGP has been suggested to play a role in PXE, based on
demonstration of uncarboxylated forms of MGP in tissues of
Abcc6�/� mice kept on a standard diet, as well as in skin
biopsies from patients with PXE.16,17 It has been suggested
that Abcc6 serves in the liver as an efflux pump transporting
vitamin K or one of its derivatives, such as glutathione
conjugate (vitamin K3eGSH), to the circulation.19 Thus, in
the absence of functional Abcc6 pump activity, the peripheral
tissues may become deficient in vitamin K, resulting in
undercarboxylation of MGP. This hypothesis has been
recently tested in studies in which vitamin K1 or K2 was
supplemented in high doses in the diet of Abcc6�/�

mice.40e42 Although dietary supplementation of vitamin K
resulted in significant increases in the serum vitamin K levels
in these studies, no effect on connective tissue mineralization
was observed. Similarly, intravenous infusion of vitamin
K3eGSH did not affect the development of mineral deposits
in these mice.40 Thus, the results indicate that mineralization
ajp.amjpathol.org - The American Journal of Pathology
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in Abcc6�/� mice is not simply a direct result of vitamin K
deficiency. In this context, it should be noted that the serum
vitamin K levels have been suggested to be somewhat
reduced in patients with PXE, perhaps providing a contribu-
tory factor to the mineralization process.43

Our demonstration that the experimental diet resulted in
extensive mineralization in Abcc6�/� mice suggests that, in
the case of PXE, the inhibition of g-glutamyl carboxylation
of MGP is incomplete, and that reduction of KH2 by
warfarin as a result of interference with the vitamin K cycle
synergistically accelerates this process. An alternative
explanation is that ectopic mineralization in Abcc6�/� mice
and in patients with PXE is the result of a process
completely independent of the g-glutamyl carboxylation
status of MGP, and that treatment of these mice with
warfarin has an additive, independent effect.

Our observations may also have critical implications for
the clinical management of patients with PXE. Specifically,
it should be noted that warfarin treatment of patients with no
evidence of PXE has been reported to result in cardiovas-
cular mineralization.27,28,44e46 If the percentage of PXE
patients found in our survey to be warfarin users is repre-
sentative of the global setting, then thousands of patients
worldwide may be at risk for increased ectopic mineraliza-
tion and severity of PXE as a result of anticoagulant therapy.
Anecdotally, many of the warfarin users in our survey re-
ported worsening of their clinical signs and symptoms while
on anticoagulation therapy; however, direct association of
warfarin intake and progression of their clinical disease
could not be established in our cohort because PXE is
a slowly progressive condition with a variable and often
unpredictable course.9

In addition to PXE, other heritable disorders manifest
with ectopic tissue mineralization affecting skin and the
cardiovascular systems. These conditions include familial
tumoral calcinosis, the normophosphatemic variant being
due to mutations in SAMD9 and the hyperphosphatemic
variants being due to mutations in the GALNT3, FGF23,
and KL genes.5 Generalized arterial calcification of infancy,
caused by mutations either in the ENPP1 or the ABCC6
gene, affects primarily the arterial blood vessels, but these
patients can also demonstrate PXE-like cutaneous
features.7,47 Patients with CD73 deficiency due to mutations
in the NT5E gene exhibit vascular mineralization, clinically
similar to but histopathologically distinct from PXE.8,48

These observations suggest the presence of an intricate
mineralization and antimineralization network in tissues. A
careful balance of factors both promoting and preventing
connective tissue mineralization at the local level is required
for normal homeostasis.49 Finally, it should be noted that
there are a number of acquired conditions, often associated
with inflammatory reactions, that result in connective tissue
mineralization.1 It is therefore conceivable that many
patients with acquired or heritable disorders prone to ectopic
mineralization are at risk for worsened clinical outcome as
a result of anticoagulant therapy with warfarin.
The American Journal of Pathology - ajp.amjpathol.org
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