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SUMMARY
Chromatin diminution is the programmed elimination of specific DNA sequences during
development. It occurs in diverse species, but the function(s) of diminution and the specificity of
sequence loss remain largely unknown. Diminution in the nematode Ascaris suum occurs during
early embryonic cleavages and leads to the loss of germline genome sequences and the formation
of a distinct genome in somatic cells. We found that ~43 Mb (~13%) of genome sequence is
eliminated in A. suum somatic cells, including ~12.7 Mb of unique sequence. The eliminated
sequences and location of the DNA breaks are the same in all somatic lineages from a single
individual, and between different individuals. At least 685 genes are eliminated. These genes are
preferentially expressed in the germline and during early embryogenesis. We propose that
diminution is a mechanism of germline gene regulation that specifically removes a large number
of genes involved in gametogenesis and early embryogenesis.

INTRODUCTION
Metazoans must both ensure the stability of their genomes, and also carefully regulate the
expression of germline genes in somatic tissues. Failure of either of these processes has
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severe consequences. However, there are examples of programmed genome instability that
are integral to the biology of an organism. Well-known examples include vertebrate
immunoglobulin gene rearrangement that enables antibody diversification (Jung et al., 2006)
and the extensive remodeling of the somatic genome that occurs during development of the
macronucleus in ciliates (Chalker and Yao, 2011). Chromatin diminution is another form of
genome rearrangement with DNA loss that occurs during the development of diverse
Metazoa including some nematodes, copepod crustaceans, insects, lampreys/hagfish, and
zebra finches (Bachmann-Waldmann et al., 2004; Goday and Esteban, 2001; Goday and
Pimpinelli, 1993; Kloc and Zagrodzinska, 2001; Muller et al., 1996; Muller and Tobler,
2000; Nemetschke et al., 2010; Smith et al., 2009; Tobler et al., 1992; Tobler et al., 1985;
Zufall et al., 2005). DNA elimination occurs either during gametogenesis or during
differentiation of the somatic lineage early in embryonic development. In some species,
DNA elimination may be involved in sex determination (Goday and Esteban, 2001; Goday
and Pigozzi, 2010; Nemetschke et al., 2010), but in most organisms that undergo
programmed chromatin diminution, the sequences lost and the role(s) of diminution remain
unknown.

Chromatin diminution was first described in an ascaridid nematode by Theodor Boveri in
1887 (Boveri, 1887). Diminution in nematodes is restricted to a number of parasitic
nematodes primarily in the Ascarididae (Goday and Pimpinelli, 1993; Muller et al., 1996;
Muller and Tobler, 2000; Pimpinelli and Goday, 1989) and does not occur in Caenorhabditis
elegans (Emmons et al., 1979). In the pig parasite A. suum, diminution occurs during the
third through fifth cleavages (4 to 16 cell stage) of development in five distinct somatic
precursor cells that give rise to different cell lineages (Fig. 1). This raises the key questions:
1) Are the sequences lost and the changes that occur during diminution the same in all five
of these precursor cells, and 2) What are the sequences that are lost and their functional
significance?

During the Ascaris diminution process, chromosomes are broken and the fragments to be
eliminated remain at the metaphase plate while the retained DNA is segregated into daughter
cells. It has been estimated that 25% of A. suum genome is lost in somatic cells, whereas the
germline genome remains intact (Muller et al., 1996; Muller and Tobler, 2000; Tobler et al.,
1992; Tobler et al., 1985). The eliminated DNA includes highly repetitive satellite
sequences consisting primarily of a 121 bp tandem repeat that is located in heterochromatin-
like blocks at internal sites and chromosome ends (Muller et al., 1982; Niedermaier and
Moritz, 2000; Streeck et al., 1982). Both internal regions and terminal heterochromatic
regions are eliminated, with addition of new telomeres resulting in a ~50% increase in
chromosome number (Bachmann-Waldmann et al., 2004; Huang et al., 1996; Jentsch et al.,
2002; Magnenat et al., 1999; Muller et al., 1991; Niedermaier and Moritz, 2000). While a
few chromosomal breakpoints where new telomere addition occurs have been partially
characterized (Bachmann-Waldmann et al., 2004; Huang et al., 1996; Jentsch et al., 2002;
Magnenat et al., 1999; Muller et al., 1991) and three single-copy genes that are eliminated
have been identified (Etter et al., 1994; Huang et al., 1996; Spicher et al., 1994), the full
complement of eliminated genes and sequences and the consequences for the somatic cells
remain unknown (Goday and Pimpinelli, 1993; Muller et al., 1996; Muller and Tobler, 2000;
Pimpinelli and Goday, 1989).

RESULTS and DISCUSSION
Identification of Eliminated Sequences and Breakpoints Associated with Ascaris
Diminution

We deep sequenced genomic DNA libraries from the spermatids (germline) and intestine
(somatic) of a single male A. suum (Table S1) to enable a genome-wide analysis of DNA
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changes following diminution. We used these data to independently assemble the germline
and somatic genomes (Table 1), and mapped the raw reads of the germline and somatic
genomes back to the germline assembly. These analyses identified sequences that are
eliminated to form the somatic genome and DNA breakpoints associated with A. suum
chromatin diminution (Fig. 2 and Fig. S1). Paired-end and mate-pair reads for the germline
and somatic regions strongly supported the germline assembly, the identified breakpoints,
and DNA loss (Tables S3 and S4). The results indicated that the major type of genome
alteration is chromosome breakage, loss of DNA sequence, and the healing of retained
chromosomes by telomere addition (Figs. 3 and 4 and Tables S3 and S4). We found no
evidence for the loss of interstitial sequences followed by DNA fusions or other genome
rearrangements. Breakpoints, DNA loss, and new telomere addition identified in the genome
sequencing data were confirmed using specific PCR assays (Figs. 2 and 3). Among the
sequences eliminated are at least 35 loci that may have arisen through recent duplication and
rearrangement in the A. suum lineage (Fig. 4).

Diminution Process is Conserved in Distinct Somatic Lineages and Between Male and
Female

To determine if diminution happens in the same way in all somatic cell lineages (Fig. 1), we
compared the sequences lost from the male intestine to those lost from other somatic cell
types (e.g., body wall muscle, pharyngeal muscle, hypodermis, and neurons) (Table S1) in
the same male. The intestine is derived from a single cell (E) in the A. suum cell lineage
(Fig. 1) whereas other somatic tissues are derived from additional and often multiple cell
lineages that independently undergo chromatin diminution (Fig. 1, cells labeled AB, C, and
D) (Boveri, 1899, 1910). We found that the DNA loss and chromosome breaks in an
individual male are conserved between the intestine and other somatic cell types (Fig. 3D
and Fig. S1), suggesting that the mechanism and consequences of diminution are the same in
different cells. Additional comparison of the sequence lost between the male and a female
worm shows a high degree of fidelity in the breaks and DNA loss between individuals (Fig.
3D and Fig. S1). However, there is some heterogeneity in the exact position, with ~80% of
the breaks occurring within 500 bp of each other within an individual and ~70% within
1,000 bp between individuals (Fig. 3E and Fig. S1) consistent with earlier studies
(Bachmann-Waldmann et al., 2004; Huang et al., 1996; Jentsch et al., 2002; Magnenat et al.,
1999; Muller et al., 1991). Analysis of DNA sequence up to 5 kb on either side of the
telomere addition sites did not reveal any specific sequence motifs or other characteristics
that might mark the regions for chromosomal breakage (Fig. S2 and Supplementary
Experimental Procedures).

A Large Number of Germline Genes are Eliminated During Diminution
Our analysis of the DNA lost revealed that ~43 Mb (~13%) of sequence is eliminated from
the germline genome during the formation of the somatic genome (Table 1). The majority of
the eliminated sequence (29 Mb, 70% of the eliminated sequence) is the 121 bp satellite,
repeat sequence previously described (Muller and Tobler, 2000; Muller et al., 1982; Streeck
et al., 1982) (Table S2). No other major loss of repetitive sequence was observed. The
remaining ~12.7 Mb of the eliminated sequence is unique and includes at least 685 predicted
genes (Tables S5 and S6). We sought to identify whether the eliminated genes shared any
common features in their patterns of expression. Genome-wide expression profiles were
constructed by RNA-seq of poly(A)+ RNA from testis, ovary, embryo, larvae, intestine,
muscle and other somatic tissues (Table S1), and the expression level was measured by
reads per kilobase of template per million mapped reads (RPKM). Remarkably, these results
revealed that 85% of the eliminated genes are expressed preferentially during gametogenesis
or early embryogenesis, and the remaining 15% are expressed in both (Fig. 5 and Table S6).
Most of these genes are expressed specifically in the testis and therefore are likely involved
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in spermatogenesis. However, not all genes expressed in the germline were eliminated
during chromatin diminution. Functional annotations of the eliminated genes suggest that
they are enriched for protein kinases, protein phosphatases, proteins associated with
chromatin, RNA and nucleotide binding proteins, and translation initiation proteins (Table
S6). These proteins are associated with network functions including protein synthesis, RNA
post-transcriptional modification, gene expression, cell death, and cellular compromise
(Table S6). Notably, at least 30 families of these eliminated genes are orthologs of well-
characterized genes in C. elegans whose loss is associated with clear phenotypes in germline
formation, gametogenesis, and early embryogenesis (e.g., air-1, gld-2, cgh-1, gla-3, fer-1,
spe genes, and pab genes) (Table S6).

Eliminated Genes Suggest Biological Functions for Diminution
We observed that ~53% (363) of the eliminated genes have paralogs in the genome (Table
S6). This is consistent with a model where an ancient genome duplication in the A. suum
lineage was balanced by chromatin diminution to regulate gene dosage or to provide a
mechanism for the selective retention of specific genes and thus their function (Bachmann-
Waldmann et al., 2004; Goday and Esteban, 2001; Goday and Pimpinelli, 1993; Muller et
al., 1996; Muller and Tobler, 2000; Tobler et al., 1992; Tobler et al., 1985). A previous
study demonstrated one of the two paralogs of ribosomal protein rps-19 gene was eliminated
in A. suum, suggesting that the two proteins may play differential roles in translation (Etter
et al., 1994). Recent data on rps-19 indicates that mutations or knockdown of this and other
specific ribosomal protein genes in vertebrates leads to discrete changes in the translation of
specific mRNAs, but not general translation (Horos et al., 2012; Kondrashov et al., 2011).
Our observation that a major group of the eliminated genes is associated with translation
(Tables S6) reinforces the idea that the translation machinery may differ between the
germline and soma. Notably, we found that a number of translation initiation factors are
eliminated from the germline (eIF4E, eIF5, eIF2 subunit 2, eIF3B, eIF3C, eIF3D, eIF3i, and
eIF2 subunit 3). Another, non-exclusive model of the function of diminution is that in
addition to the elimination of the genes, the chromosomal regions eliminated play an
important role in chromatin organization that contribute to broader gene regulation. For
example, these regions may repress genes in the germline or their elimination may activate
key somatic genes. We found no evidence of telomeric position effect silencing of genes due
to telomere addition (Huang et al., 1996) (Fig. S1) but cannot eliminate the possibility of
other indirect effects.

Ascaris Chromatin Diminution, Small RNAs, and Marks for Chromosome Breaks
In ciliates, small RNAs (piRNAs) are known to play a key role in the programmed DNA
rearrangements and elimination (Chalker and Yao, 2011). We looked previously for small
RNAs (Wang et al., 2011) that might be associated with Ascaris chromatin diminution, in
particular RNAs mapping to the 121-bp repeat element that constitutes ~30 Mb of the
eliminated sequence. We characterized small RNAs before, during, and after chromatin
diminution and found no correlation between the eliminated repeats and any small RNAs.
Furthermore, piRNAs and PIWI Argonautes are absent in Ascaris (Wang et al., 2011).
Recent studies in C. elegans suggest that small RNAs also play a role in the recognition of
“self” versus “non-self” and in multigenerational epigenetic inheritance (Ashe et al., 2012;
Bagijn et al., 2012; Buckley et al., 2012; Lee et al., 2012; Luteijn et al., 2012; Shirayama et
al., 2012). We reexamined the expression of Ascaris small RNAs (Wang et al., 2011)
correlating with chromatin diminution. We found no temporal or any other correlation of
small RNAs associated with regions retained, regions eliminated, or the chromosome
breakpoint regions. While preliminary analyses of Ascaris polyA+ RNA levels (RNA-seq)
demonstrate that several Argonaute and other protein mRNAs increase during the period of
early embryo development leading up to and during the time of diminution, their increased
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expression may not be correlated with diminution and could be associated with the maternal
to zygotic transition or serve other functions during this complex period of development.
Overall, these and other data in Ascaris [including the loss of large numbers of genes, the
lack of discrete sequence elements that mark sites of DNA breaks for telomere addition (Fig.
S2), and the absence of removal of interstitial DNA sequences followed by DNA fusion]
suggest that the function and mechanism for DNA elimination in Ascaris may differ from
the programmed rearrangements in ciliates. As we did not identify discrete sequence
elements that mark the sites of DNA breaks, we suggest that epigenetic marks (and even
small RNAs yet to be identified) could play an important role in defining chromosome break
sites and play a role in chromatin diminution. Additional studies will be required to further
examine these possibilities.

Recently, a preliminary genomic study on the programmed DNA elimination in sea
lampreys also demonstrated that unique sequences were eliminated from somatic cells
(Smith et al., 2012). Among the genes eliminated in the somatic cells were some involved in
transcriptional programs that are likely to play a role in maintaining germline function.
Thus, elimination of specific germline-expressed genes in metazoa may be a common
function of chromatin diminution.

Our work is a comprehensive analysis of the germline and somatic genome from a
metazoan, the DNA lost and the chromosome changes that occur, and the elimination of
specific germline expressed genes suggesting a function for that Ascaris chromatin
diminution and a paradigm for DNA elimination. A hallmark of most Metazoa is that
germline cells are set aside early in development. Soma-specific elimination provides a
unique mechanism of gene repression, reminiscent of Weismann’s original theory of the
differentiation between germline and soma (Weissmann, 1893). Our comprehensive
identification of the genome changes in the soma of A. suum provides the foundation for the
elucidation of the features and epigenetic changes underlying the mechanisms of selective
DNA breakage and DNA loss in chromatin diminution. Understanding chromosome breaks,
telomere healing, and selective DNA loss in chromatin diminution is likely to offer insight
into genome stability and changes in normal processes and disease.

EXPERIMENTAL PROCEDURES
Sample collection and DNA isolation

A. suum samples were collected from pig intestines at a slaughterhouse in Sandusky, OH,
U.S or Ghent, Belgium. A single male A. suum (U.S.) was dissected and the spermatids, the
intestine, the testis, and the remaining tissue (carcass, which includes muscle, hypodermis,
pharynx, and neurons) collected, frozen in liquid nitrogen, and stored at −80 °C. A single
female (U.S.) was dissected and the ovary/oviduct, uterus, intestine, and carcass collected,
frozen in liquid nitrogen, and stored at −80 °C.

Genome sequencing and assembly
Sequencing—Genomic DNA libraries were constructed from A. suum germline and
somatic tissues and sequenced (Table S1). DNA isolation and libraries were constructed
using standard methods and Illumina protocols and sequenced on the Illumina GAIIx or
HiSeq platforms except where noted in the supplemental Materials and Methods. Genomic
reads for assembly, scaffolding and analysis are listed in Table S1. The fold coverage
numbers in Table S1 for all these libraries are derived from high quality reads that can be
mapped back to the final assemblies.
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Assembly—Reads from germline or somatic sources were used to independently assemble
the two genomes. To minimize the sequence heterogeneity, we only used DNA sequences
from a single male for the generation of consensus sequences within the assembly. Genomic
reads for scaffolding (Table S1) were only used to confirm and support the links that bridge
contigs into scaffolds, and none of these sequences were incorporated into the genome
assemblies. Because of the presence of some duplicated loci (Fig. 4 and Table S4), we
applied a “sub-assembly” strategy to capture all changes that occur in the germline genome.
First, we built an initial germline genome assembly using velvet (v1.1.03) (Zerbino and
Birney, 2008). From this assembly, we defined ~12.7 Mb of eliminated sequences (see
below). All mappable germline reads were divided into 2 groups: those reads to the 12.7 Mb
eliminated regions and all their pairs (from the paired-end and mate-pair libraries) and those
reads retained in the soma following diminution. Next, we assembled the two groups of
reads independently by using velvet (Zerbino and Birney, 2008). Finally, we combined the
eliminated and retained assemblies using phrap (http://www.phrap.org/, v1.080812). Each
assembly step was optimized and scaffolding performed under the overall guideline of
sequentially bridging gaps ≤ 200, 500, 1,500, and 3,500 bp with ≥ 20 pairs of supporting
reads, and the assemblies were checked using the Tablet assembly viewer (v1.11.11.01). The
somatic genome was built using velvet, with ≥ 10 pairs of paired-end Illumina reads or ≥ 3
pairs of Sanger capillary reads for scaffolding, and the assembly also checked using the
Tablet viewer. Note the N50 of the somatic assembly is not as good as that of the germline.
This is mainly due to the lower average sequencing depth on the large fragment paired-end
library for the somatic genome (compared with the germline) available for scaffolding.

Identification of eliminated sequences, germline genome changes, and breakpoints with
telomere addition

We used two libraries generated and analyzed in parallel with similar coverage (2 × 150 bp,
360 bp insert size, ~50 × coverage) from the single male spermatids and intestine to map
reads back to the germline genome assembly (bowtie2, v2.0.0-beta5) (Langmead and
Salzberg, 2012) to identify eliminated sequence and genome changes in the germline. We
used a 100-bp window to scan the genome for regions with a somatic/germline coverage
ratio < 0.1 to provide an initial set of long sequence blocks containing potentially eliminated
sequences. To identify germline genome changes, we manually checked all scaffolds ≥ 3 kb
with ≥ 500 bp contiguous coverage. We identified 102 loci with DNA alterations (Tables S3
and S4). We then compared their sequences (10 Kb flanking the changes) to the somatic
genome assembly, identified their exact positions where DNA loss occurred, and used these
positions to establish the eliminated and retained regions in scaffolds. Germline scaffolds
that did not harbor any DNA breakpoints were defined either as retained or eliminated based
on the coverage ratio (see Fig. 2A and Fig. S1 for examples). From the somatic assembly,
we also identified DNA breakpoints with addition of telomeres. Somatic scaffolds with
telomeric sequences were independently confirmed by paired-end reads (Table S3) and PCR
(Fig. 3A–C). For those DNA changes without telomere addition, their somatic loci were
evaluated by germline paired-end reads (Table S4) and PCR analysis (Fig. 4) to confirm
their presence in the germline.

RNA preparation, RNA-seq and assembly
Samples for RNA preparations are the same as those described for DNA preparations above
or previously (Wang et al., 2011). Total RNA was prepared and RNA-seq libraries were
made and sequenced as described (Wang et al., 2011). For each sample, 200 μg of total
RNA was used for poly(A) selection and 200 ng of poly(A)+ RNA was used to make the
cDNA libraries. Two cDNA assemblies were made by using all the RNA-seq data: one is a
de-novo assembly using velvet/oases (v1.1.03/v0.2) (Zerbino and Birney, 2008), which has
been used for the genome functional coverage assessment and gene annotation pipeline; the
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other is map-based assembly using tophat/cufflinks (v1.3.0) (Trapnell et al., 2012), which
was used to facilitate gene prediction (see below).

Gene model prediction
We integrated gene evidence from multiple sources to build gene models for the A. suum
germline genome. First, a two-pass MAKER (Holt and Yandell, 2011) annotation pipeline
(v2.22) was used. In the 1st pass, evidence was used from the RNA-seq assembly,
alignments to the Swiss-prot protein database, predictions of the ab initio gene finders
SNAP (v2010-07-28) (Korf, 2004), and trained using CEGMA (v2.0) (Parra et al., 2007) gff
output and GeneMark-ES (v2.3e) (Lomsadze et al., 2005). For the 2nd pass, first-pass
MAKER gff files were used to train Augustus (v2.5.5) (Stanke and Waack, 2003), retrain
the SNAP models, and MAKER was rerun with the addition of these two programs. Second,
we annotated genomic regions without MAKER genes by RNA-seq data using tophat/
cufflinks (v1.3.0) (Trapnell et al., 2012). Last, regions without MAKER and tophat/cufflinks
genes were further annotated with transferred annotations from a published A. suum
assembly (Jex et al., 2011) by using RATT (Otto et al., 2011). The final gene set consists of
11,446 genes from MAKER, 2,947 genes from tophat/cufflink and 1,053 genes from RATT.

Gene expression analysis
To profile the tissue expression of all A. suum genes, we used 8 different developmental
stages/tissues of A. suum, including testis, ovary, embryo, larvae, intestine, muscle, male
carcass and female carcass (Table S1). For each predicted gene, their expression level
(RPKM) was calculated using tophat/cufflinks (Trapnell et al., 2012). Genes with a RPKM
≥ 2 and the RPKM ≥ 1.5 fold higher in one particular tissue compared to all other tissues
were defined as enriched gene expression in a particular tissue (maternal genes RPKM >=
2/3 × higher than the embryo) (Figs. 5 and Table S5). This is a relatively high stringency
cutoff due to the existence of neighbor/similar tissues in development, such as ovary/
embryo/larvae and muscle/male carcass/female carcass in this analysis. The expression
profiles for tissue specific genes and other genes were clustered by using Cluster (v3.0)
(Eisen et al., 1998) and visualized in heatmaps using treeview (http://
jtreeview.sourceforge.net/) (Fig. 5). For these analyses, the average expression in muscle,
male carcass, and female carcass was used to estimate the baseline expression level for other
somatic tissues. Groups of enriched genes are also illustrated in dotplots for enriched tissue
versus all other tissues (Fig. S3).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Over 685 (5%) of Ascaris suum genes are eliminated during chromatin
diminution

• Eliminated genes are mainly expressed during gametogenesis and early
embryogenesis

• The genome changes are conserved in different somatic cell lineages and sexes

• Diminution may be a mechanism of gene regulation that silences germline genes
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Figure 1. A. suum early embryo development, cell lineage and chromatin diminution
Primordial germ cells (P) are in red, cells undergoing chromatin diminution are represented
by yellow filled circles surrounded by dots, and blue cells (S) are precursor somatic cells
and lineages. The primordial germ cells numbers correspond to their division state. P0 is the
zygote whereas P1 through P4 represent the primordial germ cell derived from each
subsequent cleavage of the germ cells as illustrated. S1–S4 cells are successive precursor
somatic cell derived from each division of a germ cell (EMS = intestine, body wall muscle,
and pharynx; E = intestine; MS = Body wall muscle, neurons, somatic gonad, coelomocytes,
and pharynx; AB = Nervous system, hypodermis, and pharynx; C = Body wall muscle,
hypodermis, and neurons; and D = Body wall muscle). Adapted from Theodor Boveri
(Boveri, 1899, 1910) and Fritz Müller and Heinz Tobler (Goday and Pimpinelli, 1993;
Muller et al., 1996; Muller and Tobler, 2000; Pimpinelli and Goday, 1989).
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Figure 2. A. suum DNA elimination
A. Germline and somatic read coverage for regions of the A. suum genome illustrating the
retention of segments in both the germline and somatic tissue (top), a region completely
eliminated in the somatic tissue (middle), and a DNA breakpoint and region eliminated in
the somatic tissues (bottom). Red designates germline reads and blue are somatic reads with
the horizontal green line representing 50-fold coverage.
B. Enlarged region of a scaffold (AG00103, Fig. 2A bottom) illustrating the PCR strategy
used to verify DNA elimination predicted from the comparison of the germline and somatic
genome sequences.
C. PCR data confirm the elimination of DNA corresponding to scaffold AG00103 in A.
suum somatic tissues. Note that the germline primer pair (G1/G2) produces a PCR product
in the germline DNA (gDNA), but not somatic DNA (sDNA). The somatic primer pair (S1/
S2) leads to PCR products in both the germline and somatic DNA, and the primer pair
spanning the breakpoint (S1/G2) produces a PCR product only in the germline. gDNA =
germline testis DNA and sDNA = somatic intestine DNA, isolated from the single male
worm from which the genome sequences were derived. The 1,006 bp PCR product present
in all lanes represents a control PCR corresponding to a single copy locus (miR-279) present
in both the germline and somatic genomes.
D. PCR data confirm the elimination of DNA in 17 additional independent loci in the A.
suum somatic genome. The PCR strategy illustrated in B and C was applied to these loci.
See also Figure S1 and Table S2.
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Figure 3. A. suum chromosome breaks with telomere addition in somatic cells
A. The PCR strategy used to verify telomere sequence addition in the somatic cells. Primer
St (Somatic telomere) is a hybrid primer consisting of 3′ nucleotides corresponding to the
unique somatic sequence and 5′ nucleotides corresponding to telomeric sequence
[(TTAGGC)n] (see Supplementary Experimental Procedures for primers sequences).
B. PCR data confirm telomere addition in the A. suum somatic tissues at breakpoint 15.
Primers are defined in Fig. 3A and genomic DNA sources defined as in Fig. 2C.
C. PCR data confirm the telomere addition at 6 additional independent loci with
chromosome breaks.
D. Heterogeneity in breakpoints with telomere addition. Two breakpoints with telomere
addition are illustrated. Note that the exact breakpoint for one of the loci in different somatic
tissues varies (intestine and carcass), particularly between individuals.
E. Overall heterogeneity in breakpoints with telomere addition. For these 52 breakpoints, we
compared the genomes of pairs of somatic tissues (intestine and other somatic) from the
same individual and between individuals and measured the difference in the position of the
breakpoints identified.
See also Figure S2 and Table S3.
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Figure 4. Loss of one member of duplicated, rearranged loci
A. Loss of one of two similar germline loci in the somatic genome. Illustration shows two
germline loci in a germline cell containing common sequences (> 97% identical) (blue line),
divergent sequence (green or red lines), and the loss of one germline locus in somatic cells
following chromatin diminution. Primers and PCR strategy used to verify loci in the
germline and somatic genomes are shown.
B. PCR data confirm locus A is present in germline cells but lost in somatic cells. Locus B is
present in both germline and somatic cells.
C. Additional PCR data for other loci demonstrating the loss of one member of duplicated,
rearranged loci.
See also Table S4.

Wang et al. Page 15

Dev Cell. Author manuscript; available in PMC 2013 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Eliminated A. suum genes are primarily expressed in the germline
A. RNA expression of A. suum genes (n = 15,446) in different tissues. Gene expression
enrichment was categorized by comparing RNA-seq data (Table S1) using reads per
kilobase of template per million mapped reads (RPKM).
B. The 685 eliminated A. suum genes are highly expressed in the germline and early
embryogenesis.
C. Expression Heatmap for all A. suum genes. Shown are expression heatmaps for different
groups of genes illustrated in Fig. 5A. For each gene, the colors represent log2 values of fold
changes to the average expression level (RPKM) for a gene in different stages. For each
group of genes, the eliminated/total number of genes is indicated and a red vertical line
above the heatmap marks the genes eliminated (see Fig. 5D).
D. The expression profiles of eliminated A. suum genes. See Fig. 5C for legend. Note that
for the 104 genes in the Other group, the majority of them are expressed in testis, ovary, and
the early embryo.
See also Figure S3 and Table S5–6.
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Table 1

Ascaris suum germline and somatic genome assemblies

Ascaris genomes Features Germline Somatic Jex et. al1

Assemblies Estimated genome size (Mb)2 ~ 334 ~ 291 ~ 309

Total number of bp assembled (bp) 265,545,801 251,265,282 272,782,664

N50 of scaffolds (bp); N50 number 290,558; 260 65,087; 1,011 407,899; 179

N90 of scaffolds (bp); N90 number 48,674; 1,100 11,448; 4,399 80,017; 748

Number of scaffolds (>= 2,000 bp) 31,538 (2,186) 37,686 (7,692) 29,831 (1,618)

Maximum length of scaffold (bp) 1,465,500 600,478 3,795,215

N50 of contigs (bp); N50 number 49,549; 1,510 36,306; 1,925 23,038; 3,512

N90 of contigs (bp); N90 number 11,178; 5,601 7,566; 7,407 5,913; 11,869

Protein-coding genes Putative coding gene number 15,446 14,761 18,542

Average gene size (bp) 9,467 9,473 6,536

Average coding sequence length (bp) 1,119 1,128 983

Average exon number per gene 8.4 8.4 6

Average exon length (bp) 201 201 153

Average intron length (bp) 1,056 1,050 1,081

Non-coding RNAs Ribosomal RNAs (rRNAs, copies for 18s-5.8s-26s)2 ~ 500 ~ 500 NA

Splice leader RNAs (including 5s rRNA)2 ~ 265 ~ 265 NA

Transfer RNAs (tRNAs) (+ tRNA pseudogenes) 383 (+ 31) 172 (+ 13) 255 (+ 16)

microRNAs (miRNAs) 100 100 100

Functional coverage % of cDNA contigs >= 200 nt present (total 58,085)3 91.9% 88.2% 92.2%

% of cDNA bases present (total 58.1 Mb) 97.6% 94.6% 98.0%

% of unique small RNA reads mapped (total 20.2M)4 81.3% 70.7% 76.3%

% of all small RNA reads mapped (total 690.7M)4 89.1% 80.5% 78.6%

1
See Jex et al., 2011.

2
Genome size and repetitve RNA copy number estimation based on coverage (see Supplementary Experimental Procedures).

3
For the de-novo assembled cDNA contigs, > 90% of the sequence mapped back to the genome using BLAT.

4
See Wang et al., 2011.

See also Figure S4 and Table S1.
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