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Abstract

The collection and sharing of person-specific biospecimens has raised significant questions
regarding privacy. In particular, the question of identifiability, or the degree to which materials
stored in biobanks can be linked to the name of the individuals from which they were derived, is
under scrutiny. The goal of this paper is to review the extent to which biospecimens and affiliated
data can be designated as identifiable. To achieve this goal, we summarize recent research in
identifiability assessment for DNA sequence data, as well as associated demographic and clinical
data, shared via biobanks. We demonstrate the variability of the degree of risk, the factors that
contribute to this variation, and potential ways to mitigate and manage such risk. Finally, we
discuss the policy implications of these findings, particularly as they pertain to biobank security
and access policies. We situate our review in the context of real data sharing scenarios and
biorepositories.

Introduction

The medical community is in the midst of a personalization revolution that promises to
make healthcare more efficient, effective, and safe (Collins 2010; Glaser et al. 2008;
Hamburg and Collins 2010). It is anticipated that one of the major contributors to this
revolution will be molecular medicine, where systems biology and genomics are leading the
charge (Burke and Psaty 2007; Green et al. 2011; Ng et al. 2009; Roses 2004). While the
notion of a biorepository is not a new concept [i.e., the medical community has collected
and stored biospecimens for centuries (Eiseman et al. 2003)], the decreasing cost of high-
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throughput technologies, combined with recent advances in information technology in the
clinical setting, has set the stage for large-scale biomedical association mining and
translational discoveries (Bellazi and Zupan 2008; Ritchie et al. 2010). In support of these
activities, organizations across the country and around the globe are stockpiling
biospecimens to facilitate medical research (e.g., Ollier et al. 2005; Louie et al. 2007). In
particular, a growing number of healthcare institutions are integrating biorepositories with
data derived directly from the clinical setting (e.g., Kullo et al. 2010; Lemke et al. 2010;
Roden et al. 2008). For instance, the NIH-sponsored electronic medical records and
genomics (eMERGE) network consists of a consortium of medical centers utilizing biobanks
to perform genome—phenome association studies with clinical phenotypes derived from
medical information systems applied in primary care environments (McCarty et al. 2011).

Until recently, the collection, analysis, and application of clinical and genomic information
were localized to specific investigators or institutions. Increasingly, however, scientists are
urged and at times required to share data to strengthen the statistical power of complex
association experiments and to allow the research community to replicate and verify
clinically relevant findings [e.g. (Guttmacher and Collins 2005; National Institutes of Health
2003, 2007)]. To assist scientists in achieving these goals, agencies around the globe
continue to invest considerable effort to construct information technology infrastructure,
such as the Database of Genotype and Phenotype (dbGaP) at the US National Library of
Medicine (Mailman et al. 2007), which will facilitate the consolidation, standardization, and
dissemination of patient-specific records from disparate investigators. Other countries, such
as the UK, which created the UK Biobank, have chosen to centralize primary collection of
data (Ollier et al. 2005).

At the same time, the increased collection and sharing of sensitive biomedical information
have raised significant societal issues, including concerns over patient privacy, which could
easily derail these efforts (McGuire and Gibbs 2006). One of the major privacy issues has
been identifiability, i.e., the extent to which materials and data stored in biobanks can be
linked to the name of the individuals from which they were derived. The goal of this review
paper is to determine the extent to which biospecimens, and derived data can be designated
as identifiable.

Identifiability and data sharing policies

In general, one of the primary strategies that organizations have traditionally used to deal
with privacy threats is by defining and adhering to data sharing policies.1 For instance, when
sharing of data from NIH sponsored investigations is required, the NIH policies (National
Institutes of Health 2003, 2007) specify that the data should be disseminated in a manner
that is devoid of identifiers. In practice, the NIH recommends the removal of an enumerated
list of potential identifiers, similar to the “Safe Harbor” de-identification standard of the
Privacy Role associated with the Health Insurance Portability and Accountability Act of
1996 (U.S. Department of Health and Human Services 2002). This list includes explicit
identifiers, such as names and Social Security Numbers, as well as potential quasi-
identifiers, such as dates and geocodes more specific than the first three digits of a zip code.
Yet, when after such features are removed from clinical information associated with
genomic data, the residual sequence of nucleotides can be well distinguished. But, it should
be recognized that the ability to distinguish records, whether genomic or clinical, from each
other is not the same as the ability to identify from whom they came, a point that we expand
upon below. The statistics are beyond the scope of this paper, but we note that, by some

Lother strategies leverage security measures to limit access, but are beyond the scope of this discussion. We refer the reader to
Langella et al. (2008) and Lemrow et al. (2007) for further discussions on such security practices.
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estimates, only about 100 single nucleotide polymorphisms (SNP) are required to
distinguish an individual’s DNA record (Lin et al. 2004, 2006). Moreover, it may be
possible to ascertain information about the genetic or clinical status (if it is included in the
record) of family members based on the heritability relations (Cassa et al. 2008). It is also
possible to ascertain ancestral origin (Phillips et al. 2007) and some investigators are
exploring ways to infer broad physiognomic characteristics from genomic sequence (e.g.,
Kayser and Schneider 2009; Ossorio 2006). As a result, until recently, it was the policy of
dbGaP to publicly post online only the aggregate case—control information for each SNP in a
study (i.e., the likelihood a person from the case group harbored a particular SNP variant,
and similarly for the control group). Concerns were subsequently raised, however, over
reports that, even when an individual’s DNA is disseminated in an aggregated form, an
individual with knowledge of a particular person’s DNA could determine if he or she was in
the case group, control group, or neither group (Clayton 2010; Homer et al. 2008; Wang et
al. 2009). In response, the NIH and Wellcome Trust removed genomic summaries of case
and control cohorts from the public section of databanks, including dbGaP (Zerhouni and
Nabel 2008).

Certainly, such attacks on patients’ privacy are plausible, but the ability of perpetrators to
utilize genomic data to compromise privacy is, for the time being, limited. The main reason
is that perpetrators (i.e., the people seeking to identify an individual in a dataset) must
possess an identified reference sample of DNA, which typically is hard to come by. In
addition, it begs the question of how likely such an attack can be performed. Later in the
paper, we posit scenario in which the DNA records in a biobank may be exploited for
identification purposes; however, at this point we wish to impress upon the reader that a
greater risk resides in the possibility of matching clinical records with public information (El
Emam 2008; Lowrance and Collins 2007). This point cannot be overstated. For instance, in
the 1990s, it was famously illustrated that one could purchase the Cambridge, MA voter
registration list for $20 and link it to a public version of the state’s hospital discharge
database through the combination of date of birth, gender, and residential zip code, thus
revealing the identities associated with many clinical diagnoses, including the governor’s
diagnosis (Sweeney 1997). This event provided impetus for the Safe Harbor standard
mentioned earlier.

We urge that defining the effectiveness of de-identification strategies at reducing re-
identification risks is necessary to develop ethically sound research policy. Using well-
characterized tools for de-identification will promote more informed choice and thereby
encourage the inclusion of data from a broader array of people than “information altruists”
who disclaim specifically any guarantee of anonymity (Kohane and Altman 2005; Lunshof
et al. 2008). Knowledge of the actual re-identification risk associated with a given dataset
also would help resolve whether data are underprotected and in need of additional
safeguards, or overprotected such that data sharing policies could be more permissive.

A risk-based framework to identifiability

In addition to the case mentioned above, an increasing number of investigations demonstrate
how genomic and health information, devoid of explicit identifiers, could be re-identified to
the corresponding patient (e.g., El Emam et al. 2006; Loukides et al. 2010a; Malin and
Sweeney 2004; Sweeney 1997). However, it is important to recognize that there is a
significant difference between the description of a path by which such information could be
re-identified and the likelihood that such a path would be leveraged by an adversary in the
real world (Malin et al. 2010). In this regard, regulations such as HIPAA Privacy Rule, are
not specified in a manner that precludes the dissemination of data that could be re-identified.
Rather, the Privacy Rule explicitly states that the extent to which health information can be
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designated as de-identified must account for the context of the anticipated recipients who
use reasonable means to attempt to re-identify the information.

As such, we should consider the broader environment in terms of how a reasonable recipient
would attempt to pursue re-identification. Table 1 summarizes the principles that could be
utilized to determine if health data are sufficiently de-identified (Malin et al. 2010). These
principles build on those defined by the Federal Committee on Statistical Methodology
[which is referenced in the original publication of the Privacy Rule, see (Subcommittee on
Disclosure Limitation Methodology, Federal Committee on Statistical Methodology 2005)].
In general, it helps to separate the health information attributes, or types of data, into classes
of relatively “high” and “low” risks. Although risk actually is more of a continuum, this
rough partition illustrates how context impacts risk.

Based on the criteria described in Table 1, we can now perform a risk assessment. The
greater the replicability, availability, and distinguishability of the health information, the
greater the risk for re-identification. As an example of a low risk environment, consider that
laboratory values may be very distinguishing, but they are rarely independently replicable
and are rarely disclosed in multiple and widely accessibly resources. In contrast, as an
example of a high risk environment, consider that demographics can be highly
distinguishing, are highly replicable, and are available in public resources.

Modeling and Measuring Re-identification Risks

For illustration purposes, we apply this framework to a known, highly likely threat.
Particularly, we focus on recent work which provides a demonstration of how decision
makers can model and measure privacy risks in an easy to digest manner with respect to
existing policies in the context of known threats (Benitez and Malin 2010). We aim to use
this forum to illustrate the power and insight such an approach can provide to decision
makers. As a starting point, it is crucial to recognize that, when disparate organizations
adhere to the same data sharing policy, the privacy risks will vary mainly because the
organizations function in varying regulatory contexts and manage data on different
populations. The question one must now ask is: once information is shared, to what extent
can someone with little knowledge (apart from the shared data and other public resources)
exploit it for re-identification purposes? The general format of a re-identification attack is
depicted in Fig. 1.

In this case, a de-identified dataset released from an information holder, such as a medical
facility, is found to have commonalities with another dataset drawn from the same
population. The latter dataset contains names or other identifying information and it is
known as the identified dataset. If a record in the de-identified dataset matches only one of
the records in the identified dataset, there is a potential for unique re-identification. Such
matches are certain re-identifications only if the identified dataset contains information on
everyone in the de-identified dataset, otherwise there may be one or more individuals who
have the same characteristics over the attributes used to perform the match but are not
represented in the identified sample. The more complete the identified dataset, and the more
fields in common between the two datasets, the less the likelihood of false re-identifications.

A recent study investigated risks associated with re-identification attacks that require
nothing more than a computer, some data, and a basic knowledge of spreadsheets or
databases in personal computing software, such as Microsoft Office (Benitez and Malin
2010). We derived a baseline estimation of re-identification achieved through demographics
using the US Census and statistical estimation techniques (Golle 2006). Data from the US
Census were selected because it provides robust estimates of the US population, and thus the
number of unique persons based on the demographic attributes constitutes a ceiling on the
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number of true re-identifications possible through such attributes, namely county, date of
birth, gender, and race. In Texas in the year 2000, for instance, approximately 31,000 people
were estimated to be unique based on these four attributes. In contrast, approximately 300
people in Delaware were estimated as unique based on the same characteristics. These
numbers correspond to 0.14 and 0.03% of the total population in the year 2000 for Texas
and Delaware, respectively. These estimates are a measure of re-identification potential, but
such demographics may not be available in identified datasets because datasets are often
subject to some sort of policy-based transformation before they are shared.

To paint a more complete picture of the effects that policies exert on re-identification risk,
the study investigated two data sharing policies currently in use, both set forth in the Privacy
Rule of the Health Insurance Portability and Accountability Act (HIPAA): Safe Harbor and
Limited Dataset (U.S. Department of Health and Human Services 2002). Data released
under Safe Harbor provisions are approved for distribution to a wide audience. To conform
to Safe Harbor, 18 potentially identifying features must be removed from the data prior to its
dissemination. These features include dates and geographic areas with a population smaller
than 20,000 people, for example. The Safe Harbor policy permits the disclosure of
demographic features such as race, gender, residential state, and year of birth.2 In contrast,
information shared according to the Limited Dataset can contain additional, more detailed
data, including dates and zip codes. However, recipients of data that are shared according to
the latter policy must sign a use agreement that prohibits re-identification. That said, it can
be estimated how much more risky it is to disseminate records using the Limited Dataset in
comparison to Safe Harbor policy. Using Tennessee as an example, Benitez and Malin
(2010) estimated that there were approximately 60 unique people in the state (0.001% of the
population) who are vulnerable to re-identification, based on the demographics available in a
release that consists of race, gender, residential state, and year of birth. In contrast, they
estimated 1.8 million people in Tennessee (32% of the population) are unique based on
demographic information permissible in Limited Dataset releases. This constitutes a 30,000-
fold increase in re-identification risk, which suggests that the drafters of HIPAA trusted
researchers 30,000 times more than the general public. This trust differential multiplier
varies from state to state, ranging from less than 1,000 to more than 100,000, roughly
increasing with the size of a state’s population. Clearly, the same types of data released in
two different states are subject to two very different levels of privacy risk.

From Distinguishable to Identified

The final piece of the puzzle is the identified dataset. Each state, and each record holder
within that state, has different guidelines or regulations on handling and release of public
records. Voter registration lists, mentioned in the earlier re-identification attack by Sweeney
(1997), are not the only kind of public record, nor are public records the only sources of
identified demographic information. However, voter registration lists are considered an ideal
identified dataset mainly because they:

» cover a large portion of the adult population,

» generally contain current information, typically contain a wide variety of
information, and

» can be obtained at low cost.

2|t should be noted that Safe Harbor actually permits the first 3-digit zip code of a region to be disclosed when the population is
greater than 20,000. We use the simplification of state of residence for illustrative purposes and because it has been observed that
many organizations choose to withhold such information in their application of the policy.
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To characterize the threat of voter registration databases in today’s climate, the previous
mentioned identifiability study surveyed the elections department of each US state (Benitez
and Malin 2010). It was found that current policies differ widely on many dimensions,
including who is eligible to receive copies of voter registration data, what information is
included, and how much the lists cost. For instance, 30 states included information on
voters’ year of birth, while only six included information about race.

Given this knowledge, re-identification risk estimates were recalculated with respect to the
availability of states’ voter registration databases. When permissive Limited Dataset
stipulations were docked against the information available in the public records, it was
observed that the number of fields available for re-identification tends to decrease, as does
the risk.

In some states, such as Tennessee, for instance, the risk does not change significantly.
Overall, however, 45 states revealed less information in their public voter registration lists
than was available through Limited Dataset provisions. In many states, such as Oklahoma,
the risk was slightly lower than the original Limited Dataset estimate. In other states, such as
Ohio, the risk approached that of the Safe Harbor policy. In certain extreme cases, such as
Wisconsin, very little demographic information was available in voter rosters that the re-
identification threat virtually disappeared. Intruders attempting to re-identify data from such
states would be hampered, not by the health data protection policy, but by the paucity of
identified information available from their state.

Thus, while current data sharing policies seek to create a level playing field of privacy risk,
the landscape is more complex and varied than even the example just discussed. There are
myriad types of public datasets, as well as re-identification attacks (Malin 2005a) and as the
amount of data grows, the likelihood of successful attacks may increase.

Estimating the number of people with a unique combination of features is applicable to non-
demographic attacks as well. Finding naming sources for certain types of data will be more
difficult than others, but assuming that such sources exist, it is desirable to have some
estimate of the distribution for the values found in the intersecting fields.

Towards risk mitigation

We should not be content with measuring risk, but should proactively mitigate it. This can
be achieved using an array of strategies that have been developed by federal statistical
agencies to protect survey data and have collectively been referred to as statistical disclosure
control approaches. These strategies were designed to generate data that preserve certain
aggregate statistics, without revealing the data of any particular individual and include roise
addition (e.g., random value changes in a record), data swapping (e.g., exchanging values
across records) and synthetic data generation (e.g., data based on properties of the original
records, without corresponding to any real individuals). A proper survey of these methods is
beyond the scope of this paper, but we direct the reader to several excellent surveys on the
topic (Adam and Wortman 1989; Willenborg and De Waal 1996).

While offering solid privacy guarantees, the majority of such methods have been of limited
application for data deposited to biorepositories. A primary reason is that they can ascribe to
individuals values they did not originally have. Thus, risk mitigation strategies specialized to
health and genomic data tend to focus on strategies that are able to preserve data
truthfulness. Two popular methods that address this requirement are generalization, which
replaces values with more general but semantically consistent values, and suppression,
which removes values from the released data (Sweeney 2002a; Samarati 2001; Bayardo and
Agrawal 2005; EI Emam and Dankar 2008).

Hum Genet. Author manuscript; available in PMC 2013 April 09.
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However, these methods should not be applied in an ad hoc manner because, if not used
properly, they can overdistort or inappropriately protect records. Rather, they are often
applied in the context of formal anonymization models, such as what we term k-based
models. These models are based on the premise that each record must be indistinguishable
from at least k- 1 other records with respect to quasi-identifiers. Variants of these models
include A~map (Sweeney 2002b), A~anonymity (Sweeney 2002a; Samarati 2001), privacy-
constrained anonymity (Loukides et al. 2010b), A-unlinkability (Malin 2007, 2008), and 4-
ambiguity (Vinterbo et al. 2001). Without delving too far into the details of these models, it
is important to recognize that they differ in the assumptions made about a data recipient’s
ability to leverage an identified source for re-identification purposes. For instance, Amap
assumes that an attacker attempts to link each published record to the entire population from
which a patient was derived. More concretely, if a record in a biorepository was submitted
by Vanderbilt University Medical Center, then the recipient may assume that the
corresponding individual was from the surrounding vicinity, and might be any resident of
Tennessee, Kentucky, or Alabama. Alternatively, the Aanonymity model assumes that the
recipient is more knowledgeable and is aware of the exact set of people for which the
records correspond. For example, if a cohort consists of 100 patients, it is assumed that the
recipient knows who the 100 patients are, but not which exactly their record is nor their
genomic sequences.

Approaches that enforce A-based models using generalization and suppression have been
applied to various types of data that could be exploited for re-identification purposes. For
instance, they have been utilized to protect patient demographics (Chiang et al. 2003; El
Emam and Dankar 2008; EI Emam et al. 2009; Sweeney 2002a; Vinterbo et al. 2001, Wang
et al. 2004), genome sequences (Lin et al. 2002; Malin 2005b; Li et al. 2011), and diagnosis
codes such as International Classification of Disease codes (Loukides et al. 2010a, b). At the
same time, it is crucial to recognize that these approaches must be adapted for the type of
data they are applied to and the intended purposes of use.

For illustration, let us take a moment to expand on the diagnosis code anonymization
problem. The attack involves the use of an identified dataset containing individuals’ names
and diagnosis codes, which can be obtained in several ways: (1) by accessing a health care
provider’s electronic medical record system from which the de-identified data has been
derived, or (2) by combining public records (e.g., voter registration lists) with de-identified
hospital discharge records. By linking the identified to the de-identified datasets, based on
the combinations of potentially distinguishing diagnosis codes, an attacker can associate
individuals with their de-identified records to infer their diagnoses, as well as sensitive
information, such as genomic sequences contained in samples that are disseminated in the
context of a genome wide association study (GWAS). Guarding against such an attack while
ensuring that the released dataset permits the discovery, and validation, of clinically useful
associations between diagnoses and genomic variants is a challenging computational task.
To achieve this task, Loukides et al. (2010b) proposed a method to group potentially
distinguishing diagnosis codes together to satisfy a A~based model, which requires each
published record to be equivalent to at least A&~1 other records in the published dataset with
respect to these diagnosis codes. The ability of this method to produce data that both
mitigates re-identification attacks and remains useful for conducting GWAS was empirically
shown using a real cohort of patients’ records that were to be deposited in dbGaP.
Specifically, using a sample of approximately 3,000 patients for whom a GWAS was run on
native electrical conduction within the ventricles of the heart, it was shown that diagnosis
codes indicative of various cancers with known SNP associations, such as breast cancer,
lung cancer, and pancreatic cancer, could be shared without violating the formal privacy
model.
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Though A-based models afford a provable level of protection for each record, they are
stricter than is required by regulations and may hinder data analytics (Benitez et al. 2010).
One reason is that these models set the risk of a data-set to that of the least protected record,
thereby assuming a worst-case scenario. As an alternative, a model based on the average risk
has been proposed (Benitez et al. 2010; Dankar and EI Emam 2010) and evaluated on a
variety of patient cohorts submitted by the eMERGE network to dbGaP (Malin et al. 2011).
Through this exercise it was illustrated that solutions could be tailored to the needs of the
cohorts. For instance, it was illustrated that detailed age information on a cohort of elderly
patients involved in a dementia GWAS could be disclosed provided certain demographics
were generalized, such as rare ethnicities with minimal ability to contribute sufficient power
to association studies. We further note that a risk-based model that is similar in principle to
those of Benitez et al. 2010 and Dankar and EI Emam 2010 but not developed for guarding
against re-identification, has been proposed by Sankararaman et al. 2009. The model
attempts to prevent an attacker from determining if an individual is characterized as a case,
control, or neither of the two. It is applied to pooled DNA sequence data (i.e. individual SNP
vs. phenotype status) and is useful in determining how many, and which, SNPs could be
shared publicly.

Table 2 summarizes four popular approaches based on generalization and suppression that
have been evaluated on the types of data that may be disseminated into biorepositories,
namely demographics and standardized diagnosis codes. For each approach, we discuss the
re-identification attack it addresses, the privacy principle and transformation method it
applies, and how it attempts to ensure the data remain useful for biomedical and genetic
analysis.

While the existing re-identification mitigation approaches are an important step forward,
enabling data providers to measure the re-identification risk of the data they intend to
disseminate remains challenging. A critical issue at this juncture is that there are no agreed
upon standards of acceptable level of re-identification risks.

Public concerns: how realistic?

Despite the evidence above that re-identification is largely preventable, some members of
the public remain worried about the use of research data by people outside the health care
and research enterprises to identify individuals (Botkin 2001; Clayton et al. 2010; Haga and
O’Daniel 2011; McGuire et al. 2008b). Concerns include insurance and employment
discrimination (Lemke et al. 2010), paternity identification (Miler 2009) and, in particular,
use by the criminal justice system (Lemke et al. 2010). Clinical DNA databases can be used
for forensic purposes, as it was dramatically illustrated by the case of Anna Lindh, the
former Swedish Minister for Foreign Affairs who was stabbed to death in a Stockholm
department store. The police obtained the newborn blood spot of the alleged murderer to
confirm the murderer’s identity and elicit a confession (Hansson and Bjérkman 2006). A
subsequent survey of the Swedish public reported that more than 85% thought it was
acceptable for police to access these kinds of samples for criminal investigations (Bexelius
et al. 2007). Similar requests for identified clinical data sets have been made in other
jurisdictions as well (Hindmarsh and Abu-Bakar 2007).

Not all observers or members of the general public have been so supportive of forensic use
of clinical and research samples (Mccartney 2004; Kaye 2006). The NIH has long allowed
local investigators and their institutions to obtain certificates of confidentiality to protect
identified research data from forced disclosure, evincing a clear policy choice that research
trumped the justice system (National Institutes of Health 2002). These certificates, however,
are not widely used, and questions have been raised about their effectiveness despite
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occasional anecdotes of their utility (Currie 2005; Wolf and Zandecki 2006). In any event,
these certificates are not available for databanks located within the federal government, such
as dbGaP.

Adults in the US appear to be concerned about forensic uses. Recent focus groups asking
almost 5,000 adults in the United States their views about participating in a hypothetical de-
identified national biobank reported that “84% felt that it would be important to have a law
protecting research information from law-enforcement officials” (Kaufman et al. 2009).
Despite these concerns, the NIH in its most recent iteration of the GWAS data sharing
policy, which governs dbGaP, “acknowledges that legitimate requests for access to data
made by law enforcement offices to the NIH may be fulfilled” (National Institutes of Health
2007). But rather than launching a wholesale assault on the GWAS data sharing policy, the
more relevant question may be to ask how likely it is that law enforcement would try to
access data in dbGaP or any other de-identified biobank for purposes of identifying a person.
The answer depends not only on the difficulty of re-identifying someone using these de-
identified datasets but also the likely availability of other sources of more readily identified
data, such as CODIS (Anonymous 2011) and obtaining DNA samples from relatives (Miller
2010). The resulting risk that law enforcement would seek access to dbGaP to try to identify
a criminal is almost surely quite low.

A final note

Much has been made of the uniqueness of an individual’s DNA sequence, but it is not yet
possible to identify a person without an identified sample of DNA. Science is simply not
good enough at present, and it probably will never be, to predict complete phenotype from
genomic DNA, save for some Mendelian traits. Nonetheless, there are certain manners by
which DNA in biorepositories can be exploited for identification purposes. As such,
biobanking managers and policy managers should keep in mind the following points when
addressing identifiability issues.

» Recognize the Difference Between Perceived and Realistic Risks: The literature
reports on numerous ways by which data stored in biorespositories could be re-
identified. Yet, many of these exploits require significant effort and luck to
accomplish successfully. For instance, one of the more likely risks to realize is that
someone who has a sample of DNA from an identified individual would seek to
determine whether that person’s DNA was in a research dataset. However, it is
difficult to imagine why someone would want to do that, except to prove that it is
possible, or at least why making such a match would cause any harm to the
individual. In this vein, we recommend that managers be vigilant regarding the
difference between proof of concept attacks published in the literature, as well as
reported on in the media, versus realistic attacks. One will never create a perfectly
secure system or, in this case, a system devoid of re-identification risks.

« Build Realistic Models of Identifiability: Beyond uniqueness of a DNA sequence,
additional data types in biorepositories (e.g., demographics, standardized codes)
could be leveraged for re-identification purposes. We encourage managers to be
vigilant and model which features could be leveraged for identification purposes,
through which resources, and by whom.

» Quantify and Mitigate the Identification Risks: Once practical models of risk are
defined, biorepository managers adopt appropriate approaches to measure re-
identification risk. It is important to measure risk for their specific repository
because risks are context-dependent. The risk associated with a de-identification
policy for a particular repository does not necessarily transfer to another repository
due to differences in patient populations, availability of identified resources, and
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cost associated with perpetrating an attack. In additional, when risks are determined
to be higher than desirable, we suggest that managers adopt mitigation strategies,
such as access control or abstraction of features deemed most risky (e.g.,
demographics).

In light of these observations, managers should note that it is difficult, if not impossible, to
dictate a perfect recipe for designing a safe biorepository. However, diligence and
pragmatism can help in designing an appropriate mix of technical and policy-based controls
to mitigate identifiability risks.

Conclusions

We wish to stress that though only a limited number of privacy breaches have been reported,
this does not imply that data is safe. It is difficult to detect when a re-identification has
occurred and even more challenging to prove such an action in a legal setting. However, we
can model a potential attacker’s resources and knowledge and quantify risks. Using methods
to assess the risk posed by those attack models we think most probable, we can tailor data
sharing policies in light of real information.
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A general framework assessing and mitigating health data re-identification risks. Note that

mitigation is performed with respect to the information in the biorepository. This is because
data that are a NSl ready public can not be controlled by biorepository managers
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Principles to assist experts in the determination of the identifiability of health information

Principle

Description

Examples

Replication

Resource availability

Distinguishability

Prioritize health information features into levels of
risk according to the chance it will consistently occur
in relation to the individual

Determine which external resources contain the
patients’ identifiers and the replicable features in the
health information, as well as who is permitted
access to these resources

Determine the extent to which the subject’s data can
be distinguished if health data is disseminated

Low: results of a patient’s blood glucose level test will vary

High: Demographics of a patient (e.g. birthdate) are relatively
static

Low: The results of laboratory reports are not often disclosed
with identity beyond healthcare environments

High: Patient identity and demographics are often in public
resources, such as vital records—birth, death, and marriage
registries.

Low: It has been estimated that the combination of Year of
Birth, Gender, and 3Digit ZIP Code is unique for
approximately 0.04% of residents in the United States
(Sweeney 2007). This means that very few residents could be
indentified through this combination of data alone

High: It has been estimated that the combination of a patient’s
Date of Birth, Gender, and 5 Digit ZIP CODE is unique for
over 50% of residents in the United States (Golle, 2006,
Sweeney 2002a, b). This means that over half of US residents
could be uniquely described just with these three data elements
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Technical approaches to anonymize demographic and clinical information supplied to biorepositories

Approach

Privacy principle and data on which applied

Transformation method

El Emam and Dankar (2008)

k-anonymity and approximate A-map applied to demographics

Benitez et al. (2010); Dankar and El Limit average re-identification risk when sharing demographics

Emam (2010)
Loukides et al. (2010b)

k-based model applied to potentially distinguishing diagnosis
codes

Generalization and suppression

Generalization

Generalization and suppression
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