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Abstract
We derive the relationship between R2 (the coefficient of determination), selection gradients, and
the opportunity for selection for univariate and multivariate cases. Our main result is to show that
the portion of the opportunity for selection that is caused by variation for any trait is equal to the
product of its selection gradient and its selection differential. This relationship is a corollary of the
first and second fundamental theorems of natural selection, and it permits one to investigate the
portions of the total opportunity for selection that are involved in directional selection, stabilizing
(and diversifying) selection, and correlational selection, which is important to morphological
integration. It also allows one to determine the fraction of fitness variation not explained by
variation in measured phenotypes and therefore attributable to random (or, at least, unknown)
influences. We apply our methods to a human data set to show how sex-specific mating success as
a component of fitness variance can be decoupled from that owing to prereproductive mortality.
By quantifying linear sources of sexual selection and quadratic sources of sexual selection, we
illustrate that the former is stronger in males, while the latter is stronger in females.
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When a trait is considered “adaptive,” it implies that a causal relationship exists between the
value of that trait and individual fitness, such that variations among individuals in the trait
values lead to predictable variations among the same individuals in fitness. Variation in
relative fitness is necessary for adaptation by natural selection (Fisher 1958). Its description
is essential to depicting the effect of natural selection on the distribution of trait values, since
the multivariate relationship between trait values and relative fitness is natural selection
(Robertson 1966; Price 1970, 1972; Lande 1980; Arnold and Wade 1984b; Phillips and
Arnold 1989; Brodie et al. 1995). The second fundamental theorem of natural selection
states that, for comparably variable and heritable traits, the greater the covariance between
trait value and relative fitness, the greater is the change in trait mean from one generation to
the next (Robertson 1968). When the trait in question is fitness itself, this covariance
reduces to the variance in relative fitness. As a result, the mean fitness of a population
increases whenever there is heritable variation in fitness, which is Fisher’s fundamental
theorem (Fisher 1958), or the first fundamental theorem of natural selection.
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Given its central role in adaptation by natural selection and in the evolution of fitness itself,
the variance in relative fitness, I, has been called both the “intensity of selection” and the
“opportunity for selection” (Crow 1958; O’Donald 1970; Wade 1979; Wade and Arnold

1980). It is defined as , where w is relative fitness, W is absolute fitness, and
the bar indicates the population mean. Here, we extend the recommendation of Hersch and
Phillips (2004) that “the total opportunity of selection [should] be considered along with the
pattern of selection on individual traits, and nonsignificant results be actively reported
combined with an estimate of power.” In this article, we use standard concepts from
statistics and phenotypic selection theory to determine how much of the variance in fitness
can be accounted for in terms of individual variations in trait values. Our goal is different
from that of standard phenotypic selection theory, which tries to determine how selection
acting within (or among) populations is shaping trait values. Here, we are asking the
reciprocal: How do trait values determine fitness? If we view the total variance in fitness as
a population’s resource for adaptation, our approach quantifies how much of this
generation’s resource is being used to alter trait means, trait variances, or the integration
between traits. With data from several generations, one can investigate the consistency in the
apportionment of the adaptive resource across phenotypes over time. With data from several
populations, one can study whether local variation in an environmental factor accounts for
differences in the apportionment of the adaptive resource across the phenotypes.

Our approach illustrates the relationship between selection gradients, the opportunity for
selection, and R2, the coefficient of determination. The familiar parameter R2 measures the
“goodness of fit” of a linear regression model to data. In our case, R2 measures the degree to
which individual fitness can be predicted or accounted for with the values of some
phenotypic traits. The remaining variation in fitness, the proportion(1 – R 2), is presumably
the “random,” “chance,” or, more accurately, the “unaccounted for” variation in fitness,
which has invited skepticism on the part of some toward the utility of I.

We derive the relationship between R2, the selection gradient, and the opportunity for
selection for the univariate case. After this, we turn to the multivariate case. Our approach
can be considered as a first step in empirically distinguishing the contributions of chance
and cause to the variance in relative fitness among individuals in a population (Wade and
Kalisz 1990).

One Trait That Affects Fitness
For each individual i in a population, we assign a trait value, zi, and a relative fitness, wi. We
employ the standard definition of a product-moment correlation to define the correlation
between trait value and fitness, ρwz. When we move to matrix notation to handle more traits,
it will be helpful to recognize that ρwz is equivalent to ρzw. The slope of the regression of w
on trait value is βwz; this is the selection gradient. We recognize that, when this selection
gradient is multiplied by the standard deviation of trait value divided by that of relative
fitness, it is equal to ρwz:

(1)

By the definition of a correlation, the total relative fitness variance “explained by” the trait,

z, is the product of the opportunity for selection and the coefficient of determination, . In
terms of the selection gradient, this follows directly from equation (1),
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(2)

or the product of the trait variance and the square of the selection gradient. Equation (2) tells
us, in absolute terms, how much of the variance in relative fitness in a population is
explained by variation in the trait of interest. We use “explain” in its statistical meaning,
namely, the proportion of the variance in relative fitness that is predictable from knowledge

of the trait value z. That is, if  equaled 0.60, then 60% of the variance in relative fitness is
described (or “explained”) by its covariance with z.

Equation (2) is a well-defined component of the opportunity for selection and can be
considered the upper limit for the evolutionary change in the mean of fitness that can be
brought about by selection on z. In a single generation, selection on trait z will cause the

mean of fitness to change by an amount equal to the product of , where  is the
narrow-sense heritability of fitness. In the next section, we generalize the relationship given
in equation (2) to many traits. This will allow us to decompose I into multiple, additive
components, even when traits are correlated with each other. In addition, we will decompose
I into components accounted for by quadratic (e.g., stabilizing or disruptive) or correlational
selection (see below).

Multiple Traits Affect Fitness
Let us allow many traits to affect fitness. We will define a collection of traits with the vector
z, such that individual relative fitness equals

(3)

where β is a vector of selection gradients (a vector of partial regression coefficients) and εi
is the ith individual’s deviation from the expectation of the linear model. This deviation
could be caused by factors that are not included in the model, or it could be owing to chance;
it is unaccounted for in the statistical sense. Traditionally, phenotypic selection studies find
the selection gradients by applying the Lande-Arnold (1983) regression β = P−1s, where P is
the intertrait variance-covariance matrix, s is a vector of selection differentials, and si = Cov
(w, zi). We will use a slightly different but equivalent formulation of the Lande-Arnold
regression to highlight the relationship between the opportunity for selection, the
multivariate selection gradients, and the coefficient of multiple determination.

We define the block matrix R as

(4)

where Rzz is the intertrait correlation matrix (this is the Lande-Arnolds P matrix
standardized by the standard deviations of all traits), Rzw is a column vector of correlations
between relative fitness and trait values (s that has been standardized by the variance in traits
and relative fitness), and Rwz is the row-vector transpose of Rzw. The 1 is the correlation
between relative fitness and itself. The selection gradient, standardized by trait variances and
relative fitness variance, is

(5)
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whose individual elements are . The standardized selection gradient in this
relationship is a partial correlation coefficient, analogous to the correlation co-efficient in
equation (1) for the univariate case.

From the fundamental equation of multiple regression analysis (Allison 1998), and using the
transpose of Rzw, we find R2, the coefficient of multiple determination for the vector of
traits z,

(6)

Equation (6) returns a scalar, which tells us proportionally how much of the variance in
relative fitness is determined by all of the traits in the vector, z, acting together. However,
we would like to apportion I to each trait separately, in order to say exactly which traits
account for more or less of the variance in relative fitness. To this end, we substitute Rzw for
its transpose to obtain a column vector. Multiplying both sides of equation (6) by the
variance in relative fitness or the opportunity for selection yields

(7a)

where R2I = Σziz. This formula can be rearranged to give the multivariate generalization of
equation (2), where each component z to be summed is equal to

(7b)

and where bwz is the slope of the simple regression of relative fitness on the values of each
trait. Equations (7a) and (7b) decompose the total opportunity for selection I into additive
components, iz, one for each trait in the vector. These show that the relative influence of
each trait on the variance in relative fitness is equal to the product of its selection gradient
and its selection differential. Equations (7a) and (7b) are tautological and follow directly
from the definitions of means, variances, slopes (regressions), and correlations; we make no
assumptions at all about the distribution of individual traits or of fitness itself. We provided
a script for R, available online as a PDF (R Development Core Team 2011), that estimates iz
for multivariate data. It is possible to test specific hypotheses regarding the components of I.
For example, equation (7b) implies that a conservative test for significance of iz is met when
values for bwz and βwz both differ significantly from zero. When traits are multivariate
normal, then t statistics can be used to assess significance. Otherwise, nonparametric
approaches should be considered, such as resampling (e.g., Mitchell-Olds and Shaw 1987).
The provided R script applies a bootstrapping approach (Efron 1987; DiCiccio and Efron
1996; Davison and Hinkley 1997) to estimate confidence intervals.

Stabilizing and Correlational Selection
Sometimes selection favors intermediate trait values rather than larger or smaller values; this
is called stabilizing selection. Its converse is disruptive selection. Selection can also favor
coadapted trait complexes when it favors some trait combinations over others. Lande and
Arnold (1983; see also Arnold 1986) defined stabilizing selection as the covariance between
relative fitness and the squared deviations of trait values from the mean, Cov [w, (z − z̄)2],
and correlational selection as the covariance between relative fitness and the product of trait
deviations, Cov [w, (z1 − z̄1)(z2 − z̄2)]. The relationship between either of these kinds of
selection and the variance in relative fitness is not straightforward. For trait z, with
stabilizing selection, a portion of the relative fitness variance goes toward changing the
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mean of z2, while another portion is allotted to changing the mean of z. These two
proportions are then combined to describe the change in the variance of z resulting from
selection, which is important to iterating P over time.

Similarly, for two traits, z1 and z2, some of the relative fitness variance is used to change the
product, z1z2, as individuals with particular combinations of trait values have higher or
lower relative fitness than others. Another portion of the relative fitness variance is allotted
to changing the means of z1 and z2. These two changes are then combined to describe the
change in the covariance, which is also important to iterating P over time.

In order to relate stabilizing and correlational selection values to the opportunity for
selection, Arnold (1986) had to assume multivariate normality. We use a somewhat different
approach that frees us from this assumption, with the caveat that when multivariate
normality is violated, estimates of linear and quadratic selection are not necessarily
interpretable as directional and stabilizing selection (Walsh and Lynch 2010). Our approach
allows us to apportion the variance in relative fitness to linear, quadratic, and interaction
traits. Any trait can be assessed for its contribution toward the opportunity for selection
through directional selection, stabilizing/disruptive selection, or correlational selection by
including it in any or all of three vectors: z1 (traits under directional selection), z2 (traits
under stabilizing or disruptive selection), or z 1×1 (traits under correlation selection). The
trait value is included in z1 with no change, its squared deviation from the trait mean is
included in z2, and for each potentially interacting trait, the cross products of the deviations
from the respective trait means are included in z 1×1.

Consider the case of three traits, for example. The three vectors may include

although it should be noted that there is no requirement that all these elements must be
included. If one’s causal model of fitness precludes certain interactions, for example, then z2
or z 1×1 may include fewer quadratic or interaction traits. We concatenate these three vectors
to make a new vector of traits z = {z 1, z2, z 1×1}.

We can apply this new vector z to equation (7) and treat it as before to identify additive
components of the opportunity for selection

(8)

The vector iz is a concatenated list of three subvectors, each made up of trait-specific
contributions to the opportunity for selection. The vector i1 defines contributions arising
from directional selection; the vector i2 defines contributions generated by stabilizing and
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disruptive selection; and i1×1 defines contributions that follow from correlational selection.
As these contributions are additive within and among these subvectors, the portion of the
total opportunity for selection that is attributable to directional selection, stabilizing and
diversifying selection, and correlational selection is Σi i1,i, Σi i2,i, and Σi i1×1, i, respectively.
When it is of interest to know how much of selection for fitness comes from stabilizing
selection as opposed to directional selection, we can compare the fractions I−1Σi i2,i and I−1

Σi i1,i. Similarly, we can measure the contribution from selection directed toward adjusting
trait values to one another, I−1Σi i1×1,i, and compare it to the fraction arising from selection
that acts to change trait means, I−1Σi i1,i.

As we see in equation (8), directional, stabilizing, and correlational selection gradients
follow from this quadratic model of relative fitness and partially determine the opportunity
for selection. These can be measured directly from the partial regression coefficients of
relative fitness on the vector z or by inverting the intratrait correlation matrix and solving

(9)

These vectors βwz1, βwz2, and βwz1×1 are the directional, quadratic, and interaction selection
gradients. In the special case where all trait combinations are included in the analysis, these
gradients will be the same as those calculated using the method from Lande and Arnold
(1983), with the added caveat that quadratic selection gradients estimated by multiple
regression, or by equation (9), must be doubled to ensure equivalency with selection
gradients obtained by the Lande-Arnold method (Stinchcombe et al. 2008).

When Data Are Nonexistent for Some Individuals
Values may not exist for some traits in some individuals. For example, male mating success
has no sensible value for females. Furthermore, one could argue that because mating is
precluded in some cases by juvenile mortality, male mating success may not exist for males
who die before reaching an age of reproductive ability. These “nonexistent data” are
fundamentally different from “missing data,” because the latter exist but are unobserved
(Haitovsky 1968; Allison 2001). In both cases, individual values must be included in the
multiple regressions used to estimate multivariate selection, and values must be such that the
phenotypic variance-covariance matrix is invertible. These two different situations call for
different imputation strategies, however. For nonexisting data, we impute nonexisting trait
values using the moments of the distribution generated by the fraction of the population that
expresses the trait (or traits) of interest. Specifically, existing trait means are imputed into
the traits in z1, the existing trait variances are imputed into traits in z2, and the existing trait
covariances are imputed into traits in z 1×1. There are three desirable consequences of this
imputation strategy: (1) the phenotypic variance-covariance matrix is assured to be
invertible, (2) the fraction of nonexisting data (1 − p) has no effect on selection gradients,
and (3) the phenotypic variance for any trait is equal to the existing trait variance discounted
by the fraction 1 − p. This approach is further justified and explained in more detail in the
appendix. Note that for purposes of hypothesis testing, the sample size is the product of the
total number of individuals and p.
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Example from a Human Population
Here we apply these principles to a human data set in order to quantify sources of sexual
selection, including directional and quadratic sources, while decoupling mating success from
prereproductive mortality. Here, we de-fine relative fitness as

(10)

where L is the indicator of survival to age 15 (1 is alive and 0 is dead), S is the indicator for
sex (1 is male and 0 is female), Mm is the number of mates taken by a male, Mf is the
number of mates taken by a female, and ε is the error term associated with causal factors
that are not included in the linear model of relative fitness. Individual fitness and other trait
values are taken from a cohort of 895 human males and 1,029 human females born in 1840
that was provided by the Utah Population Database. For this birth-year cohort,
approximately 10% of men who married were polygamists. Fitness is measured as the
number of children born, and existing sex-specific numbers of reproductive partners (Mm
and Mf, for male and female, respectively) are estimated using the methods detailed in
Moorad et al. (2011) applied to both sexes, with the added assumption that sex ratio at birth
remained constant across generations. Nonexistent traits are imputed from the existing class
means. For example, we have defined Mm measurements to exist only for those males that
survive to 15 years of age (no father in this population dies before this age). The mean of
these measurements is used as the measure for all females and males that die before reaching
this age. Applying the multivariate regression methods described previously, we find the
selection gradients and the components of the opportunity for selection that correspond to
each factor in equation (10). These are shown in table 1.

In aggregate, these traits explain 65% of the total opportunity for selection. The strength of
selection (as measured by selection gradients) was greatest and roughly equivalent for
survival and male mating success. Together, these two sources of selection accounted for
89% of the relative fitness variation explained by the entire model. Linear selection for male
mating success explains 48% of the opportunity for selection, despite the fact that Mm
varied in less than half of the population (i.e., the trait existed only in males that survived to
15 years of age). Very weak quadratic selection acted on male mate number, but strong
quadratic selection was observed to act on female mating success (the quadratic selection
gradients were −0.067 and −0.460, respectively). These are consistent with the recent
observation made by Moorad et al. (2011) of linear relationships between mating success
and reproductive success in males and pronounced concave relationships between mating
success and reproductive success in females from this population. Linear selection on female
mating success explained only 7% of the total opportunity for selection, and quadratic
selection explained about 4%.

Discussion
In standard phenotypic selection theory and its application to data, the focus is on how
associations with fitness change the distribution of trait means, variances, and covariances.
Here, we have investigated the inverse, that is, how changes in relative fitness variance can
be accounted for in terms of linear and quadratic measurements of traits. Our method allows
a portion, R2, of the total variance in fitness among individuals to be statistically accounted
for in terms of measured trait values. A common interpretation of R2 is causal; namely, this
suite of traits causes a proportion of the fitness variation among individuals. The
complementary proportion, the “random” or unaccounted-for variance in relative fitness, is
given by (1 − R2). Like the Lande-Arnold vector of selection gradients, our approach is built
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on correlation, which is not a synonym for causation. In interpreting R2, we prefer the more
cautious approach, similar to that advocated by Wade and Kalisz (1990), for identifying the
causal agents of selection. Associations between relative fitness and trait values should be
considered hypotheses, and these should be tested for their causal import using manipulative
experiments. Wade and Kalisz (1990) recommended manipulations directed toward
identifying the agents of selection, such as excluding a predator and observing whether
selection gradients acting on prey traits changed as predicted. Similarly, we recommend
manipulating the phenotypic traits that contribute to R2 and observing whether fitness
changes as predicted by the causal hypothesis. A notable case where the issue of causality
versus correlation may not be a concern is when selection for vital rates (age-specific
survival and fertility) is measured. When vital rates for all ages up to the last age of
reproduction are included in a linear model of fitness, then there are no missing fitness traits,
and R 2 = 1 (Moorad 2013a).

Earlier theoretical investigations (e.g., Arnold and Wade 1984b; Wade 1995; Shuster and
Wade 2003) have also partitioned total I into components. The relationship between our
derivation above and those earlier methods varies with the study. Arnold and Wade (1984b)
modeled total selection when lifetime fitness equals a multiplicative product of a series of
episodes of selection, each with its own fitness. They then decomposed I into a sum of
additive components, ΣI i, one for each episode of selection, with the addition of a series of
“co-intensities” of selection for those cases where components of fitness were correlated
across episodes. Here, we do not synthesize fitness from a series of fitness measures;
instead, we measure it directly. In principle, however, one could use our methods in
combination with Arnold and Wade (1984b) to ask how much of the variance in relative
fitness among individuals at a given episode of selection can be accounted for by the
differences among individuals in trait values at that episode.

Wade (1995) partitioned the variance in plant fitness by considering plant reproductive
fitness to have three parts, with covariances between pairs of them. One part was seed
numbers resulting from selfing, a second part was one-half the seeds resulting from ovule
fitness, and the third was one-half the seeds resulting from pollination of seeds on other
plants. The derivation in Wade (1995) can be reframed using the methods introduced in this
article.

Shuster and Wade (2003) advocated the use of the opportunity for sexual selection (Is) to
measure the fraction of the variance in relative fitness that is attributable to sexual selection.
For either sex, Is is the sum of the components of I that involve linear as well as nonlinear
components of selection resulting from variation in mating success or its covariates. We
recommend the regression-based method described in this article when a finer-scaled
perspective of sexual selection is desired. The regression-based approach advocated here
defines a lower bound on Is,

(11)

where MS is the set of traits included in the linear model of fitness that involve mating
success and its correlates.

As we showed in our example, nonlinear relationships between relative fitness and mate
number exist. The standard Bateman gradient measures the strength of linear selection
acting on mating success (Arnold and Duval 1994; Jones 2009). New, formal Bateman
gradients based on the quadratic components of mating success can be defined with our
approach. We suggest that these quadratic Bateman gradients capture the idea that multiple
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mating by females tends to have both positive and negative effects on relative fitness, and
these might come into balance at an intermediate number of mates or at least show
pronounced diminishing fitness returns with additional matings. On the negative side,
multiple mating by females can reduce relative fitness owing to damage from males (Muller
et al. 2007), sexually transmitted diseases (Hurst et al. 1995), or a combination of these and
other effects (Post and Greenlaw 1982). On the positive side, multiple mating by females
may be a means of avoiding inbreeding in some species (e.g., Tregenza and Wedell 2002),
although here the genetic benefit to a female of adding additional mates diminishes rather
quickly. We believe that our extension of the concept of the Bateman gradient to these
quadratic terms and its relationship to I is a significant step forward in addressing some of
the shortcomings identified with the opportunity for selection (Jennions et al. 2012). For
those interested only in the fraction of the variance in relative fitness that can be accounted
for or explained by measured phenotypes, our formulation illustrates the relationship
between Fisher’s fundamental theorem, Robertson’s secondary theorem, and the coefficient
of determination on a trait-by-trait basis.

Survival to reproductive age correlates with mating success (Clutton-Brock 2007). In a
simple three-trait analysis (fitness, male mating success, and female mating success),
juvenile mortality will contribute to the opportunity for sexual selection. To control for the
effects of juvenile mortality, we can add binary sex-specific values (alive or dead at some
threshold age) to the model and recalculate equation (1) and equation (2), imputing
different-sex trait values using the population mean (as we do in our example). We now
have two new selection intensities that correspond to selection on sex-specific survival to
maturity, holding sex-specific mating success constant. Importantly, the Bateman gradients
are now partial correlations of relative fitness on mating success that hold survival constant.
Using these partial correlations in equation (3) yields opportunities for sexual selection that
do not reflect the variance in adult mating fitness caused by juvenile mortality. This
approach is developed more fully in Moorad (2013b). At the very least, using these methods
will allow one to test the hypothesis that juvenile mortality is a component of reproductive
competition in some species. Conversely, in the sense of Arnold and Wade (1984b), it can
also be of interest to examine the causes of relative fitness variance at one episode of
selection, independent of prior episodes.

We have presented a method of fitness analysis that treats a population’s total variance in
relative fitness as a resource for adaptation constructed from multivariate phenotypic
variation. All phenotypic change by natural selection, whether directional, quadratic, or
correlational, draws on the variance in relative fitness as though it were a common resource.
If a large fraction of the adaptive resource is devoted to altering one aspect of the phenotype,
the fraction available for other alterations is necessarily a smaller fraction. Our analysis
permits the investigation of how this adaptive resource is allocated in one generation of a
population, and it permits these allocations to be compared across generations, populations,
and environments. Where previous phenotypic selection theory asks how selection shapes
the multivariate distribution of trait values, our method asks how much a demand on the
pool of adaptive resource is made by one trait’s fit or lack thereof to the environment.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A Comment on Imputing Trait Values for Individuals with Nonexistent
Characters Using the Population Mean

Traits may be defined in such a way as to preclude expression by some individuals in a
population. With separate sexes, for example, the number of female reproductive partners is
a trait that exists only for males (and, conversely, number of male reproductive partners is a
trait that is conditioned on individuals being female). Other familiar examples with
nonexisting data include phenotypic plasticity, where individuals vary because of their
exposure to different environments and do not have trait values for the environments they do
not experience, and with mortality, where late-life traits exist only in those individuals that
live long enough to express them. Grafen (1988) argued that the last example represents a
major weakness in the multivariate approach that the Chicago School used to understand
phenotypic selection (Lande and Arnold 1983; Arnold and Wade 1984a, 1984b) because the
“invisible fraction” of dead individuals does not appear in the linear model of relative
fitness. To account for this perceived problem, Lynch and Arnold (1988) recommended
measuring age-specific correlation matrices and selection gradients and then using these to
work backward to synthesize a phenotypic correlation matrix that represents the entire (e.g.,
premortality) population (e.g., Bennington and McGraw 1995). Alternatively, Hadfield
(2008) advocated modeling the “missing data” to impute reasonable values for use in the
regressions, allowing for measurements of selection in these cases.

We argue here that, from the perspective of understanding selection acting on phenotypes,
these compensatory approaches are not necessary because phenotypic selection (the function
that maps relative fitness to phenotypes) is insensitive to hypothetical trait values that are
not expressed. Consequentially, selection gradients are insensitive to the fraction of
individuals with nonexisting trait values. Note that by nonexistent values, we mean those
data that cannot be collected because they are logically precluded; this is a fundamentally
different situation from “missing data” caused by incomplete sampling (Haitovsky 1968).
Breeding values and allelic content associated with specific traits exist for all individuals
and do not qualify as nonexistent.

Phenotypic variances are affected by the fraction of individuals with nonexisting data,
however. Thus, the sole effect of the “invisible fraction” on the strength of selection is to
discount the covariance between relative fitness and traits by the fraction of the population
that dies before selection is applied. Evolutionary models of aging (Hamilton 1966; Lande
1982; Charlesworth 1994, 2000; Caswell 2001) make this relationship explicit when they
describe the strength of selection acting on age-specific survival and fertility in age-
structured populations with mortality. These models weight the selection gradient specific to
any age x by the cumulative survival rate to that age, lx, but the effect on the covariance
between relative fitness and trait values is the same as if they discounted the variance by that
same factor.

We show here that the appropriate method for dealing with the nonexisting data, including
those that arise from the “invisible fraction,” is to impute values using the trait mean of the
subset of the population that is capable of exhibiting the trait (or the variance or covariance
for quadratic terms). Imputing by the mean is not recommended for accounting for missing
data, but it is appropriate for dealing with nonexistent data (Allison 2001). When the
nonexistent data correspond to second-order, or higher, terms, then the appropriate moment
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of the population with existing data is substituted instead. For example, if one were
interested in quadratic selection in a male-only trait, then the variance among males is
imputed for the nonexistent data in females. The “trait” in this case is the squared deviation
from the mean; nonexistent data are imputed from the variance because, by definition, this is
the mean squared deviation. Likewise, nonexistent interaction traits are imputed from the
covariance derived from the portion of the population with existing data.

We assert that, given two requirements, any invariant data can be substituted for nonexistent
traits with no effect on measurements of phenotypic selection, provided that information is
included in the multiple regression that identifies whether data are imputed (an indicator, or
dummy, variable), but using the mean has certain advantages. Here we prove this assertion.
These requirements are (1) fitness is known for all individuals in the population and (2) all
individuals can be identified as belonging to either the class with nonexistent data or the
class with existent data.

Essentially, we wish to know how much selection acts on an index trait defined for some
individual i,

(A1)

where a is a dummy variable and zi is the focal trait. It is measured directly in those
individuals that have a demonstrable trait. These individuals belong to class a = 1. Trait z0
can be any constant value for individuals that are logically incapable of expressing the trait
(e.g., they die before an age-specific trait is realized, they are the wrong sex, or they develop
in a different environment). These individuals belong to class a = 0. Selection on this trait is
its covariance with relative fitness (Robertson 1966; Li 1967; Price 1970, 1972). This
covariance can be decomposed into within- and among-class covariances:

(A2)

where w is relative fitness, p is the proportion of the population belonging to class a = 1,
subscripts indicate the class of individuals, and bars indicate averages. Selection on the
index trait depends on the frequency of class a = 1 and the within-class covariance between
existing phenotypes and relative fitness. Selection measured this way is also sensitive to
differences between mean class fitness and the mean phenotype of individuals with existing
traits. As we show below, the latter component disappears if class is treated as a covariate in
our linear model of relative fitness.

Consider a bivariate model of relative fitness that includes the dummy variable a as another
component,

(A3)

Selection on the index trait is now the partial covariance that holds the dummy variable
constant. This can be expressed as total covariances, correlations, and standard deviations,

(A4)

The following relationships hold:
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(A5a)

(A5b)

(A5c)

(A5d)

(A5e)

We express equations (A5d) and (A5e) in terms of correlations and substitute these and
equations (A5a) and (A5b) into the last term in equation (A4) and find that

σwσz*rw,arz*,a = p(1 − p) (w̄1 − w̄0) (z̄1 − z̄0). From equation (A4) and equation (A2) and the
definition of a slope,

(A6)

In the relative fitness model that includes class, selection on the trait of interest is
independent of both the distribution of both class means and the mean relative fitness of z0.
As we may intuit, selection on phenotypes is entirely dependent on the joint distribution of
relative fitness and existing phenotypes and the frequency-weighted variance.

While equation (A6) shows us that we can impute non-existing data using whatever method
we choose with no effect on our outcome (so long as we note which values are imputed
using a), it may be useful to impute using the existing-data mean. Because z̄ = z̄1, we can
standardize z by its mean to find Cov (w, z*) = p Cov (w, z). In other words, the simple
covariance and the partial covariance definitions of phenotypic correlations converge. This
makes sense because the phenotypic values (imputed and nonimputed) and the dummy
variable are orthogonal. In principle, imputation with the mean can allow us to measure
selection gradients without including the dummy variable. However, the dummy variable
should be included in the model because it will account for part of the total opportunity for
selection. Furthermore, imputation with the mean reduces the phenotypic variance by a
factor of 1 − p, meaning that selection can be measured directly using imputed data as

. Note, however, that imputation does not increase sample size, and tests
of significance must reflect the number of observations taken from individuals with existing
data (pN).
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