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Abstract

In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into net-
works has received much attention in cognitive neuroscience. Empirical tools to study network coupling include
functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroenceph-
alography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simulta-
neously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power
are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations
are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain.
The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and
occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/
medial thalamus decreases and the ventral-medial prefrontal cortex is reduced in strength. These effects were
specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the
visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibi-
tion level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other tha-
lamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations
result in local and long-range neural connectivity changes.
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Introduction Besides conventional analyses that investigate task-related

changes in the strength of the BOLD signal, fMRI also offers

HE PAST FEW YEARS several studies using simultaneously

recorded electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) have addressed the rela-
tion between EEG power and the blood oxygenation level
dependent (BOLD) signal. These EEG-fMRI studies have pre-
dominantly investigated, where in the brain EEG power fluc-
tuations correlate with the BOLD signal in both resting state
(de Munck et al., 2009; Goldman et al., 2002; Laufs et al.,
2003a, 2003b; Mantini et al., 2007; Moosmann et al., 2003;
Scheeringa et al., 2008;) and task contexts (Hanslmayr et al.,
2011b; Sammer et al., 2007; Scheeringa et al., 2009, 2011).
Within these studies, the interest has focused mostly on the
local BOLD correlates of alpha power.

the possibility to investigate the connectivity in the BOLD sig-
nal between different brain regions. In task settings, this can
be studied by methods, including the psycho-physiological
interaction (PPI) (Friston et al., 1997) and dynamic causal
modeling (Friston et al., 2003), while in resting-state studies,
correlational methods (Biswal et al., 1995; Fox et al., 2005)
and independent component analysis are often used (Damoi-
seaux et al., 2006). However, the relationship between fMRI
connectivity and electrophysiological phenomena is largely
uncharted territory. Here, we explore how fMRI connectivity
of visual regions both within those regions, and between the
visual cortex and other brain regions as a function of posterior
EEG alpha power.
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We focus on the visual system because this network is re-
liably observed in resting-state fMRI studies (Damoiseaux
et al., 2006; Mantini et al., 2007). More importantly, the stron-
gest alpha oscillations are recorded from the posterior parts of
the scalp and have been linked to visual processing. The
source of these alpha oscillations is most likely located in
the early visual cortex (Hoogenboom et al., 2006, Makeig
et al., 2004a, 2004b). The visual system and the posterior
alpha rhythm are therefore well-suited to explore how
changes in fMRI connectivity relate to changes in EEG power.

Historically, alpha oscillations have been thought of as an
idling rhythm, indicating inactivity of brain regions (Pfurtsch-
eller et al., 1996). More recently, the view has changed toward
a functional role of alpha oscillation in inhibiting neural task
irrelevant regions (Klimesch et al., 2007; Mazaheri and Jensen,
2010). Both views lead to the hypothesis that increased
strength of alpha oscillations in a brain region is related to
the decreased connectivity with other brain regions. On the
other hand, the fact that alpha oscillations dominate the EEG
over the posterior scalp suggests that a large part of the visual
cortex is involved in the generation. This large-scale alpha-
band synchronization could be expressed in the increased con-
nectivity within the visual system.

To test these two hypotheses, we used simultaneously
recorded resting-state EEG and fMRI data. By using a PPI ap-
proach, we test whether connectivity of the primary visual
cortex with other regions inside and outside the visual system
differs for high versus low posterior alpha power originating
from the early visual cortex. The posterior alpha rhythm orig-
inating from the early visual cortex was isolated by applying
independent component analysis on the EEG data, and select-
ing the central posterior component (Makeig et al., 2004a,
2004b). With the PPI, we test whether the regression slope
between brain regions differs between conditions. If alpha os-
cillations are indeed related to idling or inhibition of task-
irrelevant regions, this would result in a reduced information
flow between brain regions and consequence a lower regres-
sion slope between brain regions. This would not be expected
if both regions are directly involved in the generation of
alpha. In this case, alpha power would be related to a stronger
alpha-phase synchrony between regions, which would indi-
cate a stronger corticocortical interaction, or a common thala-
mocortical drive (Hughes and Crunelli, 2005; Saalmann and
Kastner, 2011).

Methods
Subjects

Twenty right-handed volunteers (17 female, 3 male, age
range: 18-28) participated in the study after giving written in-
formed consent. None had a neurological impairment, expe-
rienced neurological trauma, or had used psychoactive
medicines or drugs. The subjects were paid a small fee for
their participation. The experiment was approved by a local
ethics committee (CMO region Arnhem/Nijmegen).

Design and procedure

First, the electrode cap was applied and instructions were
given. While in the scanner, the subjects first participated in
a working memory experiment for approximately 1h, di-
vided in three blocks (see Scheeringa et al., 2009, for further
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details). Then, a resting-state measurement was carried out
in which subjects were asked to watch a black fixation cross
presented on a gray background for 10 min. At the end of
the scanning sessions, a T1-weighted anatomical MRI was ac-
quired. Between measurements, there were short breaks of a
few minutes. Subjects were also allowed to leave the scanner
during these breaks. Only the data from the 10-min resting-
state measurement are used in the analysis presented here.
Other findings from this data set have previously been
reported in Scheeringa et al. (2008).

Electrophysiological recordings

EEG was recorded at 29 scalp sites (Fp1, Fp2, F3, F4, C3,C4,
P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, FC1,FC2,
CP1, CP2, FC5, FCé6, CP5, CP6, TP9, and TP10) with a MR-
compatible BrainAmp MR amplifier (Brainproducts, Munich,
Germany) and a custom-made MR-compatible electrode cap
equipped with carbon wired sintered Ag/AgCl electrodes
(Easycap, Herrsching-Breitbrunn, Germany). The reference
electrode was located at FCz. To record the vertical EOG,
one electrode was placed under the right eye. The ECG was
measured by two dedicated electrodes attached to the elec-
trode cap. One electrode was placed on the sternum; the
other electrode was placed on the clavicle, near the shoulder.
A 250-Hz hardware filter was placed between the electrode
cap and the amplifier. The EEG was recorded with a 0.16s
time constant and a 100-Hz low-pass software filter, and con-
tinuously sampled at 5kHz. Impedances were kept under
5kQ. Current limiting resistors were not part of the carbon-
wired electrodes. All recordings were done with Brain Vision
Recorder software (Brainproducts).

Image acquisition

MRI measurements were performed on a 1.5T Sonata
whole-body scanner (Siemens, Erlangen, Germany). Func-
tional images were acquired using a gradient echo EPI se-
quence (TR 2.34s, including a 50ms gap between volume
acquisitions; field of view=224mm, TE=30ms, 90° flip
angle, 33 slices, 3.0-mm slice-thickness with 0.5-mm slice-
gap; resulting in an isotropic voxel size of 3.5x3.5x3.5 mm).

MR artifact removal EEG

The EEG data were corrected for gradient and pulse artifacts
along the lines described by Allen and associates (1998, 2000)
using the Vision Analyzer (Brainproducts). A 20-volume, base-
line corrected sliding average was used for the correction of the
gradient artifacts. After gradient correction, the data were low-
pass filtered at 100 Hz and downsampled to 500 Hz. The aver-
age pulse artifact was calculated based on a sliding average,
time locked to the R-peak present in the bipolar derivation of
the two ECG electrodes. This sliding average was scaled to
an optimum least squares fit for each heart beat using the scal-
ing option in the Vision Analyzer before it was subtracted from
the data. The data were subsequently re-referenced to a com-
mon average reference. The original reference channel was
recomputed as FCz.

fMRI preprocessing

Processing of the fMRI data was carried out in SPM8. The
fMRI data were corrected for movements and slice
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acquisition time differences, anatomically normalized to the
canonical EPI template provided by SPMS8, downsampled
to 2x2x2-mm resolution and smoothed with an isotropic
Gaussian kernel (FWHM =8 mm).

Alpha power extraction

Alpha power was estimated based on the central posterior
alpha component that is reliably observed when independent
component analysis is applied to EEG data (Makeig et al,,
2002, 2004a, 2004b). Source analysis has indicated that the pri-
mary visual cortex is the most likely source of this component
(Makeig et al., 2002, 2004a). Here we applied extended info-
max independent component analysis (ICA) (Lee et al., 1999)
as implemented in EEGLab 6.01 (Delorme and Makeig, 2004)
on 7-13-Hz band-pass-filtered EEG data. Since many brain
and artifact processes occur at specific frequencies (e.g., the
medial frontal theta component and residual MR gradient ar-
tifacts), band-pass filtering before applying ICA increases the
reliability of observing the central posterior alpha component.
For each subject, one posterior alpha component was selected
based on the following criteria: it should have (1) a peak in the
alpha range (8-12 Hz) after the unmixing weights are applied
on the unfiltered data (see also Scheeringa et al., 2011 for a sim-
ilar approach) and (2) a central-posterior topography of the
mixing weights, which expresses the relative strength each
component time course is expressed at each electrode. The av-
erage power spectrum of the selected components was based
on power spectra computed from FFTs applied on Hanning ta-
pered 2s windows of the component time courses using the
Fieldtrip toolbox (Oostenveld et al., 2011). These settings result
in a resolution of the spectra of 0.5 Hz. These 2s windows were
shifted in 0.1-s steps. To be able to show the spectrum outside
the alpha range, the unmixing weights were applied on the un-
filtered EEG data before the spectrum was calculated. The av-
erage topography and power spectrum of the selected
components are depicted in Fig. 1.

Connectivity analysis

Previous work has shown that the posterior alpha power
component is likely generated in the primary visual cortex
(Makeig et al., 2002, 2004a, 2004b) and is inversely related
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to the BOLD signal close to source location (Scheeringa
et al., 2011). We therefore chose to base the selection of the
seed region on a correlation analysis between power fluctua-
tions in the posterior component and early visual cortex.
Alpha power correlated negatively with the BOLD signal in
the visual cortex. A part of the region that was correlated neg-
atively with the BOLD signal, and that was for the largest part
within the primary visual cortex (anatomy toolbox) (Eickhoff
et al., 2005) (for further details see below), was selected as
seed for the PPI analysis. We also computed standard func-
tional connectivity estimates of this seed region with the
rest of the brain, to establish which brain regions are con-
nected to the seed region in the primary visual cortex.

Alpha-BOLD correlation analysis

For the alpha power-BOLD correlation analysis, we fol-
lowed an EEG informed fMRI analysis approach (Debener
et al., 2006). The construction of the alpha power regressor
was based on a 4-Hz band centered around the individual
alpha peak (mean 9.73Hz, standard deviation 1.15Hz) ob-
served in the average spectrum of the selected independent
component. Power was averaged over the four frequency
bins (of 0.5 Hz each) below the peak frequency, the peak fre-
quency bin and the 3 bins above, resulting in a 10-min power
time course with a 0.1-s resolution. An EEG-based power
regressor was formed from this time course by subsequently
z-transforming the values for normalization, convolution
with the hemodynamic response implemented in SPM8 (www
filion.ucl.ac.uk/spm), and downsampling to one value for
each scan. Together with nuisance variables consisting of
the six realignment parameters and four compartment signals
(modeling the average signal in the gray matter, white matter,
cerebrospinal fluid, and outside the brain), this alpha power
regressor formed the design matrix for the analysis using
the general linear model implemented in SPM8. The compart-
ment signal averages were based on the segmented individ-
ual anatomical images (Ashburner and Friston, 2005).

At group level, the parameter estimates for the alpha
power-based regressor were tested against zero in a single-
sample t-test. Significance was assessed using the Gaussian
random field correction for multiple nonindependent
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FIG. 1. Average topography (A) and power spectrum (B) of the independent components selected for further analyses. The
topography is based on the individual root mean square normalized topographies of the independent component analysis
(ICA) mixing weights. These weights describe the relative strength and polarity at which the time course of a component is
projected onto the electroencephalography (EEG) channels. The single-subject power spectra that constitute the average spec-
trum were calculated after the ICA unmixing weights were applied on the unfiltered EEG data. The power spectrum was
averaged after normalizing the single-subject spectra to the maximum in the alpha-frequency range (8-12 Hz).
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FIG. 2. Maps of the anatomical locations of the significant
positive (red) and negative (blue) correlations with posterior
alpha power. All the regions, except for the cluster in the cer-
ebellum (p=0.07, corrected) shown here are significant after
cluster-level correction for multiple comparisons (p <0.05),
after passing an uncorrected threshold of p=0.01.

comparisons at the cluster level. Clusters were defined as ad-
jacent voxels passing a p=0.01 uncorrected threshold.

For comparison, we also performed the same analysis for
alpha power extracted from the electrode Pz, which is the
electrode at which the average scalp topography of the cen-
tral posterior electrode is maximal. All the analysis steps for
the alpha power estimation at this electrode and regressor
construction were the same as for the independent component-
based analysis. To investigate how strongly the channel-
based and independent component-based alpha regressors
are related, the squared partial correlation is computed for
each subject. The four compartment signals and the realign-
ment parameters were partialled out.

Functional connectivity analysis

The correlation analysis of the alpha power and the BOLD
signal yielded a negative correlation between alpha and
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BOLD with the strongest effect observed in the primary vi-
sual cortex. As a seed region, the largest significant cluster ob-
served at a voxel-level threshold level of 0.001 was selected.
At this threshold, this was the only significant cluster, and
it largely falls within the (predominantly right) primary vi-
sual cortex (68.3% of the volume of the cluster, anatomy tool-
box) (Eickhoff et al., 2005). The realignment parameters and
the four compartment signals were included as nuisance var-
iables in the linear model. Multiple comparisons correction
was carried out at the cluster level using the Gaussian ran-
dom field theory after applying an uncorrected voxel-level
threshold of p=0.01.

EEG modulation of BOLD connectivity: PPI analysis

The modulatory effect of EEG power on BOLD connectiv-
ity between the alpha correlation-based seed region in the vi-
sual cortex (the same seed as for the connectivity analysis)
and the rest of the brain was assessed using a standard PPI
approach (Friston et al., 1997). This method is usually used
to investigate task-related differences in connectivity between
experimental conditions, by testing whether the regression
slopes of the (BOLD) signals in different brain regions vary
as a function of the task conditions. Here our task variable
is the strength of the posterior alpha rhythm, which we di-
vided in two levels (high and low) based on a median split.
Connectivity changes, here, are therefore defined as a signif-
icant difference in the regression slope between the BOLD sig-
nal in the seed region and the rest of the brain as a function of
alpha power level.

The seed region in the early visual cortex was based on the
negative relation between BOLD and central posterior alpha
power. This region was chosen, because the likely source of
the central posterior alpha component is located in the pri-
mary visual cortex (Makeig et al., 2002, 2004a). We have pre-
viously demonstrated that the BOLD signal is negatively
correlated with alpha power (Scheeringa et al., 2011). There-
fore, this seed is the best choice to investigate how alpha os-
cillations originating from the early visual cortex modulate its
connectivity with other brain regions.

Like the functional connectivity analysis and the alpha-
BOLD correlation analysis, the PPI analysis can be formu-
lated in terms of a multiple linear regression. The contents
of the design matrix for this regression are graphically
depicted in Fig. 4C. The first two regressors of the design ma-
trix interest were formed from the seed BOLD signal in high

FIG. 3. Functional connectivity maps for a seed region in the primary visual cortex. Positive connections are depicted in red,
negative in blue. The same seed region as used for the psychophysiological interaction (PPI) analysis was used here and is
shown in green. All the regions shown here are significant after cluster-level correction for multiple comparisons (p <0.05),

after passing an uncorrected threshold of p=0.01.
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FIG. 4. Results for the PPI analysis. (A) Anatomical maps of the contrast estimates for the alpha-based PPI analysis. Red in-
dicates a positive contrast estimate, blue a negative. The seed region is depicted in green. All the negative effects and the pos-
itive effect in the thalamus are significant after cluster-level correction for multiple comparisons (p <0.05), after passing an
uncorrected threshold of p=0.01. The positive ventral-medial prefrontal cluster is marginally significant (p=0.054, corrected).
(B) Average parameter estimates for high and low alpha conditions for the significant clusters depicted in (A). *A significant
difference from zero (p <0.001). Error bars indicate the standard error of the mean. (C) A graphical representation of the design
matrix used in the PPI analysis for a typical subject. The contents of the regressors are indicated on the right. For display pur-
poses, the individual regressors are scaled such that the minimum is black and the maximum full white.

or low alpha power conditions. These two regressors of inter-
est form the basis for the PPI analysis. They were constructed
by first dividing the alpha power time course into 36 seg-
ments with a length of 7 MRI volumes (16.38 s). The EEG seg-
ments started 2 volumes (4.68 s) earlier to take into account
the delay of the hemodynamic response relative to the under-
lying neural activity. Subsequently, average alpha power was
calculated for each segment. The average alpha power was
calculated by averaging the values of the alpha power time
course used in the alpha power-BOLD correlation. Subse-
quently, the segments were divided in high and low alpha
segments based on a median split on the average alpha
power values per segment (the psychological variable). Two
regressors were formed based on this median split. The first
consisted of the seed BOLD-signal of segments when alpha
power was high and was zero otherwise. The second regres-
sor was constructed in the same way from low alpha power
segments. Before these regressors were formed, the seed
time course was transformed to reflect the percentage differ-
ence from the mean signal. By splitting high and low alpha
power up in two regressors, the connectivity maps for low

and high alpha power can be computed separately. Since
there were 257 volumes, which is not a multiple of seven,
the first five fMRI volumes were not labeled to be either
high or low alpha power. Besides these two regressors, two
regressors were included in the design matrix that model
the mean BOLD signal offset related to the high and low
alpha power conditions. The other confound regressors in-
cluded in the design matrix were the four compartment sig-
nals and the motion parameters. At group level, differences
in parameter estimates for the high and low alpha power
seed signals were tested by means of a dependent sample ¢-
test. Multiple comparison correction was carried out at the
cluster level using Gaussian random field theory after apply-
ing an uncorrected voxel-level threshold of p=0.01.
Differences found by this comparison are not directly inter-
pretable. For this, we need to know whether the connectivity
is negative or positive in the high and low alpha conditions
separately. Positive effects, for example, can be caused by a
negative coupling becoming weaker (e.g., closer to zero), or
a positive coupling becoming stronger when alpha power is
high. The reverse logic applies for negative effects. Therefore,
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we calculated the mean parameter estimates for high and low
alpha segments separately for the significant clusters. These
values were tested through single-sample t-tests against zero.

EEG modulation of BOLD connectivity:
frequency specificity of the PPI effects

For the regions in which power in the alpha-band modu-
lated connectivity with the seed, we investigate whether the
observed effects are specific for the posterior alpha rhythm
or whether they are related to changes in power across a
wider frequency range. Although the ICA denoising strategy
was optimized for isolating the posterior alpha rhythm, it re-
mains possible that our results are related to leakage from
neighboring frequency bands or general broad-band changes
in power that include that alpha band. Broad-frequency band
power changes have earlier been observed in humans (Miller,
2010), and broad shifts from higher to lower frequencies are
thought to be closely related to the BOLD signal (Kilner
et al., 2005). If these frequency a-specific effects leak into an
independent component modeling the posterior alpha com-
ponent, they will not be restricted to the alpha band when
the ICA unmixing weights are applied on unfiltered data. If
this is true, power changes outside the alpha-frequency
band are also expected to modulate the connectivity in a sim-
ilar way. To explicitly investigate this, we first applied the
unmixing weights of the selected alpha component to the un-
filtered data. By applying the unmixing weights of the alpha
IC to the unfiltered data, we apply a spatial filter for activity
in other frequency bands that favors a similar underlying
source configuration as the alpha rhythm. Subsequently, we
applied a time-frequency analysis of power for all frequencies
up to 30 Hz, again using two-second Hanning tapered win-
dows that were shifted in 0.1-Hz steps. A 4-Hz spectral
smoothing was carried out by computing the average signal
over the power time courses between the four bins below
and above the center frequency for each frequency bin
between 2.5 and 27.5Hz. Subsequently, for each frequency,
a PPI analysis as described in the previous section was per-
formed between the seed region and the average signal in
the regions for which connectivity changes were observed
in the alpha band. This produces a spectrum that indicates
the modulatory effect of power changes on fMRI connectivity
between 2.5 and 27.5Hz.

Significant effects of power on fMRI connectivity were
assessed using a nonparametric cluster-based randomization
procedure that effectively controls the type 1 error rate in a
situation involving multiple comparisons (Maris and Oosten-
veld, 2007). This randomization procedure allows for the con-
struction of user-defined test statistics tailored to the effect of
interest within the framework of a cluster-based randomiza-
tion test. It works by calculating the sum of a statistic of
choice over all data points within a cluster that exceeds an ar-
bitrary predefined threshold. Each cluster sum is then com-
pared with a distribution of maximum cluster sums
obtained by randomly permuting the labels of the indepen-
dent variable. Clusters that fall within the upper or lower
2.5% of the randomization distribution were considered sig-
nificant. The number of randomizations for computing the
reference distribution was set to 10,000. For the effect of
alpha power on BOLD connectivity, we used the t-value
obtained by the dependent-samples t-test between parameter
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estimates for the high and low alpha power seed region re-
gressors. Clusters were defined as adjacent frequency bins ex-
ceeding an uncorrected p-value of 0.01 for this t-test.

Since the unmixing weights were estimated on alpha band-
filtered data, the ICA component was partly selected on the
presence of an alpha peak in the spectrum, and the brain re-
gions for which the frequency-specific effects were computed
were based on the presence of an alpha effect; this analysis is
not intended to show that effects and other frequency bands
do not modulate BOLD-BOLD connectivity between regions.
This analysis is carried out to investigate whether the ob-
served effects here are related to the central posterior alpha
rhythm or if they are related to frequency a-specific effects.
Regions that do not show alpha band-modulated connectiv-
ity and are therefore not included here might show a modu-
lation with other or broader frequency ranges, and other
sources with different frequency characteristics that do not
pass the spatial filter provided by the alpha component
might still modulate connectivity between the regions stud-
ied here.

Results
Alpha-BOLD correlation

The maps for the correlation between alpha power and
BOLD are shown in Fig. 2. A large negative cluster is located
in the early visual cortex (k=3776,p=1.4x 10713, corrected for
multiple comparisons) with its maximum located in the right
extrastriate cortex (location according to the coordinate sys-
tem of the Montreal Neurological Institute (MNI): 30, —92,
22; z=3.79) and a second strong local maximum in the pri-
mary visual cortex (MNI coordinates: 2, —88, 10; z=3.78). A
second marginally significant cluster is observed in the left
cerebellum (MNI coordinates: —32, —38, —36; k=365;
z=3.80; p=0.070)

The strongest positive correlations are observed in the pos-
terior cingulate/precuneus (MNI coordinates: 6, —62, 28;
k=1294; z=5.25; p=5.2x10"°). Other positive correlations
were observed in the medial prefrontal cortex (MNI coordi-
nates: 0, 56, —10; k=6230; z=5.05; p<1x 10714), the left lateral
inferior parietal cortex (MNI coordinates: —38, —82, 38;
k=600; z=3.94; p=0.004) and the left (MNI coordinates:
-56, —14, —12; k=903; z=4.95; p:1.8><1074) and the right
(MNI coordinates: 64, —12, —16; k=480; z=4.61; p=0.017)
middle temporal gyrus and the right cerebellum (MNI coor-
dinates: 34, —54, —32; k=513;z=3.32; p=0.011). Except for the
cerebellum, these positively correlating regions are all part of
or associated with the default mode network (DMN) (Raichle
et al., 2001; Raichle and Snyder, 2007; Shulman et al., 1997).

For comparison, we performed the same analysis using the
electrode Pz as the basis for the alpha—BOLD correlation. The
squared partial correlation between the Pz-based and inde-
pendent component-based regressors was 0.495 (s=0.325),
indicating circa 50% of the variances is not shared. Sup-
plementary Fig. S1A (Supplementary Data are available
online at www liebertpub.com/brain) demonstrates that the
strength of the squared partial correlation varies strongly
over subjects. All normal partial correlations were positive.
While for seven subjects, squared partial correlations larger
than 0.8 were observed, other subjects showed substantially
lower values. This indicates that compared to other brain
and noise sources the relative strength at which the posterior
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alpha component is expressed at the electrode Pz varies con-
siderably over subjects. The comparison for the whole-brain
correlational analysis for the two regressors is depicted in
Supplementary Fig. S1B. This figure demonstrates there is
considerable overlap between the two approaches. When,
however, viewed in more detail, it demonstrates that the in-
dependent component-based alpha regressor is associated
with a larger area of negative correlations in the primary vi-
sual cortex than the channel-based regressor, while the re-
versed pattern is observed for negative correlations outside
the primary visual cortex. This suggests that the alpha
power fluctuations in the selected independent component
are more closely related to the primary visual cortex than fluc-
tuations at the channel level.

Functional connectivity

The maps for the functional connectivity with the (alpha-
based) seed in the primary visual cortex are depicted in Fig.
3. Positive correlations with the seed regions are observed
across a large part of the occipital lobe, encompassing both
striate and extrastriate visual regions. In addition, positive
clusters are observed in the dorsal anterior cingulate cortex
and the left temporal-parietal junction. In contrast, negative
correlations are observed in the posterior cingulate cortex/
precuneus, the medial frontal cortex, lateral inferior parietal
cortices, left and right middle temporal gyrus, bilateral infe-
rior frontal cortices, bilateral hippocampus, and bilateral sup-
plementary motor areas. Thus, these regions comprise the full
extent of the DMN, and additional areas.

PPI analysis

The results for the PPI analysis are depicted in Fig. 4. The
largest cluster with a negative effect was observed bilaterally
in the dorsal part of the occipital lobe, largely within area V3/
V3A (superior and middle occipital gyrus, MNI coordinates:
—18, —88, 42; k=665; z=4.59; p=0.001). A second cluster with
anegative effect was observed in the left inferior occipital cor-
tex, partly overlapping with area V4 (Fusiform and middle
occipital gyrus, BA19, MNI coordinates: —34, —70, —18;
k=583, z=3.44; p=0.003).

Two regions showing a (marginally) significant positive ef-
fect were observed. The first region was observed in the me-
dial and anterior thalamus (MNI coordinates: —4, —4, 10;
k=407; z=4.49; p=0.026). The second cluster was observed
in the ventral-medial part of the prefrontal cortex (BA32,
MNI coordinates: 18, 46, —10; k=352; z=3.81; p =0.054).

To interpret the effects, we need to take into account the
signs of the effects in the high and low alpha power condi-
tions. The average parameter estimates for the observed clus-
ters for both conditions are depicted in Fig. 4B. These results
indicate that for the clusters, where the parameter estimates
in the high alpha condition are lower than in the low alpha
condition (blue clusters in Fig. 4A), there is positive connec-
tivity between the seed and the clusters for both high and
low alpha power conditions. The difference, therefore, indi-
cates that for these clusters connectivity strength is lower in
the high alpha condition compared to the low alpha condi-
tion. For the two positive clusters (red clusters in Fig. 4A)
we see that for the low alpha condition coupling with the
seed region is negative. In the high alpha power condition,
this negative coupling is, however, virtually absent. Here
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the parameter estimates do not significantly differ from
zero. For all four clusters, the results seem to indicate that
the coupling strength with the seed region decreases when
alpha power increases, irrespective of whether there is a pos-
itive or negative coupling with the seed region.

To test whether the effects are specific to the alpha band, or
whether the effects are related to power changes over a wider
frequency range, we repeated the PPI analysis for all frequen-
cies between 2.5 and 27.5Hz in the observed regions. The re-
sults are depicted in Fig. 5. For all four regions, the effect is
clearly the strongest in the alpha band and for all four regions
only the effects in this band are significant after correction for
multiple comparisons. This indicates that the effects found for
these regions are specifically related to alpha power varia-
tions, and not related to broad-band power changes. Note
that the effects in the alpha band depicted in Fig. 5 are likely
inflated by selecting only significant clusters from the whole-
brain analysis.

Discussion

In this experiment, we studied how the resting-state con-
nectivity within the visual system and between the visual sys-
tem and other brain regions is modulated as a function of
posterior alpha power. We observed that the increased local
alpha synchronization, as indexed by an increase in power,
originating from the early visual cortex is associated with de-
creased fMRI resting-state connectivity within the visual sys-
tem. In addition, the negative coupling with the anterior and
medjial thalamus and the ventral medial prefrontal cortex was
reduced in strength with increased alpha power. Further-
more, these reductions in connectivity strength were found
to be specific for the alpha-frequency range.

The fact that alpha-band neuronal synchronization is in-
versely related to connectivity between the primary visual
cortex and closely connected regions (Felleman and Van
Essen, 1991) in both the dorsal and ventral visual stream re-
gions suggests that local alpha-band synchronization serves
to reduce the communication between closely connected re-
gions. This notion is in line with a general functional role of
alpha-band synchronization in inhibiting spurious activity,
as suggested by the alpha inhibition hypothesis proposed
by Klimesch and colleagues (2007). In addition, our results
suggest that, not only activity within visual regions is de-
creased when the level of alpha synchronization is high, as
evidenced through the BOLD-power correlation analysis
here and earlier by others (de Munck et al., 2009; Goldman
etal., 2002; Laufs et al., 2003a; Mantini et al., 2007; Moosmann
et al., 2003; Scheeringa et al., 2009, 2011), but that as a conse-
quence, also connectivity and communication with tightly
connected brain regions is reduced, as shown by the PPI anal-
ysis. This could be related to the notion that alpha oscillations
are thought to be related to feed-back processes in the deeper
cortical layers (Bollimunta et al., 2008, 2011; Buffalo et al,,
2011; Maier et al., 2010, 2011), that affect gamma-band activ-
ity (Osipova et al., 2008) which has predominantly been asso-
ciated with activity in superficial cortical layers (Buffalo et al.,
2011; Maier et al., 2010, 2011). Superficial cortical layers are
thought to be involved in feed-forward connections to higher
order visual regions (Douglas and Martin, 2004; Gilbert,
1983). Stronger alpha oscillations could provide stronger inhi-
bition to superficial layer feed-forward connections that
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FIG.5. Results for the frequency-specific PPI effects for the observed significant clusters for the whole-brain alpha power PPI
analysis. (A-D) For each cluster, the parameter estimates for the high and low alpha condition for frequencies between 2.5 and
27.5Hz are shown. (E-H) The differences between the two conditions are shown. The shaded area indicates this difference
deviates significantly from zero after multiple comparisons correction. For all panels, error bars indicate the standard error
of the mean. Indicated p-values are corrected for multiple comparisons using a nonparametric cluster-based correction
method. Note that the values in (A-D) are mirrored around the mean-level connectivity the different regions have with the
seed. This is caused by the fact that the same seed signal segments are sorted into high- and low-power categories for each

separate frequency bin.

would result in the reduced connectivity with higher order vi-
sual regions we observed here. Based on our results we, how-
ever, cannot distinguish between feed-forward and feed-back
effects.

It is unlikely that the observed effects are related to smaller
fluctuations in alpha power that do not exceed the high- ver-
sus low-power cutoff. This would first assume that the poste-
rior alpha rhythm we study here is generated and has a
widely distributed source in both the seed regions as well
as the more distant higher order visual regions. The most
likely source location of this rhythm is, however, found in
the primary visual cortex (Makeig et al., 2004a, 2004b) and
not in the higher order visual regions for which connectivity
is changed as a function of alpha power. Furthermore, if these
regions do contribute to the observed changes in alpha
power, it is unlikely that this is related to the observed PPI ef-
fect. This would not only assume that the transfer function
from alpha oscillations to the BOLD signal is different for
the seed and the regions that show a alpha-modulated
connectivity change with the seed, but also that this differ-
ence is different for the high and low alpha power conditions.

The frequency resolved analysis for the regions that
showed a change in connectivity with the seed as a function
of by alpha-band power demonstrated that this effect was in-
deed limited to the alpha band. This demonstrates that the
connectivity changes for these regions are not related to
broad-band changes in power (Miller, 2010) or a general
shift from high- to low-frequency activity (Kilner et al.,
2005) that also happens to manifest themselves in the alpha
band. The fact that no effects were observed for the neighbor-
ing theta and beta bands strongly suggests that they are
directly related to changes in local alpha-band synchroniza-
tion. By selecting the central posterior alpha component and
restricting the analysis to only the regions that showed a
PPI effect for alpha power, these results, however, only dem-
onstrate that the observed connectivity effects are indeed re-

lated to alpha power changes. Based on this analysis, we
cannot exclude that power changes in other modulates the
connectivity from the seed with other brain regions. This
analysis does also not exclude that sources with a different
projection to the scalp, and therefore at least partly different
underlying neural sources, show modulatory effects of
power changes in other frequency bands on connectivity be-
tween the primary visual cortex and the brain regions ob-
served here.

The gamma frequency range (30-100 Hz) was not inves-
tigated here, and effects of the gamma activity on fMRI con-
nectivity can therefore not be ruled out. We recently
demonstrated that gamma-band oscillations can be measured
in the MRI environment and are related to the BOLD signal
(Scheeringa et al., 2011). These gamma-band effects were,
however, directly related to visual stimulation, and cannot re-
liably be measured from the visual cortex with EEG in a rest-
ing-state context. In addition, the EEG for this previous study
was measured in between the acquisition of fMRI volumes.
Therefore, the gamma band was not compromised by the
presence of residual artefacts related to the radio-frequency
pulse and switching of the magnetic gradient. The fMRI
data presented here were recorded without gaps that allow
for gradient-free EEG recording. Since gamma oscillations
are relatively small compared to the residual gradient arti-
facts in the gamma range, and gamma-band activity from
the visual cortex cannot be reliably measured in resting
state, our data are not suited to study connectivity changes
as a function of gamma power changes.

Our observation that increased alpha-band synchrony, as
indexed by increased power, is related to decreased connec-
tivity and seems to contradict the idea that neural synchroni-
zation serves functional integration (Fries, 2009; Kahana et al.,
2001; Palva and Palva, 2007; Varela et al., 2001). It is, how-
ever, important to consider that the most likely source loca-
tion of the central posterior alpha component lies within the
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primary visual cortex (Makeig et al., 2004a, 2004b), and the
reduced connectivity is within the surrounding extrastriate
regions. This strongly suggests that local increases in syn-
chrony in the alpha band are related to decreased communi-
cation with regions that are strongly connected, but farther
removed.

For two brain regions, the anterior and medial thalamus
and the ventromedial prefrontal cortex, posterior alpha
power modulated their antagonistic relation with the seed
in the primary visual cortex. In both cases, this antagonistic
relation was weaker or absent when the alpha power is
high. Both regions have been related to memory processing.
The anterior nucleus of the thalamus has extensive connec-
tions with the hippocampus and lesions here have resulted
in amnesic syndromes (Aggleton and Brown, 1999). The ven-
tromedial prefrontal cortex, which was found marginally sig-
nificant, has been found to coactivate with the hippocampus
(Vincent et al., 2006) and has also been closely related to
memory (van Kesteren et al., 2012). Whenever the primary
visual cortex is disengaged from processing external visual
information, which is reflected in a relatively high alpha
power, it interacts stronger with systems processing internal
memory representations. This could explain the inverse rela-
tion between the visual cortex and these two memory regions.
Our results suggest this inverse relation might be modulated
by the strength of alpha oscillations, in the sense that this
inverse relation becomes progressively stronger when
power increases. This would fit within a recently proposed
framework suggesting that alpha oscillations bias the brain
toward processing information from internal or external sour-
ces (Hanslmayr et al.,, 2011a).

The most significant cluster with a positive PPI effect was
found in the anterior and medial thalamus. This might be sur-
prising since the thalamus is thought to be strongly related to
the generation of alpha oscillations, which would more likely
result in stronger (e.g., more negative) coupling between the
thalamus and the primary visual cortex. This role in alpha
generation, however, is more likely related to the lateral
geniculate and the thalamic reticular nuclei (Hughes and
Crunelli, 2005; Saalmann and Kastner, 2011). These regions
were not part of the significant cluster we observed.

The most parsimonious interpretation of the results pre-
sented here is that increased strength of alpha oscillations in
the early visual cortex is related to a decrease in coupling of
that region with other brain regions. This can decrease posi-
tive coupling, but also decrease antagonistic coupling with
another brain region. Alpha oscillations have been observed
outside the visual system (e.g., the somatosensory mu
rhythm), and we hypothesize this pattern is similar across
the brain. Whether this facilitates or impairs task performance
will depend on the task context. In contexts, where increased
alpha power predicts impaired performance (Mazaheri et al.,
2009), we expect that this is related to decreased connectivity
between task-relevant regions. Increased task performance
has also been related to increased strength of alpha oscilla-
tions (Haegens et al., 2010; Scheeringa et al., 2009). We expect
that this effect is related to decreased connectivity of task-
irrelevant regions with other task-relevant regions.

Most studies using simultaneously recorded EEG and fMRI
have related changes in EEG power measures to changes in the
level of the BOLD signal (de Munck et al., 2009; Goldman et al.,
2002; Laufs et al., 2003a, 2003b; Mantini et al., 2007; Moosmann
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et al., 2003; Sammer et al., 2007; Scheeringa et al., 2008, 2009,
2011). This work presents an initial report of changes in the
strength of fMRI connectivity that correlate with changes in
measures of local neuronal synchronization (here alpha
power). Until now, analyses of fMRI resting-state data have
employed a rather static view on connectivity. Our work dem-
onstrates a more dynamic view that can potentially lead to
new insights and as such, it is more in line with De Pasquale
and colleagues (2010) who studied the temporal dynamics of
resting-state networks in magnetoencephalography. Our ap-
proach of combining EEG- and fMRI-based measures for
studying dynamic network coupling can readily be extended
to power changes in other frequencies, EEG features, neural
sources, and brain networks, both under task or resting-state
conditions. It therefore opens up new avenues for investigating
the dynamics of functional networks at potentially more de-
tailed temporal and spatial scales than can be obtained by ei-
ther technique alone.
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