
INTRODUCTION

Parkinson’s disease (PD) is associated with a selective loss of 
the neurons in the midbrain area called the substantia nigra pars 
compacta. These neurons contain the neurotransmitter dopamine 
(DA), and their projecting nerve fibers reside in the striatum. 
Because these neurons control voluntary movements, the 
degeneration leads to four cardinal, debilitating symptoms: resting 
tremor, muscular rigidity, bradykinesia, and postural imbalance. 
A majority of PD cases is idiopathic (90-95%). Occupational 
uses of herbicides or pesticides, exposure to organic solvents, 

carbon monoxide, and carbon disulfide, and more generally, 
industrialization, rural environment, well water, plant-derived 
toxins, and bacterial and viral infection are all thought to play roles 
[1]. Aging is an obvious factor associated with the onset of PD, 
and failure of normal cellular processes that occurs with aging is 
believed to cause increased vulnerability of DAergic neurons [2]. 
Familial forms of PD involving mutations in a number of genes 
have also been described. The mechanism by which mutation of 
these genes lead to degeneration of the nigral neurons have shed 
light to understanding of the pathophysiology of PD. 

In both idiopathic and genetic cases of PD, oxidative stress is 
thought to be the common underlying mechanism that leads to 
cellular dysfunction and demise. As such, the substantia nigra 
of PD patients exhibit increased levels of oxidized lipids [3], 
proteins and DNA [4] and decreased levels of reduced glutathione 
(GSH) [5]. Oxidative stress occurs when an imbalance is formed 
between production of reactive oxygen species (ROS) and cellular 
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antioxidant activity. Because of the presence of ROS-generating 
enzymes such as tyrosine hydroxylase and monoamine oxidase, 
the DAergic neurons are particularly prone to oxidative stress. In 
addition, the nigral DAergic neurons contain iron, which catalyzes 
the Fenton reaction, in which superoxide radicals and hydrogen 
peroxide can contribute to further oxidative stress [6]. Because of 
this intrinsic sensitivity to reactive species, a moderate oxidative 
stress can trigger a cascade of events that lead to cell demise. The 
major sources of such oxidative stress generated for the nigral 
DAergic neurons are thought to be the ROS produced during DA 
metabolism, mitochondrial dysfunction, and neuroinflammation, 
as discussed below in more detail.

DA METABOLISM

The neurotransmitter DA itself can be a source of oxidative 
stress. Lines of evidence suggest oxidation of DA and consequent 
quinone modification and oxidative stress as major factors 
contributing to the vulnerability of DAergic cells. Although DA is 
normally stored in vesicles, excess cytosolic DA is easily oxidized 
both spontaneously and enzymatically to produce DA quinone. 

The DA quinone species are capable of covalently modifying 
cellular nucleophiles, including low molecular weight sulfhydryls 
such as GSH and protein cysteinyl residues, whose normal 
functions are important for cell survival. Notably, DA quinone 
has been shown to modify a number of proteins whose 
dysfunctions have been linked to PD pathophysiology, such as 
α-synuclein, parkin, DJ-1, and UCH-L1. DA quinone covalently 
modifies α-synuclein monomer and promotes the conversion of 
α-synuclein to the cytotoxic protofibril form [7]. The DA quinone-
modified α-synuclein is not only poorly degraded but also 
inhibits the normal degradation of other proteins by chaperone-
mediated autophagy [8]. Conversely, α-synuclein can bind to 
and permeabilize the vesicle membrane, causing leakage of DA 
into the cytosol [9] and this would in turn induce DA quinone 
generation. Parkin is also covalently modified by DA and becomes 
insoluble, which leads to inactivation of its E2 ubiquitin ligase 
activity [10]. Catechol-modified parkin has been detected in the 
substantia nigra but not other regions of the human brain, and 
parkin insolubility is observed in PD brain [10]. In addition, 
DA quinone modification of UCH-L1 and DJ-1 has also been 
observed both in brain mitochondrial preparations and DAergic 
cells [11]. Since both UCH-L1 and DJ-1 contain a cysteine residue 
that is important for their activity [12, 13] and their oxidative 
modification at cysteine has been observed in PD [14, 15], the DA 
quinone modification is likely the cause of inactivation of these 
enzymes.

DA quinone has also been shown to cause inactivation of the 
DA transporter and tyrosine hydroxyalse [16]. In addition, it 
leads to mitochondrial dysfunction [17] and swelling of brain 
mitochondria [18]. Accordingly, the subunits of Complex I and 
Complex III of the electron transport chain, whose dysfunction 
will deter mitochondrial respiration and cause ROS production, 
were also shown to be targets of DA quinone modification [11]. In 
addition, ER-60/GRP58/ERp57 and protein disulfide isomerase-5, 
the proteins that assist in protein folding in the endoplasmic 
reticulum, are also modified by DA quinine [11]. DA metabolites 
have also been shown to induce proteasomal inhibition, which can 
lead the cells to undergo apoptosis [19].

Furthermore, DA quinone can cyclize to become the highly 
reactive aminochrome, whose redox-cycling leads to generation 
of superoxide and depletion of cellular NADPH, and which 
ultimately polymerizes to form neuromelanin. Neuromelanin in 
turn can exacerbate the neurodegenerative process by triggering 
neuroinflammation [20]. Moreover, hydrogen peroxide is 
generated during DA metabolism by monoamine oxidase and is 
subsequently converted to the highly reactive hydroxyl radical in 
the presence of transition metal ions [6], contributing to oxidative 
stress. 

Evidence of the existence of in vivo DA oxidation and its 
toxicity is also available. Neuromelanin, the final product of DA 
oxidation, is accumulated in the nigral region of the human brain 
[21]. Higher levels of cysteinyl-catechol derivatives are found 
in postmortem nigral tissues of PD patients compared to age-
matched controls, suggesting cytotoxic nature of DA oxidation 
[22]. In animals, DA directly injected into the striatum caused 
selective toxicity to DAergic terminals that was proportional to the 
levels of DA oxidation and quinone-modified proteins [23]. Mice 
expressing a low level of ventricular monoamine transporter-2, 
presumably with increased cytosolic DA level, showed evidence of 
DA oxidation and age-dependent loss of nigral DA neurons [24]. 

MITOCHONDRIAL DYSFUNCTION 

Mitochondrial dysfunction is another source of oxidative 
stress associated with the pathogenesis of PD. Neurons depend 
heavily on aerobic respiration for ATP, and hydrogen peroxide 
and superoxide radicals are normally produced during oxidative 
phosphorylation as byproducts in the mitochondria. Any 
pathological situation leading to mitochondrial dysfunction can 
cause a dramatic increase in ROS and overwhelm the cellular 
antioxidant mechanisms. Oxidative stress causes peroxidation of 
the mitochondria-specific lipid cardiolipin, which results in release 
of cytochrome c to the cytosol, triggering apoptosis. 
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Because DAergic neurons are intrinsically more ROS-generating 
and vulnerable as described above, any event that triggers 
further oxidative stress can be harmful to the cell. Damage to 
mitochondrial Complex I in the electron transport chain causes 
leakage of electrons, which in turn causes ROS generation. 
As such, the Complex I inhibitors rotenone and 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), when injected 
intraperitoneally, exert preferential cytotoxicity to the DAergic 
neurons [25]. Indeed, reduced Complex I activity has been 
found in tissues from subjects with PD [26]. Higher numbers of 
respiratory chain deficient DA neurons have been found in PD 
patients than in age-matched controls [27]. 

A line of evidence for mitochondrial dysfunction related to 
oxidative stress and DAergic cell damage comes from the findings 
that mutations in genes of mitochondrial proteins parkin, DJ-1, 
and PINK are linked to familial forms of PD. Cells derived from 
patients with parkin gene mutation show decreased Complex I 
activity [28]. Mice deficient in parkin gene have shown reduced 
striatal respiratory chain activity along with oxidative damage [29]. 
Mutations in PINK1 induce mitochondrial dysfunction including 
excess free radical formation [30]. DJ-1 is a mitochondrially 
enriched, redox-sensitive protein and an atypical peroxiredoxin-
like peroxidase that scavenges H2O2 , and DJ-1 KO mice accumu
late more ROS and exhibit fragmented mitochondrial phenotype 
[31]. In addition, α-synuclein, although mostly cytosolic, seems 
to interact with mitochondrial membranes and to inhibit 
Complex I [32]. Mice overexpressing mutant α-synuclein exhibit 
abnormalities in the mitochondrial structure and function [33]. 

NEUROINFLAMMATION 

Neuronal loss in PD is associated with chronic neuroin
flammation, which is controlled primarily by microglia, the 
resident innate immune cells and the main immune responsive 
cells in the central nervous system. Microglial reaction has been 
found in the SN of sporadic PD patients [34] as well as familial PD 
patients [35] and in the SN and/or striatum of PD animal models 
elicited by MPTP [36]. 

Microglia are activated in response to injury or toxic insult as a 
self-defensive mechanism to remove cell debris and pathogens. 
When activated, they release free radicals such as nitric oxide 
and superoxide, which can in turn contribute to oxidative stress 
in the microenvironment. Overactivated and/or chronically 
activated state of microglia causes excessive and uncontrolled 
neuroinflammatory responses, leading to a self-perpetuating 
vicious cycle of neurodegeneration [37]. This is thought to be 
exacerbated by inflammatory signals generated by molecules 

released from damaged neurons, leading to induction of reactive 
microgliosis. The oxidized or ROS-induced molecules that are 
released from damaged nigral DAergic neurons and trigger 
microglial activation include neuromelanin, α-synuclein, and 
active form of MMP-3, as described below. 

Neuromelanin is the dark insoluble polymer produced from 
DA oxidation and confers the dark pigmentation to the substantia 
nigra. Insoluble extraneuronal neuromelanin granules have been 
observed in patients of juvenile PD [38] and idiopathic PD, as 
well as those with MPTP-induced parkinsonism [39]. Addition 
of neuromelanin extracted from PD brain to microglia culture 
caused increases in and nitric oxide [40]. Intracerebral injection 
of neuromelanin caused strong microglia activation and a loss 
of DAergic neurons in the substantia nigra [20]. Neuromelanin 
appears to remain for a very long time in the extracellular space 
[39] and thus thought to be one of the molecules responsible for 
inducing chronic neuroinflammation in PD. 

Although mostly intracellular, a fraction of α-synuclein fibril 
is released from neurons [41], and α-synuclein is found in the 
cerebrospinal fluid from PD patients and normal subjects [42], 
and in human plasma [43]. The addition of aggregated human 
α-synuclein to a primary mesencephalic neuron-glia culture 
causes activation of microglia and DAergic neurodegeneration, 
and this cytotoxicity does not occur in the absence of microglia 
[44]. In addition, neuron-derived α-synuclein stimulates 
astrocytes to produce inflammatory modulators that augment 
microglial chemotaxis, activation and proliferation [45]. Nitration 
of α-synuclein, presumably due to increased nitric oxide, facilitates 
the neuroinflammatory responses [46]. More recently, it has 
been shown that transgenic mice expressing mutant α-synuclein 
developed persistent neuroinflammation and chronic progressive 
degeneration of the nigrostriatal DA pathway when inflammation 
was triggered by a low level of lipopolysaccharide [47]. 

The active form of MMP-3 is increased in response to oxidative 
stress in DAergic cells, and MMP-3 causes activation of microglia, 
which in turn would generate reactive nitrogen species and ROS 
[48-51]. In MMP-3 knockout mice, the microglial activation 
following exposure to MPTP is abrogated, and this is accompanied 
by a lower level of superoxide production compared to their wild 
type [52]. MMP-3 causes cleavage of protease activated receptor-1 
(PAR-1) [53], whose removal of N-terminal extracellular domain 
renders the remaining domain acting as a tethered ligand, 
subsequently triggering generation of intracellular signals [54] and 
activation of microglia [55]. Furthermore, MMP-3 participates in 
formation of the biologically active IL-1β from the proform [56]. 
In addition, MMP-3 participates in expression of inflammatory 
cytokines in activated microglia [57], and conversely, MMP-
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3 is induced by free radicals and the cytokines in these cells 
[58]. Therefore, a vicious cycle may exist, where MMP-3, whose 
expression is induced by oxidative stress, is released from DAergic 
neurons and leads to production of free radicals and cytokines 
in the microglia. MMP-3 can also cause degradation of blood 
brain barrier and infiltration of neutrophils, which can further 
contribute to neuroinflammation [59].

THERAPEUTIC STRATEGIES

Currently, there is no therapy clinically available that delays the 
neurodegenerative process itself, and therefore modification of the 
disease course via neuroprotective therapy is an important unmet 
clinical need. Thus, understanding of the pathophysiology and 
etiology of the disease at cellular and molecular levels and finding 
molecular targets for neuroprotective/disease-modifying therapy 
is the crucial issue in the field of basic PD research. 

As described above, oxidative stress originating from DA 
metabolism, neuroinflammation and mitochondrial dysfunction 
is thought to be the hallmark of PD pathogenesis, and antioxidant 
mechanism should prove to be an effective neuroprotective 
therapy for PD. However, no direct antioxidant, such as vitamin C, 
vitamin E, and coenzyme Q10, has provided disease modification 
in PD patients. Attempts have also been made to design therapies 
against neuroinflammation. Doxycycline, a tetracycline derivative 
that penetrates the blood brain barrier, suppresses the increase in 
MMP-3 gene expression as well as nitric oxide and inflammatory 
cytokines and provides protection of the nigral DAergic neurons 
in the MPTP-induced mouse model of PD [60]. A novel 
synthetic compound 7-hydroxy-6-methoxy-2-propionyl-1,2,3,4-
tetrahydroisoquinoline, which downregulated expression of 
MMP-3 along with IL-1β, TNF-α and cyclooxygenase-2, provided 
neuroprotection in both cell culture and animal models of PD [61]. 

The enzyme NAD(P)H:quinone reductase (DT-diaphorase; 
NAD(P)H-(quinone acceptor) oxidoreductase; EC 1.6.99.2; 
NQO1) catalyzes two-electron reduction of quinone to the 
redox-stable hydroquinone. Since DA and its metabolites have 
been implicated in the pathogenesis of PD, NQO1 may exert a 
protective effect against such conditions. Indeed, NQO1 protected 
against damaging effects of cyclized quinones and oxidative stress 
induced during their redox cycling [19]. Induction of NQO1 by 
sulforaphane protected against neurocytotoxicity associated with 
DA quinone in vitro [62] and against MPTP-elicited toxicity 
in vivo [63]. In addition, NQO1 is known to maintain both 
α-tocopherol and coenzyme Q10 in their reduced, antioxidant 
state [64]. 

While NQO1 is abundant in the liver where it participates in 

the phase II detoxification, the enzyme is also expressed in the 
brain [65]. In addition to its predominant expression in astrocytes 
[66], NQO1 is also expressed, albeit to a lesser degree, in DArgic 
neurons in the substantia nigra [67]. Moreover, a marked increase 
in the neuronal expression of NQO1 was consistently observed in 
the Parkinsonian substantia nigra [67]. A polymorphism (C609T) 
of NQO1 that results in a decrease or total loss of its expression is 
reported to be associated with PD [68], although another group 
reported no such association [69]. 

Cellular induction of NQO1 is achieved by the transcription 
factor Nrf-2 binding to a cis-acting enhancer sequence termed 
antioxidant response element (ARE). Nrf-2 is normally present in 
the cytosol bound by the cytosolic protein keap1, but is released 
and translocated into the nucleus in response to a variety of 
cellular or exogenous signals. Ways to induce NQO1 expression 
and Nrf2 activation should therefore serve as viable approaches to 
develop neuroprotective therapy for PD. 

CONCLUSION

PD pathogenesis seems to be closely related to oxidative 
stress due to ROS generated by DA metabolism, mitochondrial 
dysfunction and neuroiniflammation. Because there is no current 
therapy available that delays the neurodegenerative process, 
development of drugs that will modify the course of PD is 
crucial. Intensive studies are being carried out worldwide toward 
understanding the molecular mechanism of cell demise in PD, and 
the results are actively being utilized in attempts to design disease-
modifying drugs for this devastating disease. 
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