
480	 volume 121 | number 4 | April 2013  •  Environmental Health Perspectives

Research

The use of omics technologies has improved 
our understanding of the mechanisms of 
toxicity and led to valuable new knowledge 
for environmental health research (Ellinger-
Ziegelbauer 2009; McHale et al. 2010). By 
providing global and quantitative informa-
tion on changes in critical cellular components 
under the influence of environmental factors, 
omics profiling greatly facilitates the discovery 
of biomarkers and is seen as a key tool in the 
development of the concept of the exposome 
(Rappaport and Smith 2010).

The application of omics technologies in 
epidemiological studies raises certain practical 

issues of sample suitability, especially in relation 
to RNA quality for transcriptomics analysis, 
requiring that care be taken for blood sam-
ples to be collected and stored in the presence 
of RNA preservative. However, millions of 
human biosamples currently in cold storage in 
older biobanks were collected and processed by 
methods that did not anticipate the demands 
of omics technologies. Those biobanks rep-
resent a precious resource for environmental 
health research, especially in view of the fact 
that newly constructed biobanks will take 
many years to accrue enough cases of chronic 
diseases in their prospective cohorts to allow 

relevant biomarker research. Yet no study has 
evaluated systematically the influence on omic 
profiles of the handling and prolonged stor-
age of blood samples and their components in 
these biobanks.

In  the  context  of  the  European 
project EnviroGenomarkers (http://www.
envirogenomarkers.net), blood-derived biobank 
samples are being analyzed on multiple omic 
platforms with the aim of discovering new 
biomarkers of exposure and disease risk. As 
a first step in this project, we evaluated the 
reliability of omics data obtained from archived 
biosamples collected before the advent of omics 
technologies.

Materials and Methods
The omics technologies we used include tran-
scriptomics, epigenomics (CpG methylation), 
and plasma ultra performance liquid chroma-
tography–time-of-flight mass spectrometry 
(UPLC-ToFMS) metabolomics. In addition, 
we used a multianalyte profiling platform as a 
tool for a wide-target plasma proteomics screen. 
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Background: The suitability for omic analysis of biosamples collected in previous decades and 
currently stored in biobanks is unknown.

Objectives: We evaluated the influence of handling and storage conditions of blood-derived bio-
samples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS 
(ultra performance liquid chromatography–time-of-flight mass spectrometry)], and wide-target 
proteomic profiles.

Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or 
citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, 
erythrocytes, and plasma and freezing the fractions at –80oC or in liquid nitrogen. We developed 
methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we 
analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study 
biobanks.

Results: Microarray-quality RNA could be isolated from buffy coats (including most biobank 
samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA pre-
servative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent 
transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) 
before blood fractionation, whereas storage temperature had minimal impact. Effects on metabo-
lomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects 
were due to storage temperature. None of the variables examined significantly influenced the epig-
enomic profiles. No systematic influence of time-in-storage was observed in samples stored over a 
period of 13–17 years.

Conclusions: Most samples currently stored in biobanks are amenable to meaningful omics analy-
sis, provided that they satisfy collection and storage criteria defined in this study.
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We complied with all international regulations 
regarding the use of human participants. The 
research ethic committees of the University 
of Maastricht and of the National Hellenic 
Research Foundation approved the use of vol-
unteers, and written informed consent was 
obtained from all volunteers prior to the study. 
The corresponding ethical committees approved 
the use of biobank samples.

During phase 1 of the study, we estab-
lished methods for the isolation of RNA 
of the desired quality from buffy coats iso-
lated from blood freshly collected and pro-
cessed without RNA preservative. We also 
evaluated the influence on omics profiles of 
sample handling and storage-related param-
eters selected after scrutiny of the procedures 
employed at the biobanks participating in 
the study. The results obtained were used 
to establish minimum criteria that samples 
must satisfy in order to be suitable for reli-
able omics analysis. In order to evaluate the 
influence of long-term storage, during phase 2 
we analyzed historic samples that satisfied 
these criteria. The samples had been stored 
in the European Prospective Investigation 
into Cancer and Nutrition (EPIC)-Italy and 
the North Sweden Health and Disease Study 
(NSHDS) biobanks (Bingham and Riboli 
2004; Hallmans et al. 2003).

Sample collection. Phase 1. We collected 
fresh blood from healthy volunteers using three 
different anticoagulants (heparin, EDTA, and 
citrate) and processed the blood in different 
ways. For practical reasons we conducted sev-
eral blood collection experiments, in the con-
text of which different variables were evaluated 
[for details, see Supplemental Material, pp. 6–7 
(http://dx.doi.org/10.1289/ehp.1205657)]. 
After allowing the blood samples to stand at 
room temperature for various times ≤ 24 hr 
(“bench time”), we separated buffy coats, 
erythrocytes, and plasma by centrifugation for 
15 min at 1,500g at room temperature, fol-
lowed by aliquoting and immediate storage of 
the fractions at –80oC or in liquid nitrogen. To 
control for effects of interindividual variation, 
in one experiment we collected blood from 
one person in each of the three anticoagulants, 
processed it for fractionation, and stored the 
fractions both at –80oC and in liquid nitrogen 
but without variation in bench time.

The duration of cold storage of the blood 
fractions prior to omics analysis varied from 
several weeks to several months. We conducted 
full-scale metabolomics and wide-target pro-
teomics analysis on all samples from a single 
blood collection experiment, in the context 
of which we evaluated all combinations of the 
parameters of interest (donors, bench times, 
anticoagulants, storage temperature). On the 
other hand, for practical reasons we generally 
conducted transcriptomics and epigenomics 
analyses aimed at evaluating the influence of 

individual variables on a more limited number 
of samples.

Phase 2. We used biosamples from the 
participating biobanks, satisfying the cut-off 
criteria established during phase 1, to evaluate 
the quality of extracted RNA and DNA and 
carry out omics analyses. Samples from EPIC-
Italy contained citrate as anticoagulant and 
had been stored in cryostraws in liquid nitro-
gen for 11–19 years. Their recorded collection-
to-storage times were 55–347 min. Samples 
from NSHDS contained heparin or EDTA 
as anticoagulant and had been stored in plas-
tic cryovials at –80oC for 4–19 years. Their 
collection-to-storage time was always < 1 hr. 
To evaluate the impact of storage time on the 
different omics profiles, we analyzed samples 
from the same set of 31 subjects from each 
biobank. To minimize the effect of variables 
other than storage time, these samples were 
selected to come only from healthy female 
donors and from the same collection center 
per biobank. Their storage time prior to analy-
sis was 13–17 years, and the collection-to-
storage times for the EPIC-Italy subset ranged 
from 100 to 198 min.

RNA and DNA isolation. To establish 
methods for RNA extraction from buffy coats 
stored in the absence of RNA preservative, we 
allowed phase 1 samples to thaw while fully 
immersed in RNAlater or Qiazol (QIAGEN, 
Venlo, the Netherlands) and subsequently 
extracted RNA according to the manufactur-
er’s instructions. We quantified RNA with 
a Nanodrop ND-1000 spectrophotometer 
(Thermo Scientific, Wilmington, DE, USA) 
and used an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Amstelveen, the Netherlands) to 
assess its quality, including its RNA integrity 
number (RIN), which represents the degree of 
RNA fragmentation (Schroeder et al. 2006). 
All RINvalues were > 6, as required for good 
quality microarray-based analysis. Although 
the above procedures also allow extraction of 
microRNA (miRNA), this was not systemati-
cally assessed in these samples.

In phase 2, we adapted the RNA extrac-
tion methodology developed in phase 1 for 
use with biobank samples. We handled all 
samples individually and immediately after 
retrieval from storage. We divided sample-
containing cryostraws from EPIC-Italy for 
different applications by cutting them with 
RNase-free tools on a stainless steel plate 
imbedded in a box of dry ice to prevent thaw-
ing during handling. Then we pushed out 
half of the frozen buffy coat with a thin stain-
less steel plunger directly into 1.2 mL of the 
RNAlater (QIAGEN) solution. The other 
half was used later for DNA isolation. We 
retrieved NSHDS samples from their cryovials 
in a frozen state by making a small opening at 
the bottom of each vial using a hot plunger 
and pushing the sample out with another 

plunger. After subdividing the buffy coat on 
a dry ice–cooled steel plate using an RNase-
free scalpel, we immediately thawed the part 
destined for RNA extraction in 1.2 mL of 
RNAlater (QIAGEN) [see Supplemental 
Material for a video of these procedures 
(http://dx.doi.org/10.1289/ehp.1205657)]. 
We replaced the remaining pellet in a new 
cryovial and immediately returned it to cold 
storage for later DNA isolation. RNA was 
isolated on the same day with the RiboPure™ 
Blood kit (Ambion, Austin, TX, USA) using 
the manufacturer’s miRNA isolation protocol.

We used buffy coats free of RNA preser-
vative for DNA isolation because material 
thawed in the presence of RNAlater or Qiazol 
(QIAGEN) proved impossible to dissolve 
for DNA isolation. We thawed the samples 
on ice and isolated DNA using the QIAamp 
Blood Mini Kit (QIAGEN), evaluating it 
spectrophotometrically and by agarose gel 
electrophoresis.

Transcriptomics. We conducted Agilent 
4×44K human whole genome microarray 
analyses by standard methodology. Briefly, 
we reverse transcribed each RNA sample into 
cDNA and labeled it with cyanine 3 prior to 
hybridization. Subsequently, we washed the 
slides and scanned them using an Agilent 
Technologies G2565CA DNA Microarray 
Scanner. We established the technical per-
formance and quality of the microarrays by 
visual evaluation of the scan images before and 
after within- and between-array normalization 
(using LOESS and A-quantile, respectively). 
We imputed missing values in GenePattern 
(version  3.1; Broad Institute, MIT and 
Harvard University, Cambridge and Boston, 
MA, USA) using the k nearest neighbors 
approach (k = 15, Euclidian metric). [For more 
details on the transcriptomics and other omics 
methodologies employed, see Supplemental 
Material, pp. 6–11 (http://dx.doi.org/10.1289/
ehp.1205657).]

Epigenomics. We conducted genome-
wide analysis of DNA methylation using 
Infinium HumanMethylation450 BeadChips 
(Illumina, San Diego, CA, USA), which 
contain 485,764 probes (> 99% with CpG 
dinucleotides), following the manufacturer’s 
recommendations. We preprocessed the data 
with the GenomeStudio (version  2011.1) 
Methylation module (version 1.9; Illumina) 
and evaluated them using an adaptation of 
HumMeth27QCReport (Mancuso et al. 2011). 
We used Gene ARMADA (Chatziioannou 
et al. 2009) for within- and between-array 
normalization (linear LOESS and A-quantile, 
respectively) and imputation of missing values 
(k nearest neighbors approach).

Metabolomics. We analyzed plasma sam-
ples by UPLC-ToFMS after deproteinization 
with methanol. We conducted reverse-phase 
chromatography on an Acquity UPLC system 
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(Waters Corporation, Milford, MA, USA) 
with a C18 column (Waters) and binary gradi-
ent elution (20–100% acetonitrile/water for 
~ 25 min). Online analysis of the eluent was 
performed using a quadrupole time-of-flight 
mass spectrometer (QTOF-MS; Waters), 
with data collected in centroid mode in the 
100–1,000 m/z range. In phase 2, we pre-
pared samples in batches by biobank. Data 
were processed using Databridge and XCMS 
software (Waters).

Wide-target plasma proteomics. We con-
ducted targeted proteomic analysis of plasma 
samples using the Lab-MAP multianalyte 
profiling technology (Luminex, Austin, TX, 
USA). We analyzed phase 1 samples for inter-
leukin (IL)2, IL6, IL8, IL10, and tumor necro-
sis factor-a (TNFa) as previously described 
(Saberi-Hosnijeh et al. 2010), and we analyzed 
phase 2 samples for an additional 23 proteins 
related to immune responses [for a full list, see 
Supplemental Material, pp. 10–11, (http://
dx.doi.org/10.1289/ehp.1205657)] accord-
ing to the manufacturer’s protocol. Phase1 
and 2 samples were run in a single batch on 
a single plate. Nondetectable concentrations 
(< 1.22 pg/mL for all analytes) were imputed 
via a maximum likelihood estimation method 
(Lubin et al. 2004).

Statistical evaluation. The data were 
evaluated using principal component analy
sis (PCA), analysis of variance (ANOVA), 
paired t-test, mixed effect models, relative 
standard deviation (RSD = SD/mean), false 
discovery rate (FDR; Storey’s q-value), and 
short time–series expression miner (STEM) 
analysis (Ernst and Bar-Joseph 2006). PCA 
plots were used to visualize the impact of dif-
ferent sample handling parameters on omics 
signals as reflected in the variation of the dif-
ferent principal components. STEM analysis 
allows the identification of significant tempo-
ral trends in expression profiles and the genes 
associated with them. Because of the severe 
heteroscedasticity of β-values (representing 
the fractional methylation at any given site) at 
highly methylated or unmethylated CpG sites, 
M values [M = log2(methylated/unmethylated)] 
were used for the statistical analysis of DNA 
methylation data (Du et al. 2010).

Results
Transcriptomics. Phase 1. RNA quality and 
quantity were both significantly (p < 1 × 10–5) 
higher in buffy coat samples thawed in the 
presence of RNAlater as compared with Qiazol 
(RIN: 7.17 ± 0.51 vs. 6.14 ± 0.72; RNA yield: 
6.03 ± 2.16 vs. 2.25 ± 1.04 μg), and for this 
reason the former was employed routinely. No 
systematic effect of bench time, anticoagulant, 
or storage temperature on RIN values was 
observed (Table 1). RNA yield was unaffected 
by bench time and was higher for citrate sam-
ples regardless of storage temperature (p < 0.01, 
possibly due to minor interference of heparin 
and EDTA in the RNA extraction procedure) 
and for –80oC samples regardless of anticoagu-
lant (p < 0.05). We confirmed these findings 
using blood samples originating from one sub-
ject collected with different anticoagulants and 
a bench time of 0 hr (results not shown).

We performed transcriptomics analysis 
of the effects of donor and bench time on 
material from four subjects. Genes with more 
than one flagged/missing time point for any 
subject were completely filtered out of the 
data set, leaving 27,181 genes. Plots of prin-
cipal components (PC) according to the vari-
ous sample-related parameters (Figure 1A,B) 
showed clear separation between the sub-
jects (except for one time point of one sub-
ject), based on PC1–3, whereas a bench 
time–dependent trend was observed ≤ 8 hr 
in PC4 [the bench time of 24 hr was omitted 
because a small-scale RT-PCR experiment 
had already shown substantial gene expres-
sion changes at this time point (results not 
shown)]. We further investigated this trend 
by performing an ANOVA across the four 
time points and using the resulting 3,372 sig-
nificant genes (p < 0.05) in a STEM analysis 
to identify significantly represented tempo-
ral gene expression profiles. Two significant 
profiles were identified, corresponding to a 
gradual decrease or increase in expression and 
together accounting for 83% of the genes 
with significant differences in expression 
based on ANOVA, with a between-subject of 
overlap of 90% [see Supplemental Material, 
Figure S1A,B (http://dx.doi.org/10.1289/
ehp.1205657)]. Time-point comparisons 

showed considerable numbers of differen-
tially expressed genes (1,000–3,000) at all 
time points, their numbers roughly doubling 
in going from 2 hr to 4 hr (see Supplemental 
Material, Figure S1C). A pathway analysis of 
the two significant temporal STEM profiles 
revealed mainly involvement of the biological 
processes apoptosis, stress signaling, and DNA 
damage repair (results not shown). A list of 
genes with significant differences in expres-
sion based on ANOVA (Bonferroni-corrected 
p < 0.05) that may be suitable as bench time 
effect markers is presented in Supplemental 
Material, Table S1.

For the anticoagulant and storage tempera-
ture analyses, again on groups of four subjects, 
all genes flagged in any subject were filtered 
out, leaving 28,478 and 27,552 genes, respec-
tively. PCA showed a clear separation between 
subjects, but also some distance between 
the three anticoagulants, especially heparin 
(Figure 1C). Paired t-test analysis showed 
significant differences between all three 
anticoagulants [see Supplemental Material, 
Figure  S1D (http://dx.doi.org/10.1289/
ehp.1205657)], with the largest differences 
(although not as large as with bench time) 
being found between heparin and either 
EDTA or citrate, both with and without a 
log2 ratio cut-off of 0.5. We also identified 
differences in the gene expression pattern 
between samples stored at –80oC and in liquid 
nitrogen (Figure 1D), with 2,193 differentially 
expressed genes (551 genes with an additional 
0.5log2 ratio cut-off), but the FDR stayed 
relatively high (35%).

To compare the impact of sample pro-
cessing–related variables to the impact due to 
assay technical variability, we used technical 
repeats (2–3 repeats per subject) to determine 
the coefficient of variation of corresponding 
log2-expression signals (average of 2.7%). 
Same-individual bench time variation for all 
but one time point comparison (4 hr vs. 8 hr) 
and for EDTA versus heparin was signifi-
cantly higher than technical variation (ranging 
≤ 4.2%), whereas the variation was not sig-
nificantly different for the other anticoagulant 
and storage temperature comparisons. This 
means that bench time is the main source of 

Table 1. RINs and RNA yields (μg) of fresh samples from four subjects (mean ± SD) according to anticoagulant, storage temperature, and bench time (0–24 hr).

Anticoagulant, 
storage temperature

0 hr 2 hr 4 hr 8 hr 24 hr

RIN RNA yield RIN RNA yield RIN RNA yield RIN RNA yield RIN RNA yield
Citrate

–80oC 7.15 ± 0.14 8.27 ± 2.23 7.25 ± 0.42 8.90 ± 0.53 7.43 ± 0.53 8.75 ± 1.59 7.70 ± 0.21 8.29 ± 1.64 7.38 ± 0.24 12.19 ± 4.93
Liquid nitrogen 7.10 ± 0.49 5.96 ± 1.43 7.68 ± 0.11 5.74 ± 0.80 7.65 ± 0.14 4.77 ± 0.56 7.33 ± 0.11 6.56 ± 2.77 7.08 ± 0.04 6.62 ± 3.55

EDTA
–80oC 6.43 ± 0.88 5.14 ± 2.20 6.53 ± 0.88 10.46 ± 7.33 7.30 ± 0.21 5.21 ± 2.93 7.50 ± 0.00 6.98 ± 7.06 7.60 ± 0.35 5.50 ± 3.17
Liquid nitrogen 6.75 ± 0.64 3.29 ± 1.26 6.95 ± 0.92 4.09 ± 2.61 7.55 ± 0.07 4.24 ± 3.05 7.18 ± 0.04 3.95 ± 1.80 7.20 ± 0.14 5.22 ± 1.16

Heparin
–80oC 6.95 ± 0.21 4.81 ± 0.43 5.28 ± 2.93 6.48 ± 5.23 7.50 ± 0.00 7.06 ± 4.14 6.78 ± 1.31 6.70 ± 3.15 7.93 ± 0.18 6.51 ± 1.60
Liquid nitrogen 6.68 ± 0.95 3.20 ± 0.97 6.88 ± 0.95 4.24 ± 2.17 7.53 ± 0.18 3.93 ± 2.62 7.45 ± 0.35 4.09 ± 0.15 7.50 ± 0.00 3.73 ± 0.99

Yields were obtained from 0.4–0.5 mL of buffy coat (corresponding to ~ 2 mL blood).
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sample processing–related variability, although 
any effects of the other two variables may be 
overshadowed by technical noise.

Phase 2. Using the procedures described, 
adequate amounts of RNA with RIN > 6.0 
(average RIN = 7. 2, similar to fresh phase 1 
samples) could be isolated from approxi-
mately 85% of the extracted biobank samples 
(64 from EPIC-Italy and 50 from NSHDS) 
(Table 2), with no observable systematic effect 
of storage time (results not shown).

To test the performance of biobank sam-
ples in transcriptomics analysis, we initially 
used four EPIC-Italy samples to compare the 
technical quality of the microarray data with 
those obtained with four phase 1 samples 
stored at –80°C (different donors, two hepa-
rin and one EDTA with a bench time of 0 hr 
and one heparin with a bench time of 24 hr). 
All RNAs were hybridized against freshly iso-
lated RNA from phase 1 samples. No differ-
ences could be seen between the quality of the 
arrays hybridized with fresh or biobank sam-
ples. After normalization, a box plot showed 
similar data distribution between all samples 
(equal medians) (Figure 1E). After filtering 
flagged features, we observed no significant 

difference in the number of remaining high-
quality probes across the arrays (Figure 1F).

PCA of the transcriptomic profiles of 
31  samples from each biobank, selected as 
described in “Materials and Methods,” does 
not suggest any consistent storage time effect 
within the range of 13–17 years (Figure 1G,H). 
ANOVA across these samples showed only 
14 and 76 genes for EPIC-Italy and NSHDS, 
respectively, (of a total of 29,662) to vary signifi-
cantly (p < 0.0033) according to storage time; 
however, the FDR level was around 100%, 
meaning that these were most likely false posi-
tives. We could not make a meaningful evalua-
tion of the effect of collection-to-storage time on 
the transcriptomic (or any other) profile because 
of the small range of variation of this variable 
among the analyzed samples (100–198 min).

A comparison of six low-RIN samples 
(RIN range, 5.9–6.9) with six high-RIN sam-
ples (RIN range, 8.5–8.8) yielded only one 
differentially expressed gene at an FDR of 10% 
(results not shown), indicating that RNA qual-
ity was not a significant factor influencing the 
transcriptomic profiles of biobank samples. As 
an additional test of data quality, we evaluated 
the expression of three blood reference genes 
[beta-2 microglobulin (B2M); glyceraldehyde-
3-phosphate dehydrogenase (GAPDH); and 
protein phosphatase  1, catalytic subunit, 
alpha isozyme (PPP1CA)] and 11 immuno-
modulatory marker genes [chemokine (C-X-C 
motif) ligand 1 (melanoma growth stimulat-
ing activity, alpha; CXCL1); heme oxygenase 
(decycling) 1 (HMOX1); intercellular adhesion 
molecule 1 (ICAM1); IL-1, beta (IL1B); IL-1 

Figure 1. Transcriptomics. (A–D) Phase 1: data from four different subjects (samples from same subjects are indicated with same symbols). (A) PCA plot on 
samples with different bench times (indicated in hours by the symbol labels) (EDTA, –80 oC; proportion of variance explained: PC1, 31%; PC2, 24%; PC3, 14%). 
(B) PCA on same samples but using PC4 instead of PC3 (proportion of variance explained: PC4, 10%); the line indicates the bench time–related trend. (C) PCA 
on samples with different anticoagulants (bench time 2.5 hr, –80oC; proportion of variance explained: PC1, 57%; PC2, 13%; PC3, 10%). (D) PCA on samples with 
different storage temperatures (EDTA, bench time 0 hr; proportion of variance explained: PC1, 39%; PC2, 21%; PC3, 19%); liq. N2, liquid nitrogen. (E–H) Phase 2: 
(E,F) Comparison of microarray data from four fresh and four biobank samples. (E) Box plots of the average intensity levels after LOESS and A-quantile normaliza-
tion; boxes correspond to the 25th and 75th percentiles, whiskers indicate minimum and maximum values, and circles represent outliers. (F) Numbers of good 
array probes. (G,H) PCA plots on storage time in biobank; the legend indicates the number of years in storage. (G) EPIC-Italy (proportion of variance explained: 
PC1, 32%; PC2, 13%; PC3, 8%). (H) NSHDS (proportion of variance explained: PC1, 40%; PC2, 10%; PC3, 8%).
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Table 2. Average RINs and RNA yield (μg) from biobank samples.

Cohort n Percent RIN > 6 RIN (average ± SD) RNA yield (mean ± SD)
EPIC-Italy 64 95 7.1 ± 0.7 3.9 ± 1.7
NSHDS 50 92 7.4 ± 0.9 12.2 ± 7.5

The EPIC-Italy sample set included six samples stored at –80oC with a RIN of 6.8 ± 0.5 and RNA yield of 5.1 ± 1.2. The 
remaining samples were stored in liquid nitrogen. The NSHDS sample set included nine samples with EDTA as anti-
coagulant with a RIN of 6.7 ± 0.8 and RNA yield of 13.9 ± 6.8 μg. The remaining samples used heparin. EPIC-Italy and 
NSHDS yields were obtained from half a cryostraw or half a microcentrifuge tube of buffy coat, corresponding to ~ 0.25 
and 0.7–1.0 mL buffy coat (corresponding to ~ 3 and ~ 9 mL blood), respectively.
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receptor antagonist (IL1RN); IL-6 receptor 
(IL6R); matrix metallopeptidase 9 (MMP9); 
prostaglandin-endoperoxide synthase  2 
(PTGS2); serpin peptidase inhibitor, clade E, 
member 1 (SERPINE1); transforming growth 
factor, beta 1 (TGFB1); and TNF] (Karlovich 
et al. 2009) in these and in phase 1 samples (all 
bench times, four subjects) [see Supplemental 
Material, Table S2 (http://dx.doi.org/10.1289/
ehp.1205657)]. All genes were expressed in all 
sample sets, with the log2-transformed intensi-
ties of the three reference genes and the major-
ity of the immunomodulatory genes being 
> 10, statistically significantly higher than the 
average expression of all genes (t-test p < 0.01). 
These results support the absence of any major 
effect of long-term storage.

Epigenomics. Phase 1. We did not find any 
effect of anticoagulant or storage temperature 
on the yield or quality of isolated DNA or on 
CpG methylation levels (data not shown). We 
evaluated the effects of bench time using the 
buffy coats of four subjects. PCA based on 
M-values showed clear separation between the 
subjects (Figure 2A). However, in contrast to 
the corresponding transcriptomics result, no 
time-dependent trend was evident in PC1-3 
(Figure 2A) or other PCs (not shown). The 
mean coefficient of variation between corre-
sponding probes with 0.01 < β < 0.99 (thus 
limited to avoid spurious variability at very low 

signal intensities) in a 0-hr versus 8-hr compari-
son was 12.2%, not significantly different from 
that between technical replicates (13.2%). In 
an ANOVA across the four time points, with 
an additional implementation of a threshold of 
20% minimum variation in β, only 3,086 CpG 
sites (0.6% of the total) showed significant 
(p < 0.05) time-dependent variation. STEM 
analysis of this data set did not reveal a domi-
nant time-pattern, and overlap between the 
four subjects was minimal (data not shown), 
strongly suggesting that this variation does not 
reflect a systematic cellular response.

Phase 2. DNA isolated from 42 EPIC-
Italy and 38 NSHDS biobank samples was of 
good quality (260/280 optical density ratio, 
1.75–1.85; molecular weight > 40,000 kD) 
and yields were comparable with those 
obtained with fresh material. We evaluated 
the suitability of this DNA for microarray-
based analysis of CpG methylation by com-
paring four samples from EPIC-Italy and four 
samples from phase 1 buffy coats. The frac-
tion of good probes was > 99.85% in all cases 
and only 0.069% of the probes had detection 
p > 0.05 in more than one sample and were 
thus completely excluded. Similar β-value 
distributions were observed in phase 1 and 
biobank samples (Figure 2B).

Although PCA of 31 samples from each 
biobank, stored for 13–17 years, showed some 

scatter [e.g., for samples collected in 1997 in 
EPIC-Italy and 1996 in NSHDS (13 and 
14 years in storage, respectively)], no systema
tic trend was evident in relation to the storage 
time (Figure 2C,D). ANOVA results indicated 
that only 50 CpG sites in EPIC-Italy and 
1 site in NSHDS samples showed significant 
variation (Bonferroni-adjusted p < 0.05) in 
methylation levels in relation to storage time.

Metabolomics. Phase 1. Of the spectral fea-
tures detected in all samples analyzed for differ-
ent experimental conditions, 85.9% exhibited 
an RSD < 30% (median RSD = 13%) across 
the quality control samples, which consisted 
of identical aliquots of a pooled sample inter-
spersed within the batch of regular samples 
[see Supplemental Material, pp. 9–10 (http://
dx.doi.org/10.1289/ehp.1205657)]. A PCA 
plot based on these “robust” features indi-
cated a clear separation according to antico-
agulant regardless of donor and other variables 
(Figure 3A). For a given anticoagulant, the 
main sources of variation were the donors 
themselves and bench time [Figure 3B,C, hep-
arin samples only (similar plots were obtained 
for EDTA and citrate plasma samples)], with 
the 8-hr and 24-hr time points separating 
away from the earlier time points. No general 
trend was observed in relation to the storage 
temperature (Figure 3D). The median RSDs 
of robust peaks reflecting variation by anti-
coagulant and subject were 11.7% and 18%, 
respectively, whereas the effect of bench time 
was much smaller, and that of storage tem-
perature minimal (Table 3). The numbers of 
peaks that varied significantly (according to 
ANOVA) with both anticoagulant and bench 
time were substantially larger than expected 
by false discovery (71% of peaks at 2% FDR 
and 6% of peaks at 8% FDR, respectively), 
confirming the importance of these factors 
but also that bench time significantly affected 
only a relatively small number of metabolites. 
Similar analysis confirmed that the number of 
peaks affected by storage temperature (< 1%) 
was below that expected by false discovery.

Phase 2. To evaluate the effect of stor-
age time, we analyzed samples from the same 
set of subjects as used for the other omics 
platforms (24 EPIC-Italy and 28 NSHDS 
plasma samples were available). PCA did not 
show any systematic effect of storage time 
(Figure 3E,F). Overall 77.2% (EPIC-Italy) 
and 72.4% (NSHDS) of spectral features 
exhibited an RSD of < 30% across the quality 
control samples. The variation of these robust 
features across all biobank samples was 2- to 
3-fold greater than that associated with storage 
time (Table 4). ANOVA and false discovery 
analysis confirmed the absence of a statistically 
significant association between metabolite 
peaks and storage time.

Wide-target plasma proteomics. Phase 1. 
Owing to the small number of features 

Figure 2. Epigenomics. (A) Phase 1, PCA plot on bench times from four subjects (samples from same subjects 
are indicated by same symbols, labels indicate bench time in hours) (EDTA, –80oC; proportion of variance 
explained: PC1, 37%; PC2, 18%; PC3 16%). (B) Comparison of methylation microarray data from four fresh and 
four biobank samples. Box plots of the M-values after LOESS and A-quantile normalization; boxes correspond 
to the 25th and 75th percentiles, whiskers indicate minimum and maximum values, and circles represent 
outliers. (C,D) Phase 2, PCA plots on storage time (number of years) in biobank [(EPIC Italy; proportion of vari-
ance explained: PC1, 20%; PC2, 10%; PC3, 7% (C); NSHDS, PC1, 19%; PC2 13%; PC3 6% (D)].
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measured, only two significant principal 
components were observed. Figure 4A shows 
that the greatest variation was attributable to 
the donor, although separation was observed 
a) by anticoagulant (Figure 4B), with cit-
rate resulting in higher levels of IL2 and IL6 
and heparin resulting in higher levels of IL8 
(results not shown), and b) by bench time 
(Figure 4C), with the 8-hr and 24-hr time 
points deviating the most from the ear-
lier ones, which were relatively similar. No 
effect of storage temperature was observed 
(Figure  4D). The coefficient of variation 
between different anticoagulants (citrate vs. 
heparin, median 17%; EDTA vs. heparin, 
median –2.0%) was substantially larger than 
that between technical replicates (median 
2.2%). The latter was similar to the coefficient 
of variation for the 0-hr versus 2-hr bench 
time comparison (median –3.0%) and com-
parable for most analytes to that for 0 hr ver-
sus 4 hr (median 10.5%; most variation being 
due to one outlying analyte). However, the 
variation was substantially increased for the 
0 hr versus 8 hr comparison, and even more 

for the 0 hr versus 24 hr comparison, where it 
reached a median value of 77%.

Phase 2. PCA based on the same sets of 
31 subjects from each biobank as used with 
the other platforms did not reveal any syste
matic effect of storage period (Figure 4E) or 
collection-to-storage time (data not shown), 
nor were any associations found with any of 
the individual analytes. The measured cytokine 
levels were in the same range as observed in 
phase 1 (results not shown), suggesting com-
parability between fresh and biobank samples.

Discussion
We have evaluated the influence of collec-
tion and storage conditions of buffy coat and 
plasma on sample performance in a series of 
omics assays, using freshly collected samples as 
well as samples stored in biobanks for nearly 
two decades. The key findings can be summa-
rized as follows.

Transcriptomics. Transcriptomics-quality 
RNA can, in general, be isolated from buffy 
coats frozen in the absence of RNA preserva-
tive by thawing the samples in the presence 

of RNAlater, on condition that the buffy 
coats had been deep-frozen within 8 hr of 
blood collection. No systematic influence of 
anticoagulant (heparin, EDTA, citrate), stor-
age temperature (–80oC, liquid nitrogen), 
or time in cold storage on RNA yield or 

Table 3. RSD (%) of metabolomics peaks across 
experimental conditions in phase 1.

Condition P10 Median P90
QC samples 7.0 13.0 37.0
Subjectsa 13.0 18.0 49.4
Anticoagulantsa,b 4.5 11.7 46.6
Storage temperaturesa,b 0.4 1.8 5.0
Bench timesa,b

0 vs. 2 hr 0.6 2.7 7.4
0 vs. 4 hr 1.0 2.8 7.1
0 vs. 8 hr 1.7 3.5 9.3
0 vs. 24 hr 2.2 4.8 15.4

P, percentile. RSDs were calculated by comparing sam-
ples differing in the condition indicated while keeping all 
other conditions constant; “QC samples” refers to com-
parison across identical quality control samples; “bench 
times” refers to comparison between samples with bench 
time 0 hr and the time indicated.
aUsing only selected peaks with RSD < 30% across QCs. 
bData were normalized to the mean value of donor.

Figure 3. Metabolomics. (A–D) Phase 1. (A) PCA plot on anticoagulants from four subjects; because all samples were subjected to full metabolomics analyses, 
the points shown for each anticoagulant include different subjects, bench times, and storage temperatures (proportion of variance explained: PC1, 44%; PC2, 
20%; PC3, 10%). (B) PCA on bench time for three subjects (different symbols denote different subjects and include two different storage temperatures per subject; 
the labels denote bench times in hours (only 0 hr bench time for one subject) (heparin; proportion of variance explained: PC1, 56%; PC2, 20% PC3, 12%). (C) PCA 
for same samples as D but PC4 instead of PC3 (proportion of variance explained: PC4, 6%); the line indicates the bench time–related trend. (D) PCA on storage 
temperature from four subjects (different symbols denote different subjects) (heparin, bench time 0 hr; proportion of variance explained: PC1, 51%; PC2, 31%; PC3, 
14%); liq. N2, liquid nitrogen. (E–F) Phase 2. (E,F) PCA on storage time (years) in biobank [EPIC-Italy; proportion of variance explained: PC1, 35%; PC2, 10%; PC3, 8% 
(E); NSHDS; proportion of variance explained: PC1, 36%; PC2, 21%; PC3, 7% (F)].

40,000

20,000

0

–20,000

40,000

60,000

20,000

0

–20,000

60,000

20,000

0

–20,000

40,000

PC3

PC1

P
C

2

P
C

2 P
C

2

P
C

2

60,000

–60,000

20,000

–20,000

40,000
20,000

–20,000
–40,000

–80,000
–40,000

40,000
80,000

00

13
14
15
16
17

Years

14
15
16
17

Years

EDTA
Heparin
Citrate

Anticoagulant

1
2
3

Subject
1
2
3

Subject

1
2
3

Subject



Hebels et al.

486	 volume 121 | number 4 | April 2013  •  Environmental Health Perspectives

quality (although slightly higher yields were 
obtained with –80oC and citrate samples) or 
on the quality of microarray data obtained 
was observed. For unknown reasons, a small 
fraction (< 20%) of biobank samples satisfy-
ing the above criteria yielded RNA of quality 
inappropriate for transcriptomics analysis. 
The majority of samples had RINs of 6–8, 
which, despite indicating a slight degree of 
RNA degradation, is of more than sufficient 
quality for transcriptomic analysis (Beekman 
et al. 2009). Differences in gene expression 
profiles were mainly observed between differ-
ent bench times, followed by anticoagulants 
(mainly heparin vs. EDTA), and to a much 
lesser extent storage temperatures. Although 
it may be possible to compensate for such 
effects in downstream data analysis by appro-
priate statistical methods, this observation 

underlines the importance of recording these 
variables in biobanks. No systematic effect 
of time in cold storage on the transcriptomic 
profiles could be detected, though the latter 
was studied only in the rather limited range of 
13–17 years.

Epigenomics (CpG methylation). DNA 
suitable for microarray-based analysis of CpG 
methylation levels can be obtained from 
biobank buffy coats that were frozen within 
8 hr of blood collection. No systematic influ-
ence of anticoagulant, storage temperature or 
length of cold storage in the biobank (over the 
period examined) on DNA yield or quality 
or methylation profiles was observed. Bench 
time appears to affect methylation levels at a 
very small fraction (0.6%) of the CpG sites in 
a nonsystematic way and its overall impact on 
the information content of the resulting data 
would be very limited.

Plasma UPLC-ToFMS metabolomics. 
Unlike DNA or RNA, no universal indicator 
of “quality” can be defined for the metabo-
lome, where each molecule detected exhibits 
a different stability profile. Hence the impact 
of collection and storage conditions on the 
metabolomic profile is difficult to define 
comprehensively. Using multivariate analysis 
we could detect no significant influence of 
storage temperature or length of cold stor-
age in the biobank within the storage period 

examined. Although good quality data were 
obtained for all anticoagulants used, the 
metabolomic profiles were strongly influenced 
by the anticoagulant employed. From a tech-
nical perspective, heparin is preferable over 
citrate or EDTA, which can reduce column 
lifetime and increase ion suppression. Bench 
time affected only a minor fraction of the 
profile, but with substantial changes occur-
ring beyond 4 hr. Other studies using nuclear 
magnetic resonance spectroscopy (Barton 
et al 2008) and gas chromatography–mass 
spectrometry (Dunn et al 2008) have shown 
that plasma samples are stable at 4oC for up 
to 24 hr. While we consider our findings 
to be broadly consistent with other reports 
(Dunn et al 2011; Zelena et al 2009), some 
researchers have reported more robust features 
using UPLC-QTOF-MS analysis of serum 
[for example, Dunn et al. (2011) reported 
83.9 ± 3.1% of peaks with an RSD < 20% 
across quality-control samples]. Key differ-
ences between these studies and ours include 
the use of serum versus plasma, the precise 
detector used, and, importantly, the appli-
cation of LOESS regression to correct for 
technical peak intensity variation.

Wide-target proteomics. Plasma in long-
term storage can be successfully subjected 
to proteomic analysis, provided that it was 
isolated and frozen within 4  hr of blood 

Table 4. RSD (%) of metabolomics peaks across 
subjects and storage times for phase 2 samples.

Cohort P10 Median P90
EPIC-Italy

All subjects 12.8 26.2 55.8
Storage time 3.9 10.8 24.3

NSHDS
All subjects 13.8 27.8 54.6
Storage time 3.9 8.8 23.1

P, percentile. For each cohort, RSDs were calculated by 
comparing a) samples of all subjects, and b) the means 
of samples with the same storage time.

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

13

14

15

16

17

–4 –2 0 2 4 6 8 –4 –2

–2 –1
–3

–2
–1

0

0
1

2

3

2 4 6

0 2 4 6 8

–4 –2 0 2 4 6 8 –4 –2 0 2 4 6 8

Ye
ar

s 
in

 s
to

ra
ge

PC
2

PC
2

PC
2

PC
2

PC1 PC1

PC1

PC2

PC1 PC1

–80°C
liquid N2

EPIC
NSHDS

Biobank

Citrate
EDTA
Heparin

Citrate
EDTA
Heparin

Citrate
EDTA
Heparin

Anticoagulant

–80°C
liquid N2
–80°C
Liquid N2

Storage 
temperature0

2
4
8
24

Hours

1
2
3
4

Subject
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collection. No influence of storage tempera-
ture or length of long-term cold storage in 
biobanks on the corresponding profiles was 
observed over the period examined. However, 
a major influence of the anticoagulant was 
observed, which is in line with an earlier 
report (Saberi-Hoshnije et al. 2010) in which 
strong correlations were observed between 
heparin and citrate plasma although small 
differences in analyte levels were observed for 
most analyses (11 cytokines, 4 chemokines, 
and 2 adhesion molecules).

Conclusions
Overall, it appears likely that a large fraction 
of the human blood-derived samples currently 
in long-term storage in biobanks is amena-
ble to analysis using high throughput omics 

technologies, even if no precautions specifi-
cally related to the eventual use of these tech-
nologies were taken at the time of collection. 
Important criteria that should be considered 
in selecting samples (including freshly col-
lected samples) for such analyses are a) time 
between blood collection and fractionation 
being ≤ 8 hr (≤ 4 hr for proteomics), and 
b)  samples for which data are to be com-
pared or pooled not containing different anti
coagulants. Although an influence on omic 
profiles of additional variables, especially the 
length of time in cold storage, cannot be pre-
cluded owing to the relatively limited span of 
years in storage evaluated here, adherence to 
these criteria minimizes the impact of sample 
history and facilitates the generation of reliable 
data. Within these limitations, interindividual 
differences were found to be by far the largest 
source of variation in omic profiles of bio-
samples. As previously noted, these profiles 
(e.g., in the blood transcriptome) can reflect 
the corresponding profiles in other tissues and 
the effects thereupon of environmental factors 
(Liew et al. 2006). These findings open the 
way to the application of these powerful tech-
nologies to biosamples collected over previous 
decades in the context of population-based 
or disease-oriented cohorts. In combination 
with other available information from many 
such cohorts (e.g., environmental exposure, 
dietary or lifestyle habits, disease status, or 
related biomarkers), such application is likely 
to provide strong support to research on the 
environmental causes of disease.

Correction

The axes in Figures 1C and 3D were 
labeled incorrectly in the manuscript origi-
nally published online. They have been cor-
rected here.
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