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The authors attempted to validate a 2-stage strategy to
screen for severe obstructive sleep apnea syndrome
(s-OSAS) among hypertensive outpatients, with polysom-
nography (PSG) as the gold standard. Using a prospective
design, outpatients with hypertension were recruited from
medical outpatient clinics. Interventions included (1) assess-
ment of clinical data; (2) home sleep testing (HST); and (3)
12-channnel, in-laboratory PSG. The authors developed
models using clinical or HST data alone (single-stage
models) or clinical data in tandem with HST (2-stage models)
to predict s-OSAS. For each model, area under receiver
operatingcharacteristic curves (AUCs), sensitivity, specificity,
negative likelihood ratio, and negative post-test probability
(NPTP) were computed. Models were then rank-ordered
based on AUC values and NPTP. HST used alone had

limited accuracy (AUC=0.727, NPTP=2.9%). However, mod-
els that used clinical data in tandem with HST were more
accurate in identifying s-OSAS, with lower NPTP: (1) facial
morphometrics (AUC=0.816, NPTP=0.6%); (2) neck circum-
ference (AUC=0.803, NPTP=1.7%); and Multivariable Apnea
Prediction Score (AUC=0.799, NPTP=1.5%) where sensitiv-
ity, specificity, and NPTP were evaluated at optimal thresh-
olds. Therefore, HST combined with clinical data can be
useful in identifying s-OSAS in hypertensive outpatients,
without incurring greater cost and patient burden associated
with in-laboratory PSG. These models were less useful
in identifying obstructive sleep apnea syndrome of any
severity. J Clin Hypertens (Greenwich). 2013;15:279–288.
ª2013 Wiley Periodicals, Inc.

Obstructive sleep apnea (OSA) affects approximately
one third of individuals with secondary hypertension
and is one of its major identifiable causes.1 Large-scale
studies that associated2 and implicated OSA in the
development of incident hypertension3 support this
designation, even after controlling for obesity, a major
risk factor for OSA. Some randomized trials have shown
that treating OSA with positive airway pressure (PAP)
reduces blood pressure (BP),4–7 particularly if OSA is
severe and participants are sleepy.4,5,8–11 These results,
along with the high prevalence of OSA among patients
with hypertension, support screening patients with
hypertension for severe sleep OSA syndrome (s-OSAS;
severe OSA associated with sleepiness).12

In-laboratory polysomnography (PSG) is unsuitable
for screening13 because of complexity, expense, and
inaccessibility. Signs and symptoms may identify per-
sons at risk for OSA,14,15 using questionnaires.16 While
particularly useful in lean patients,16 symptoms are
often nonspecific or under-reported. Facial morphomet-
rics17 have not added predictive value to body mass
index (BMI, a proxy for obesity), which has been used

for risk assessment. In 2005, the American Academy of
Sleep Medicine (AASM) deemed current clinical models
insufficient for predicting apnea severity.18

We previously validated a 2-stage screening tool for
OSA.19,20 We first applied a risk score that combined
data from symptoms, age, sex, and BMI to everyone. In
the second stage, we conducted overnight oximetry in a
subset at intermediate risk. Portable sleep monitors21

that assess respiratory effort and airflow in addition to
oximetry22 have since become available, allowing for
unattended home sleep testing (HST).

In the current study, we used HST to validate our
2-stage model in hypertensive outpatients. We screened
for s-OSAS since the greatest benefits from PAP, includ-
ing reduction in BP4,9,10 and cardiovascular event
rates,23 occur in this group. The 2-stage screening tool
was also applied to hypertensive patients with any OSA
associated with sleepiness, regardless of OSA severity.

METHODS
The institutional review boards of the University of
Pennsylvania and Philadelphia VA Medical Centers
approved this protocol. All patients provided informed
consent.

Patient Selection
We recruited consecutive outpatients with hypertension
aged30to65 years frominternalmedicinepractices at the
Philadelphia VA Medical Center and the Hypertension
Clinic at the University of Pennsylvania. We defined
hypertension as systolic BP � 140 mm Hg, diastolic BP
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� 90 mmHg, or the use of any antihypertensive medica-
tion.2 We excluded patients who had prior PSG or could
not participate because of self-reported illness, pain, or
circadian sleep disturbances (Figure 1).

Interventions Offered For All Patients
Demographics, apnea symptoms, tobacco and alcohol
use, physical examination, and the Epworth Sleepiness
Scale (ESS)24 were self-reported. We measured BMI and
neck circumference (NC).

Facial morphometrics score combined BMI, NC,
degree of overjet of the maxilla over the mandible,
palatal height, and intermolar width. Higher scores
signified greater apnea risk.17

HST (AutoSet PDS, ResMed Corp, San Diego, CA)
consisted of unattended pulse oximetry, chest and
abdominal movement, and airflow by nasal pressure
for one night. Following technician-led instruction,
patients self-applied the sensors at home, wore them
for one night, and returned them in person. We applied
the AutoSet’s automated scoring algorithm to down-
loaded data25, which used a 50% drop in airflow from
the baseline value to define a hypopnea and a 75% drop
in airflow for � 10 seconds for an apnea. Desaturation
was not required to score apneas or hypopneas.25

Therefore, while oximetry was worn according to the
manufacturer’s protocol, it was not used in automated
scoring. We chose in-home monitoring and automated
scoring to reflect typical clinical practice.

In-laboratory PSG-recorded electro-encephalograms;
eye, chin, and pre-tibial muscle activity; electrocardiog-
raphy; oximetry;chest and abdominal respiratory effort;

and airflow by nasal cannula and oral thermistor
(Formerly Sandman System, now Embla Systems Inc,
Broomfield, CO). Technicians performed PSG prospec-
tively, after questionnaires and unattended sleep studies,
while blind to questionnaire data, apnea risk scores,
facial morphometrics, and unattended sleep study data.
They scored PSG results26 and computed the apnea-
hypopnea index (AHI) as ([apneas+hypopneas]/hours of
sleep time). An apnea was � 10 seconds of airflow
cessation. A hypopnea required � 10 seconds of reduc-
tion in airflow: (1) either � 50% or (2) � 30% with
� 4% fall in SaO2 or an arousal.

Missing Data
We conducted multiple imputation for missing age,
BMI, NC, ESS, symptoms, PSG AHI, and unattended
HST AHI (uAHI) values using a well-validated
method27 (PROC MI; SAS Systems, Cary, NC).

Case Definition
We defined a case of s-OSAS as AHI � 30 events per
hour + ESS >10.8 Alternatively, we considered AHI � 5
events per hour + ESS >10 as any case of OSAS.

Risk Assessment
For all patients with available data, we assessed risk via
1- and 2-stage strategies:

• Single-stage strategies (risk scores): Our base model,
the multivariable apnea prediction (MVAP) score,
combined symptoms, BMI, age, and sex to compute
s-OSAS risk.16 To elucidate symptoms, patients self-
rated their frequency of snoring, choking, and

N=407 recruited

N=250 agreed to: 
PSGs
HSTs

MVAPs
morphometrics

208 (83.2%)
HSTs

198 (79.2%) 
PSGs

N=250
PSGs

192 (76.8%) 
adequate HSTs

N=250
HSTs

224 (89.6%) 
MVAPs

N=250
MVAPs

160 (64%) 
morphometrics

N=250
morphometrics

Multiple Imputation

FIGURE 1. Flow diagram. PSGs indicates polysomnograms; HSTs, home sleep tests; MVAPs, multivariable apnea prediction scores.
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witnessed apneas on a Likert scale (range=0 to 4).
We combined this score with BMI, age, and sex
using a previously validated16 multiple logistic
regression (SAS version 9.2, Cary, NC) and obtained
a risk score (range=0 to 1, 1=high risk, 0=absent risk
for s-OSAS). Individual analyses for BMI, NC, age,
facial morphology, and symptoms were also com-
pleted.

• Two-stage strategies
First stage: We categorized patients into high-,
intermediate-, or low-risk groups based on their
first-stage test score (eg, theMVAP). “Upper bound”
separated high- from intermediate-risk groups.
“Lower bound” separated intermediate- from low-
risk groups (Figure 2; see “Model development and
validation” below). We predicted that patients with
a risk score >upper bound would have s-OSAS, and
those with a risk score <lower bound would not.
Second stage: Patients with intermediate scores
(between upper and lower bound) were predicted
to have s-OSAS if the uAHI was >“uAHIthreshold.” If
uAHI <uAHIthreshold, they were predicted to be free
of s-OSAS.19 The analysis was repeated for any
patient with OSAS regardless of severity.

Model Development and Validation
While single-stage strategies had a single parameter
(ie, cutpoint), 2-stage strategies had 3 parameters: the
upper and lower bounds and the uAHIthreshold. The
“optimal” parameter set minimized misclassification
rate and maximized specificity; we identified it using an
exhaustive enumeration algorithm with SAS version 9.2
(see below). Using this optimal parameter set, we
computed sensitivity, specificity, negative likelihood
ratio (LRneg),

28 and negative post-test probability
(NPTP) in a randomly selected 70% estimation sample
and in the remaining 30% validation sample. We also
computed the AUC29 in both samples. Using bootstrap

resampling, we generated 95% confidence intervals
(CIs) for AUC, sensitivity, specificity, and LRneg.

Determination of the Optimal Cutpoints for the
Single-Stage Strategies
We first selected 9 candidate cutpoints for each model
that divided the sample into 10 groups of equal number.
For each candidate cutpoint, we calculated error rate as
(FP + 1.2 9 FN). We weighted false-negatives (missed
cases) at 1.2 times the false-positives, because we
presumed that missing cases of severe OSAS was a
more serious error than falsely labeling a normal patient
with severe OSAS. In sensitivity analyses, we considered
values from 1.0 to 2.0 in increments of 0.1. We chose
1.2 when our sensitivity analysis showed that higher
weights did not improve the LRneg. The optimum
cutpoint was identified as the one that minimized this
error rate. In cases of ties, the solution that maximized
specificity was chosen. We have outlined this rationale
elsewhere.30,31

Determination of the Optimal Cutpoints for the
2-Stage Strategies
The 2-stage strategy had 3 parameters: the upper and
lower bounds of the first stage test and uAHIthreshold. We
considered 6 uAHI-thresholds: 5, 10, 15, 20, 25, and 30
per hour. For the first stage test, we considered
candidate cutpoints (9 upper and 9 lower bound values)
as described for the single-stage strategies. Thus, we
considered a total of 6 9 9 9 9 = 486 possible param-
eter sets and computed (FP + 1.2 9 FN) for each
parameter set. We selected the optimum parameter set
as the one that minimized this error rate and maximized
specificity.

Quantification of the Discriminatory Power
of Each Model
Using the optimum cutpoints of each of the models, we
computed sensitivity, specificity, and LRneg. We com-
puted LRneg as (1-sensitivity)/specificity. We computed
the NPTP associated with LRneg after applying a
Bayesian formula and the prevalence of OSA in
a 70% estimation sample (6.9%). We also computed a
prediction discrimination index as the AUC constructed
from the logistic model predicted values. For the 30%
validation sample, this was performed using the formula
AUC = (D + 1)/2, where D represents the Somer’s D
statistic of the proc logistic function. We rank-ordered
the discriminatory power of the models by sorting them
based on the value of AUC, with larger values of AUC
denoting the best-performing models. The AUC for each
model is an estimate of the probability that a randomly
selected case has a larger predicted value than a
randomly selected control.

Generation of Nonparametric 95% Bootstrap
Confidence Limits
Using the estimation cohort, we generated 1000 boot-
strap re-samples with replacement via SAS program-

STAGE 1      STAGE 2
      (HST)

Upper 
Bound 

Lower 
Bound 

INTERMEDIATE 
RISK Threshold AHI 

s-OSAS

No
s-OSAS 

HIGH RISK

LOW RISK

FIGURE 2. Study design. HST indicates home sleep test; AHI,
Apnea-Hypopnea Index; s-OSAS, severe obstructive sleep apnea
associated with sleepiness.
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ming. For each re-sample, we computed (1) AUC and
(2) the optimum cutpoint and its associated sensitivity,
specificity, and LRneg. We selected from these distribu-
tions the 2.5th and 97.5th percentile values of AUC,
sensitivity, specificity, and LRneg to define the 95%
nonparametric confidence limits.

Model Validation
We computed percent difference as (AUC in validation
sample – AUC in estimation sample)/(AUC in estimation
sample). We categorized models as “robust” if this
percent difference in AUC between validation and
estimation samples was ��5%, and “not robust” if
this percent difference in AUC was <�5%. The optimal
model was the one that was robust and had the highest
AUC.

RESULTS

Patient Characteristics
We enrolled 250 patients (Table I) after excluding those
with self-reported pain (n=7), medical illness (n=7), jet
lag (n=2), or night shift work (n=19). Sample, estima-
tion, and validation subsets were similar, except for a
larger percentage of Caucasians in the estimation subset.
The average (standard deviation [SD]) age, NC, and

BMI were: 52.6 (7.7) years, 42.2 (4.5) cm, and 32.1
(7.4) kg/m2, respectively. s-OSAS and any OSAS
frequency distribution by BMI category is shown
(Figure 3). In the patients with and without s-OSAS,
the average (SD) BPs were 145/87 (12/11) mm Hg and
139/82 (15/10) mm Hg, respectively.

Apnea Risk
The mean (SD) for MVAP scores (n=224) was 0.53
(0.25). The mean (SD) morphometric score (n=160) was
68.5 (24.7); the score could not be computed for the
remaining participants because of missing molars.
Whereas a score of � 70 carried 98% sensitivity
and 100% specificity in a prior study,17 in our study,
the optimal cutpoint of 80 yielded a sensitivity of
66.9%, a specificity of 70.1%, and a NPTP of 0.6% for
s-OSAS.

In-Laboratory Sleep Studies
Of 198 of 250 (79.2%) who agreed to in-laboratory
PSG, 159 (80%) had OSA: 67 (34%) mild (AHI 5–14.9/
hour); 43 (22%) moderate (AHI 15–29.9/hour); and 49
(25%) severe (AHI � 30/hour). Sleepiness (ESS >10)
occurred in 62 of 242 (25.6%) patients. A total of 49
patients (24.7%) had at least mild OSAS (AHI � 5/hour
plus ESS >10), and 15 patients (7.6%) had s-OSAS (AHI

TABLE I. Patient Characteristics

Participants (N=250)a Estimation Sample (n=146) Validation Sample (n=52) P Value

Mean age (SD), y 52.6 (7.70) 52.6 (7.49) 53.2 (8.37) .95

Men, % 200 (80.0) 119 (81.5) 43 (82.7) .48

Caucasian, % 101 (40.4) 51 (34.9) 15 (28.9) .04

African American, % 147 (58.8) 95 (63.7) 37 (71.2) .06

Apnea risk, mean (SD)

BMI, kg/m2 32.1 (7.36) 32.6 (7.35) 31.8 (6.37) .23

NC, cm 42.2 (4.53) 42.5 (4.38) 42.0 (4.39) .23

MVAP 0.53 (0.25) 0.56 (0.23) 0.49 (0.31) .06

Morphometrics 68.5 (24.7) 69.7 (24.5) 70.9 (24.9) .45

Smokers, %

Current smokers 72 (28.8) 38 (26.0) 22 (42.3) .25

Ever smokers 83 (33.2) 43 (29.4) 24 (46.2) .13

Blood pressure, mean (SD)

Systolic 139.0 (14.9) 138.3 (15.0) 141.0 (14.5) .26

Diastolic 82.2 (9.2) 82.5 (9.6) 81.4 (8.3) .48

Alcohol consumers, %

At least 1 drink per d 155 (61.8) 86 (58.9) 33 (63.4) .25

At least 12-oz beer per wk 102 (40.6) 56 (39.7) 21 (40.4) .74

At least 4-oz spirit per wk 68 (27.3) 36 (25.0) 17 (32.7) .32

At least 6-oz wine per wk 71 (28.4) 41 (28.4) 16 (30.8) .99

ESS score >10 62 (25.6) 45 (31.0) 17 (32.7) .21

OSAS by PSG, %

Mild (AHI �5 and ESS>10) 49 (24.7) 33 (22.8) 16 (30.8) .25

Mod (AHI �15 and ESS >10) 29 (14.7) 20 (13.8) 9 (17.3) .54

Severe (AHI � 30 and ESS >10) 15 (7.6) 10 (6.9) 5 (9.6) .53

Abbreviations: AHI, apnea-hypopnea index; BMI, body mass index; ESS, Epworth sleepiness score; MVAP, multivariable apnea prediction score; NC,

neck circumference; OSAS, obstructive sleep apnea syndrome; PSG, polysomnography; SD, standard deviation.

aA total of 198 participants (146 in the estimation sample and 52 in the validation sample) underwent in-laboratory PSG.
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� 30/hour plus ESS >10) (Table I). The cohort’s mean
(SD) AHI was 22.5 (22.9)/hour.

Unattended Sleep Studies
Of 208 patients who agreed to unattended HST, 192
had adequate recordings. Of these, 76.9% had usable
data after one attempt, and an additional 20.2%
after a second attempt. The mean (SD) uAHI was 15
(13.8) per hour. A total of 25.7% had uAHI � 5/hour
with ESS >10, and 6% had uAHI � 30/hour with ESS
>10. Unattended HST underestimated in-laboratory

AHI for values between 33/hour and 45/hour
(Figure 4).

AUCs and Percent Difference of s-OSAS
AUCs in the estimation and validation subsets are listed
for single-stage and 2-stage models, along with percent
difference between those subsets (Table II). All single-
stage models were robust, with percent difference
ranging from �0.1% to 13.3%, and all (except age)
had similar discriminatory power, with AUCs ranging
from 0.663 for symptoms to 0.689 for NC (most
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FIGURE 3. Frequency distribution of obstructive sleep apnea by body mass index category (BMI). s-OSAS indicates severe obstructive sleep
apnea syndrome.
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FIGURE 4. Bland-Altman analysis. Unattended sleep studies tended to underestimate in-laboratory AHI for an approximate value of 3.5 to 3.8
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useful). Age was not a useful single-stage model, with an
AUC of 0.463.

The 2-stage models (Table II) using HST in the
second stage were more accurate than single-stage
models, with higher AUC values ranging from 0.718
(age) to 0.816 (morphometrics). The most useful single-
stage model, NC, performed better when combined with
unattended sleep studies, yielding an AUC of 0.803. The
top 3 performing 2-stage models (AUCs near or above
0.800) were NC, morphometrics, and MVAP.

Accuracy of Models: Sensitivity, Specificity,
NPTP of s-OSAS
We report the accuracy of these single- and 2-stage
models (Table III, upper and lower panels, respectively).
In the single-stage model, use of MVAP � 0.483 had the
greatest sensitivity for detecting s-OSAS (91.5%), and
the second-lowest NPTP for s-OSAS (1.5%). Use of NC

� 42.6 cm had similar sensitivity (85.6%) and NPTP
(1.7%). Facial morphometrics score � 80.0 offered the
highest specificity (70.1%) but the second-lowest
sensitivity (66.9%) for detecting s-OSAS, with the
lowest NPTP of s-OSAS among single-stage models
(0.6%).

For unattended sleep studies used alone (Table IV),
the optimal cutpoint for detecting s-OSAS was 16 events
per hour with a sensitivity of 74.7%, a specificity of
70.6%, an LRneg of 0.357, and an NPTP of 2.9%.

We evaluated HST when it was used in tandem with
single-stage models (MVAP, NC, facial morphometry).
The optimal upper and lower bounds for these first-
stage tests, and optimal cutpoint for HST are shown in
Table III (lower panel). We found that: (1) MVAP
followed by HST had 88.2% sensitivity, 71.6% speci-
ficity, and 1.5% NPTP; (2) NC followed by HST had a
sensitivity of 83.6% and a specificity of 77.0% with n

TABLE II. Relative Discriminatory Power and Robustness of Models Used in Single- and 2-Stage Algorithms
(N=250)

Model

Single-Stage Models Two-Stage Modelsa

AUC, Estimation Sample (95% CI) Difference,b % AUC, Estimation Sample (95% CI) Difference,b %

NC 0.689 (0.674–0.704) 5.1 0.803 (0.786–0.820) �0.1

Morphometrics 0.685 (0.663–0.707) 4.5 0.816 (0.801–0.830) 8.2

MVAP 0.684 (0.668–0.700) 1.4 0.799 (0.777–0.822) 6.6

BMI 0.665 (0.646–0.685) 7.2 0.768 (0.744–0.793) 7.8

Symptoms 0.663 (0.640–0.685) 6.3 0.735 (0.710–0.760) 3.7

Age 0.463 (0.444–0.481) 13.3 0.718 (0.700–0.737) 6.7

Abbreviations: AUC, area under the receiver operating characteristic curve; BMI, body mass index; CI, confidence interval; MVAP, Multivariable Apnea

Prediction Score; NC, neck circumference. Bold values indicate the top 3 performing models.

aModel applied as first stage, followed by home sleep testing for those in the intermediate-risk group.

bDifference=(AUC in validation sample – AUC in estimation sample)/(AUC in estimation sample)

TABLE III. Discriminatory Power of Models for Predicting Severe Obstructive Sleep Apnea Syndromea

Single-Stage Model Cutpoint SENS SPEC Neg LR NPTP

NC, cm 42.550 0.856 0.510 0.244 0.017

Morphometrics 79.998 0.669 0.701 0.473 0.006

MVAP 0.483 0.915 0.439 0.190 0.015

BMI, kg/m2 30.937 0.819 0.505 0.334 0.018

Symptoms 1.000 0.774 0.551 0.394 0.035

Age, y 48.275 0.629 0.299 1.641 0.029

Two-Stage Model LB UB HST Cutpoint SENS SPEC Neg LR NPTP

NC, cm 40.65 46.55 23.5 0.836 0.770 0.212 0.020

Morphometrics 40 95 23.25 0.942 0.689 0.076 0.037

MVAP 0.41 0.79 18 0.882 0.716 0.162 0.015

BMI, kg/m2 25 41.25 23.75 0.829 0.708 0.219 0.027

Symptoms 1.2 3.1 20 0.629 0.840 0.442 0.031

Age, y 32.5 65 15.25 0.743 0.694 0.368 0.119

Abbreviations: BMI, body mass index; HST, home sleep testing; LB, lower bound; MVAP, Multivariable Apnea Prediction Score; NC, neck circumference;

NegLR, negative likelihood ratio; NPTP, Negative post-test probability; SENS, sensitivity; SPEC, specificity; uAHI, Apnea-Hypopnea Index (AHI) from

unattended home sleep test; UB, upper bound.

aSevere obstructive sleep apnea syndrome=AHI �30 events/h + Epworth Sleepiness Scale >10.
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NPTP of 2.0%; and (3) Facial morphometry followed
by HST identified s-OSAS with 94.2% sensitivity,
68.9% specificity, and 3.7% NPTP, but morphometry
was not feasible in 64 of 224 (28.6%) patients because
of the absence of teeth.

Accuracy of Models of Any OSAS
AUCs in the estimation and validation subsets using
criteria for any OSAS (AHI � 5 events per hour; ESS
>10) are listed for single-stage and 2-stage models
(Table V). This definition yielded a higher prevalence of
22.9%. All models were less useful for predicting any
OSAS than for predicting s-OSAS.

Unattended HSTwas not useful in case-finding any
OSAS (AUC=0.591) (Table IV). Overall, 2-stage models
that screen for any OSAS (Table V, lower panel) were
significantly less useful than 2-stage models that screen
for s-OSAS (AUC range=0.606–0.672 vs 0.718–0.816,
respectively; Table III, lower panel).

Missing Data
Multiple imputations did not introduce significant bias.
Percent difference in AUC between pre-imputation and
post-imputation data was minimal (0.2% for NC) to
absent (all other single-stage models).

DISCUSSION
Among hypertensive outpatients, between 30% and
40% have OSA.32 Our case definition, severe OSAS with
sleepiness, was selected based on data from the Sleep
Heart Health Study (SHHS),11 which suggested that self-
reported sleepiness may indicate susceptibility to cardio-
vascular sequelae of OSA and mark patients who should
receive treatment priority. BP reduction may also be
greater in OSA patients who receive PAP treatment and
report sleepiness.4,9,10 Even with this added criterion, the
proportion of our cohort with s-OSAS was nearly twice
that of other middle-aged populations.33 This finding is
not surprising, given the high prevalence of risk factors
for OSA among veterans, including hypertension,
obesity, male sex, African American race, and habitual
alcohol consumption (Table I).34

Single-stage models with the best discriminatory
power in screening for s-OSAS were NC, facial morpho-
metrics, and MVAP. MVAP and NC proved particularly
good screening tools with sensitivities of 91.5% and
85.6%, respectively, at optimal cutpoints of 0.483 for
MVAP and 42.6 cm for NC. Morphometry was less
feasible thanMVAP or NC because 28.6% of the sample
lacked first, second, or third molars; therefore, interm-
olar distance could not bemeasured to compute the facial

TABLE IV. Discriminatory Power of Home Sleep Testing for Any or Severe Obstructive Sleep Apnea Syndrome

HST Cutpoint (uAHI) AUC SENS SPEC Neg LR NPTP

Severe OSAS 16.0 0.727 0.747 0.706 0.357 0.029

Any OSAS 8.9 0.591 0.718 0.478 0.573 0.159

Abbreviations: AUC, area under the receiver operating characteristic curve; HST, home sleep testing; NegLR, negative likelihood ratio; NPTP, Negative

post-test probability; SENS, sensitivity; s-OSAS, severe obstructive sleep apnea syndrome; SPEC, specificity; uAHI, Apnea-Hypopnea Index from

unattended HST. Apnea-Hypopnea Index [AHI] �30 events/h + Epworth Sleepiness Scale [ESS] >10). Any OSAS = AHI �5 events/h + ESS >10.

TABLE V. Discriminatory Power of Models for Predicting Any Obstructive Sleep Apnea Syndromea

Single-Stage Model AUC Cutpoint SENS SPEC Neg LR NPTP

NC, cm 0.612 42.650 0.849 0.520 0.254 0.078

Morphometrics 0.579 50.976 0.872 0.299 0.428 0.124

MVAP 0.614 0.559 0.694 0.565 0.524 0.148

BMI, kg/m2 0.609 29.168 0.794 0.444 0.460 0.132

Symptoms 0.630 0.916 0.790 0.537 0.380 0.112

Age, y 0.507 45.825 0.780 0.236 1.013 0.251

Two-Stage Model AUC LB UB HST Cutpoint SENS SPEC Neg LR NPTP

NC, cm 0.658 39.1 43.4 21 0.733 0.584 0.436 0.126

Morphometrics 0.658 31 96 11.25 0.867 0.449 0.279 0.085

MVAP 0.672 0.255 0.69 13.5 0.805 0.540 0.349 0.104

BMI, kg/m2 0.649 24 36.25 13.5 0.789 0.509 0.394 0.115

Symptoms 0.652 1.175 3.175 20 0.580 0.723 0.578 0.161

Age, y 0.606 30.75 59.25 11 0.772 0.441 0.436 0.126

Abbreviations: AUC, area under the receiver operating characteristic curve; BMI, body mass index; HST, home sleep testing; LB, lower bound; MVAP,

multivariable apnea prediction score; NC, neck circumference; NegLR, negative likelihood ratio; NPTP, Negative post-test probability; SENS, sensitivity;

SPEC, specificity; uAHI, Apnea-Hypopnea Index (AHI) from unattended HST; UB, upper bound.

aAny obstructive sleep apnea syndrome = AHI �5 events/h + Epworth Sleepiness Scale >10.
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morphometry score. Given the relative ease of measuring
NC in routine clinical practice, our findings support its
utility for initial patient evaluation for s-OSAS.

Despite its mathematical complexity,16 the MVAP
can be computed using mobile, desktop, or Web-based
applications using easily obtainable clinical informa-
tion, which makes the MVAP a viable option in mass s-
OSAS screening. MVAP calculation also lends itself well
to emerging technologies such as sleep telemedicine,
where BMI, sex, age, and symptoms can be obtained
remotely and used to obtain the risk score.

Each of the 3 top-performing single-stage models
demonstrated improved discriminatory power when
used in tandem with HST. Facial morphometrics
followed by HST showed the best power
(AUC=0.816), although NC and MVAP were almost
as powerful in the 2-stage models (AUCs=0.803 and
0.799, respectively). In all models, combining easily
obtainable clinical information combined with HST (cut
point AHI=16 events per hour) increased discriminatory
power with higher AUC values.

We evaluated the impact that 2-stage algorithms
would have on the volume of in-laboratory PSGs. The 2-
stage models using NC, MVAP, or BMI were negative
for s-OSAS 66% to 67% of the time. Given a missed
case rate of only 0.5% to 1% in this group, one could
argue that confirmatory PSGs are probably not justified
on an economic basis, unless the cost of missing a case
proved to be inordinately high. A reduction in in-
laboratory PSGs by 66% to 67% may not only lower
diagnostic costs, but also reduce patient burden, while
increasing availability and accessibility of in-laboratory
studies for those who are not candidates for unattended
studies. Given the potential for adverse health effects of
missing cases, the low missed case rate is a desirable
feature of this program.

All models had less discriminatory power when we
considered OSAS cases of any severity. HST alone was
marginally useful, with an AUC of only 0.591 for
identifying any OSAS. Adding clinical data to these
studies improved accuracy in finding any OSAS only
modestly; AUC ranges 0.606 to 0.672 for 2-stagemodels.

Our hypopnea definition did not require desaturation.
This liberal definition is appropriate because it reduces
the likelihood of missing cases during screening. Used
for Medicare coverage for PAP, definitions that require
desaturation12 would lower disease prevalence, and
therefore improve the negative predictive value of our
screening models. Additionally, our study reveals a
modest decline in HST sensitivity for detecting any OSA
(AHI � 5 events per hour) when pulse oximetry is not
considered. HST devices incorporating pulse oximetry
have a sensitivity of at least 82.5% for detecting any
OSA,35 while our AutoSet-based scoring had 74.7%
sensitivity.

Feasibility
We conducted unattended sleep studies in 208 of 250
(83.2%) patients. We obtained usable data in 192 of

208 (92.3%) patients. Only 48 of 208 (23.1%) patients
required repeat testing. Similar failure rates were found
in another study.36 Future monitors may be simpler to
assemble, yet more accurate and successful. While we
obtained BMI, NC, and symptom scores in nearly
everyone, absent molars precluded us from obtaining
morphometric scores in nearly one third of patients.

Comparison With Prior Studies and Limitations in
Design
Symptoms were useful in our cohort, contrasting with
other sleep center cohorts.16 In our nonreferral, more
obese group, symptoms added robustness to the results,
yielding comparable AUCs in the validation and esti-
mation samples. Thus, symptoms may be useful in
general populations outside of sleep centers who have a
high prevalence of OSA-related risk factors. Symptom
data may be less useful, however, in occupational
screening, where reporting may be inaccurate.19

BMI was a powerful predictor of OSA in prior
studies,17,19 with AUCs of 0.938 and 0.802, respec-
tively. BMI was less useful in our program, with an
AUC of 0.665. We calculated the coefficient of variation
(CV = SD/mean*100%) to assess whether BMI was less
useful in our group caused by lower variance. However,
a CV of 22.9% in our study was comparable to a CV of
23.1% reported elsewhere.17 We surmise that unmea-
sured risk factors for OSA among the nonobese patients
in our group may have reduced the utility of BMI in this
study. Additionally, exclusion of nonhypertensive
patients may have degraded BMI predictive value.

HST tended to underestimate in-laboratory AHI for
the 33 to 45 event per hour range. These findings are
similar to those from previous reports comparing HST
and in-laboratory PSG.37 AHI on PSG is calculated as
the number of respiratory events per hour of sleep, while
HST monitors this index based on hour of use. Since
HST cannot differentiate sleep from wakefulness, its
respiratory indices may be lower than those seen on PSG.

Additionally, our AutoSet device utilized only nasal
cannula pressure changes to identify apneas and hyp-
opneas, as opposed to full PSG, which utilizes nasal
pressure and an oronasal thermistor in respiratory event
detection. When using nasal pressure alone (without a
thermistor) to detect respiratory events, less-stringent
criteria to score respiratory events may reduce missed
cases without raising false-positive rates.38 Monitors
that use more stringent criteria for scoring events than
those used by the AutoSet may miss more cases and
reduce the usefulness of unattended HST.

Strengths and Limitations
Ours is the first investigation of screening for OSAS
among a general population of hypertensive outpatients,
rather than sleep center referrals,22 with unattended
recordings of airflow and respiratory effort at home
(HST).21 The AASM has published guidelines22 and the
Centers for Medicare and Medicaid Services has
approved the use of this type of monitor for diagnosing
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OSA and initiating PAP therapy.39 The strengths of this
investigation include: (1) prospective application of
HST and full PSG, after administration of first-stage
screening tools; (2) blinding of PSG scorers to all other
clinical data; (3) the use of a general medical rather than
subspecialty-based population; and (4) use of a defini-
tion of hypertension that is consistent with that used in
prior investigations, such as the SHHS.2

Given that our sample was comprised largely of
Caucasian and African American men, additional stud-
ies are needed to refine these models for other ethnic
groups in whom s-OSAS may occur in thin individuals
with intraoral or craniofacial risk factors,40–42 and
symptoms may be more important.16 The limited
proportion of women (20%) in this largely veteran
population reduces our ability to generalize these results
to them. Similarly, while age was more useful in other
settings, single-stage models that contained age in this
cohort had AUC <0.7, perhaps because of the restriction
of our sample to patients 30 to 65 years. Future
evaluations of OSA screening strategies should include
other ethnic, sex, and age groups.

CONCLUSIONS
Two-stage models can be used to screen for s-OSAS to
reduce the requirement for in-laboratory PSG in hyper-
tensive outpatients, a population with high disease
prevalence.2 Models using a facial morphometric score,
NC, and the MVAP at optimal cutpoints as the first
stage in these models demonstrated greatest utility. They
are less helpful in screening patients for OSAS of any
severity. Unattended HST works best when used in
tandem with clinical data rather than used alone,
particularly in screening for any OSAS, because of the
high likelihood of missed cases.
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