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Abstract

Functional connectivity mapping with resting-state magnetic resonance imaging (MRI) has become an immensely
powerful technique that provides insight into both normal cognitive function and disruptions linked to neurolog-
ical disorders. Traditionally, connectivity is mapped using data from an entire scan (minutes), but it is well known
that cognitive processes occur on much shorter time scales (seconds). Recent studies have demonstrated that the
correlation between the blood oxygenation level-dependent (BOLD) MRI signal from different areas varies over
time, motivating a further exploration of these fluctuations in apparent connectivity. However, it has also been
shown that similar changes in correlation can arise when the timing relationships between voxels are randomized
(Handwerker et al., 2012). In this work, we show that functional connectivity in the anesthetized rat exhibits dy-
namic properties that are similar to those previously observed in awake humans (Chang and Glover, 2010) and
anesthetized monkeys (Hutchison et al., 2012). Sliding window correlation between BOLD time courses obtained
from bilateral cortical and subcortical regions of interest results in periods of variable positive and negative cor-
relation for most pairs of areas except homologous areas in opposite hemispheres, which exhibit a primarily pos-
itive correlation. A comparison with sliding window correlation of randomly matched time courses suggests that
with the exception of homologous areas and sensorimotor connections, the dynamics cannot be distinguished
from random fluctuations in correlation over time, supporting the idea that some of these dynamic patterns
may be due to inherent properties of the signal rather than variations in neural coherence. Within the pairs of
areas where the dynamics are most different from those of randomly matched time courses, ten common patterns
of connectivity are identified, and their occurrence as a function of time is plotted for all animals. The observation
of time-varying correlation in the rodent model will facilitate the future multimodal experiments needed to de-
termine whether the changes in apparent connectivity are linked to underlying neural variability.
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Introduction

Functional connectivity mapping with resting-state
magnetic resonance imaging (rsMRI) has become a popu-

lar and powerful technique for investigating the role of
network activity in both normal brain function and neuro-
logical disorders. Until recently, functional connectivity
was assumed to be stationary, with network connections
calculated using data from the entire scan (5–10 min) (see,
for example, Biswal et al., 1995; Cordes et al., 2000; Lowe
et al., 1998). However, cognitive processes are known to
occur on much shorter time scales, motivating a recent
work that explores the dynamic properties of the spontane-
ous blood oxygenation level dependent (BOLD) signal fluc-
tuations (Chang and Glover, 2010; Hutchison et al., 2012;
Majeed et al., 2009, 2011).

One of the earliest studies examining the dynamics of the
spontaneous BOLD signal demonstrated that the BOLD sig-
nals exhibit intrinsic spatiotemporal organization in both
rats (Majeed et al., 2009) and humans (Majeed et al., 2011),
showing that there are aspects of activity which are not cap-
tured by traditional analysis techniques that examine only
‘‘steady-state’’ relationships. Chang and Glover (2010) looked
specifically at the relationship between the posterior cingulate
cortex (PCC) and other brain areas, demonstrating that the
correlation between these areas varied over time and that
this temporal variability was greater than would be expected
by chance. A recent report by Hutchison and colleagues dem-
onstrates that similar dynamics occur in humans and in anes-
thetized monkeys. Since random thought processes are not
expected to be present during anesthesia, their work suggests
that these dynamics are not related to changing cognitive
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states (Hutchison et al., 2012). However, other physiological
origins are not excluded, and the cause of the time-varying
correlation remains unknown. A recent work by Handwerker
and colleagues found that variations in correlation over time
exhibit periodic properties and can be observed even when
the timing relationships between voxels are randomized
(Handwerker et al., 2012).

To further explore the properties and potential sources of
fluctuations in apparent connectivity, we implement sliding
window analysis in the rodent model of functional connectiv-
ity to examine a well-characterized network containing the
bilateral sensorimotor cortex and the caudate putamen. The
sensory and motor areas are strongly connected across hemi-
spheres via the corpus callosum and exhibit high BOLD cor-
relation when typical ‘‘steady-state’’ analysis methods are
used (Pawela et al., 2008; Williams et al., 2010; Zhao et al.,
2008). In contrast, the left and right caudate putamen (CP)
are only indirectly connected but still exhibit BOLD-based
functional connectivity (Williams et al., 2010; Zhao et al.,
2008). The caudate also receives input from somatosensory
cortex, but a signal from the two areas is usually not corre-
lated in functional connectivity studies. The variety of ana-
tomical and functional connectivity present in this network
makes it an excellent setting in which to explore BOLD
dynamics.

One of the challenges in dynamic analysis lies in determin-
ing the physiological significance of the time-varying rela-
tionships between areas. Two possible approaches suggest
themselves: first, linking the dynamic patterns to an external
measurement of behavior; and second, finding a direct neural
analog of the changes in functional connectivity. The first of
these possibilities is addressed in part by a recent paper
which shows that in human subjects, network relationships
within a short 12 second window before the onset of a psy-
chomotor vigilance task predict performance on that task
(Thompson et al., 2012), a finding that is consistent with pre-
vious work linking behavioral variability to functional con-
nectivity and network activity calculated from entire scans
(e.g., Fox et al., 2007; Kelly et al., 2008; Li et al., 2007). The sec-
ond possibility is appealing in that it would directly link the
BOLD signal to electrical measures of neural activity, but it is
difficult to perform in humans. Electrical measurements in
normal subjects are limited to noninvasive surface electrodes
with poor spatial resolution and depth penetration, and
although intracortical recordings can be obtained in special
patient populations, they are constrained to areas of clinical
interest and may reflect pathological function. One of the
benefits of characterizing BOLD dynamics in the rat is that
future studies combining simultaneous MRI and microelec-
trode recording can place the BOLD dynamics on a firm neu-
ral footing (Pan et al., 2010, 2011).

As a first step toward these multimodal experiments, we
obtained resting-state MRI from a single coronal slice in the
rat brain containing the sensorimotor cortex and the caudate
putamen. Relationships between cortical and subcortical
regions of interest were calculated using a traditional static
approach and compared with sliding window correlation.
The results show that all pairs of areas exhibit substantial
variations in correlation, with correlation remaining mostly
positive between homologous cortical areas but exhibiting
periods of strong correlation and anti-correlation in other
areas. The findings are consistent with the variations

previously reported in humans and macaques, showing
that changes in BOLD correlation over time are not limited
to a particular species or network. However, as in the recent
report by Handwerker and colleagues, a similar variability in
correlation was observed in time courses that were randomly
matched across scans, indicating that care should be taken
when interpreting dynamics as indicative of neural processes.

Materials and Methods

All experiments were performed following guidelines set
by the Institutional Animal Care and Use Committee
(IACUC) of Emory University. Three scans each from four
male Sprague–Dawley rats (200–300 g) were chosen from
data acquired for another study (preparation described
briefly below). These scans represent the best specimens col-
lected for the study and were selected based on image quality,
lack of motion, physiological stability, and a clear presenta-
tion of functional connectivity in somatosensory areas. The
latter was determined by a preliminary analysis for each
scan, indicating that cross-correlation based on a seed manu-
ally chosen in primary somatosensory cortex (SI) resulted in a
typical pattern of localized bilateral correlation (Pawela et al.,
2008; Williams et al., 2010; Zhao et al., 2008).

Animal preparation

Each rat was anesthetized with 2% isoflurane mixed with
1:1 oxygen and room air, and maintained under anesthesia
for 2.5 h to replicate the time allotted for surgeries in our
other studies. After this ‘‘wait period,’’ isoflurane was re-
duced to 1.5% for 30 additional minutes before discontinuing
isoflurane and switching to a subcutaneous infusion of
dexmedetomidine. Heart rate and blood oxygen saturation
percentage were recorded with a pulse oximeter placed on
the rear left paw. Body temperature was monitored with a
rectal thermometer and maintained at approximately 37�C
( – 0.5�C) using an adjustable warm water pad. Respiratory
rate was also monitored by using a pressure-sensitive pad
placed under the rat’s chest. The rat was then placed in the
MRI cradle, and the head was secured with a bite bar and
ear bars.

After setup was completed, the rat was given a subcutane-
ous bolus injection of 0.025 mg/kg dexmedetomidine (Dex-
domitor, Pfizer, Karlsruhe, Germany). Five minutes after
the bolus, isoflurane was discontinued, and 15 min later, a
subcutaneous infusion of 0.05 mg/kg/h dexmedetomidine
was initiated to maintain anesthesia for the duration of the ex-
periment (Weber et al., 2006). Approximately 80 min after the
initial dexmedetomidine bolus, the infusion dosage was in-
creased to 0.15 mg/kg/h (3 · initial infusion rate) for main-
taining anesthetic depth, in accordance with the protocol
established in (Pawela et al., 2009).

Image acquisition and processing

All images were acquired on a 20 cm bore 9.4 T Bruker
BioSpec magnet interfaced to an AVANCE (Bruker, Billerica,
MA) console. An actively decoupled imaging protocol was
used, with a 7 cm volume coil for RF transmission and a
2 cm surface coil for signal reception. A FLASH image was
acquired in three planes, and a single slice was positioned
over the primary somatosensory cortex based on known
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anatomical markers. Manual shimming was conducted on
this slice to obtain maximum signal to noise ratio (SNR)
and spatial homogeneity. Each resting state scan was ac-
quired using a single-shot gradient echo echo planar imaging
sequence with the following parameters: Repetitions = 1000,
relaxation time = 500 ms, echo time = 15 ms, total scan time = 8
min 20 sec, slice thickness = 2 mm, field of view = 2.56 cm ·
2.56 cm, matrix size = 64 · 64. Approximately ten resting-
state scans were acquired from a total of seven animals for
the original study. For the analysis performed in this work,
we used three resting-state scans each from the four best
rats collected at the 2.5 + h time point following the cessation
of isoflurane, because we have previously found that func-
tional connectivity measurements stabilize after that time.
For the period when the scans were acquired for this analysis,
the average heart rate was 300–310 bpm; respiratory rate was
70–80 breaths per minute; oxygenation was 98%–99%; and
body temperature was 37�C–37.5�C.

All functional MRI data processing and analysis was
performed using code written in MATLAB (MathWorks,
Natick, MA). The time course from each voxel was linearly
detrended, followed by finite impulse response band-pass
filtering between 0.01–0.3 Hz based on previous work dem-
onstrating correlation over a wide range of frequencies in
the anesthetized rat (Magnuson et al., 2010; Majeed et al.,
2009, 2011). Data points were removed from the beginning
of each scan to reduce any transient effects of scanner instabil-
ity, and again after filtering to reduce filter effects, leaving a
total of 800 images for each scan.

‘‘Static’’ functional connectivity analysis

For each rat, regions of interest (2 · 2 voxels) were manu-
ally selected in left and right primary somatosensory cortex
(SI), secondary somatosensory cortex (SII), motor cortex
(MI), and CP by comparison with an atlas (Paxinos and
Watson, 1998) for a total of eight sites. The average time
course from each region of interest (ROI) was calculated,
and correlation and partial correlation were calculated pair-
wise between all nodes. Partial correlation between two
ROIs controls for common inputs to the two from the remain-
ing ROIs (i.e., calculates the correlation between the residuals
after linear regression of the control ROIs) and should result
in reduced sensitivity to external inputs.

Sliding window analysis

Using the same data, sliding window correlation was per-
formed using window lengths of 25, 50, and 100 images (12.5,
25, or 50 sec). The longest of the windows is comparable to
that previously used in the monkey (Hutchison et al., 2012).
The relatively high temporal resolution of our scan provided
increased sampling density and allowed us to examine
shorter time windows than in previous studies.

For each window length, the correlation for each pair of
areas was plotted as a function of time. The time courses
were then segmented into strong positive ( > 0.4), moderate
positive (0.2 to 0.4), weak (�0.2 to 0.2), moderate negative
(�0.2 to �0.4), and strong negative ( <�0.4) correlation.
These thresholds were chosen based on a preliminary exam-
ination of the time courses of correlation, with the goal of sim-
plifying analysis while preserving some information about
dynamic range. States that were present for fewer than 10

images (5 s) were merged with the preceding state to minimize
the effect of short-lived excursions to neighboring correlation
ranges that are artificially exacerbated by the thresholding
process. To quantify the stationarity of the correlation time
courses, the number of transitions between states was deter-
mined for each scan from each rat, and the average and stan-
dard deviation were calculated for each pair of areas. For each
scan and each pair of areas, the relative percentage of time
spent in each state was determined, and averages were
obtained for each pair of areas. Mirrored pairs (e.g., left SI
to right MI and right SI to left MI; left SI to left MI and
right SI to right MI; all pairs except those consisting of homol-
ogous areas in left and right hemispheres) were averaged for
subsequent analysis to minimize comparisons and increase
signal to noise, under the assumption that connectivity is bi-
laterally symmetric for this network. We also calculated the
distribution of sliding window correlation coefficients for
each pair of areas.

A control analysis was performed to determine whether
results were due to inherent signal properties and/or prepro-
cessing. Sliding window correlation was performed for the
same areas but with time courses chosen randomly from differ-
ent scans, so that any relationships between areas arise solely
from the properties of the signals themselves rather than
from underlying changes in neural coherence. A data set
equal in size to the actual experimental data was derived
from the randomized comparisons (i.e., 12 data points for
each pair of areas), and the same procedures were followed
to calculate the number of transitions and length of time
spent in each state. The steady-state correlation and distribution
of sliding window correlation coefficients were also calculated.

Real data from pairs of areas in which the duration of mul-
tiple states fell outside of one standard deviation from those
observed in the randomly matched data were chosen for fur-
ther analysis. The time courses were further simplified into
three states (positive correlation ( > 0.2), no correlation, and
negative correlation ( <�0.2)) to facilitate analysis. This data
reduction resulted in 729 possible combinations of the three
states for the six pairs of sites, as compared with the 15,625
possible combinations for five states and six site pairs. Of
these, one hundred and thirty unique combinations were
detected in the concatenated time courses from all rats. The
number of instances for each combination was tabulated,
and the top ten patterns ( > 200 occurrences) were chosen
for further examination. The amount of time spent in each
of these patterns was plotted for the concatenated time
courses from all rats.

Results

Correlation and partial correlation

Cross correlation and partial correlation were calculated
between all ROIs and averaged over all scans from all rats
(Table 1). Voxels with correlation values above 0.2 (corre-
sponding to approximately p < 0.001; p < 0.03 with Bonferroni
correction for multiple comparisons) were considered con-
nected and are highlighted in the table. As expected, the
strongest correlations occur between homologous areas in
the left and right cortex. Left SII and right SII exhibit the high-
est correlation (0.56 – 0.18), while left and right CP have the
weakest correlation of the homologous areas (0.25 – 0.13).
These results are similar to those seen in previous works
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(Williams et al., 2010). Three other pairs of areas exhibit cor-
relation above the threshold: left SI and left MI (0.22 – 0.2),
right SI and right MI (0.37 – 0.16), and right MI and left SI
(0.31 – 0.19). The mirror of the last pair, left MI and right SI,
is more strongly correlated than the remaining pairs of
areas but has a correlation below the threshold (0.16 – 0.14).
Steady-state correlation values calculated from the randomly
matched time courses ranged from�0.03 to 0.05, with stan-
dard deviations of 0.03 to 0.09.

Partial correlation, shown in the bottom half of the table,
displays a similar pattern of connections, although the values
are reduced and two of the nonhomologous pairs are no
longer above the threshold. It is interesting to note that partial
correlation for left and right SII and for left and right CP is
nearly the same as the cross correlation, while the values
for left and right SI and left and right MI are reduced. The
areas where partial correlation values are reduced may
receive more input from the other areas in this network
than the areas where partial correlation is equivalent to
cross correlation. This is consistent with our previous work
which presents an intrinsic pattern of BOLD signal propaga-
tion from lateral to medial areas that suggests some level of a
driving influence (Majeed et al., 2009, 2011).

Sliding window correlation

Correlation as a function of time was plotted for each scan
using window lengths of 25, 50, or 100 images. All correlation
time courses exhibited variance over time, with greater vari-
ance observed when shorter window lengths were used.
These results are consistent with previous findings in the
human (Chang and Glover, 2010) and monkey (Hutchison
et al., 2012). In general, correlation time courses from homol-
ogous areas varied between no correlation and strong posi-
tive correlation, while time courses from other areas
exhibited greater fluctuation from strong anticorrelation to
strong positive correlation. Two examples from the first
scan of the first rat are shown in Figure 1.

Temporal segmentation

To further examine the dynamic aspects of connectivity,
each correlation time course was segmented into five possible
states: strong anticorrelation ( <� 0.4), moderate anticorrela-
tion (�0.2 to �0.4), weak or no correlation (�0.2 to 0.2), mod-
erate correlation (0.2 to 0.4), and strong correlation ( > 0.4).
Examples for left and right SI and for left SI and left CP are

shown for a randomly chosen rat in Figure 2, using a window
length of 50. As in Figure 1, the homologous SI areas exhibit
mostly positive correlation, while the time course for left SI
and CP ranges from strong anticorrelation to strong correla-
tion. Similar segmented time courses were created for win-
dow lengths of 25 and 100.

Based on the segmented time courses, the number of tran-
sitions between states was calculated for each pair of areas
and averaged across all rats. The results for a window length
of 50 are reported in Table 2. Most pairs make 15–17 transi-
tions over the course of the scan, with strongly correlated
areas such as left and right SII making fewer transitions.
This pattern was preserved for the other window lengths, al-
though the number of transitions varied (15–18 for window
length of 25; 7–10 for window length of 100; data not shown).

The segmented time courses and number of transitions
were also calculated for the randomly matched data. For a
window length of 25, the number of transitions was
16.3 – 0.9 for 25; for a window length of 50, 16.6 – 1; and for
a window length of 100, 8 – 1.

Based on the segmented time courses, the amount of time
spent in each of the five states was calculated for each pair of
areas and averaged across rats. Results for each of the three
window lengths are shown in Figure 3. For most pairs of
areas, the pattern is similar to that of random data, summa-
rized in Table 3. In general, the amount of time spent in a
state with weak to no relationship increases as window
length increases, while the amount of time spent in a strongly
correlated or anticorrelated state decreases (for example, ipsi-
lateral SI-SII are uncorrelated 37% of the time when a window
length of 25 is used; 53% for a length of 50; and 66% for a
length of 100). The exceptions are the homologous pairs
and within- and across-hemisphere connections between MI
and SI, which exhibit increasingly positive correlation as win-
dow length increases. The relationships for all areas are con-
sistent across window lengths and suggest that the apparent
increase in variability observed with shorter windows is an
artifact of the properties of the signal rather than an indication
of increasing sensitivity to short-lived states. A window size
of 50 was used for the remaining analysis.

Correlation histograms

To more closely examine the distribution of correlation co-
efficients resulting from sliding window analysis, a histogram
of the correlation coefficients for each pair of areas from both
real and randomly matched data was calculated and is shown

Table 1. The Average and Standard Deviation of Cross Correlation (Top Half of Table)

and Partial Correlation (Bottom Half of Table) for All Pairs of Areas from All Scans

LSII LSI LMI LCP RSII RSI RMI RCP

LSII 1 �0.01 – 0.06 �0.1 – 0.12 0.07 – 0.06 0.56 – 0.18 0.02 – 0.08 �0.06 – 0.05 0.03 – 0.01
LSI 0 – 0.05 1 0.22 – 0.2 0.02 – 0.05 0.05 – 0.11 0.49 – 0.12 0.31 – 0.19 0.05 – 0.04
LMI �0.06 – 0.11 0.13 – 0.12 1 0.02 – 0.11 �0.06 – 0.12 0.16 – 0.14 0.36 – 0.17 0.05 – 0.12
LCP 0.06 – 0.1 �0.02 – 0.05 0.03 – 0.07 1 0.05 – 0.08 0.02 – 0.03 0.04 – 0.04 0.25 – 0.13
RSII 0.56 – 0.18 0.02 – 0.06 � 0.03 – 0.07 � 0.01 – 0.11 1 0.06 – 0.12 �0.01 – 0.14 0.05 – 0.08
RSI 0.03 – 0.06 0.38 – 0.1 0.01 – 0.11 0.01 – 0.03 0.02 – 0.08 1 0.37 – 0.16 0.03 – 0.05
RMI �0.01 – 0.05 0.1 – 0.14 0.29 – 0.11 0.01 – 0.02 �0.01 – 0.09 0.26 – 0.12 1 0.04 – 0.12
RCP �0.03 – 0.05 0.03 – 0.04 0.05 – 0.07 0.23 – 0.13 0.05 – 0.07 0.01 – 0.05 0.01 – 0.11 1

Values for homologous areas in the left and right hemispheres are marked with dark gray cells, and nonhomologous pairs with values above
0.2 are highlighted in light gray. The dark boxes along the diagonal represent the correlation of an area with itself and are the dividing line
between the upper and lower halves of the table.
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in Figure 4. As expected, the correlation histograms for real
and randomly matched data are very similar for most pairs
of areas. In the areas that exhibited differences from random
on the state-length analysis, however, the histograms are also
different. Especially for areas with very high correlation (left
and right SII, for example), the histograms are skewed rather
than simply shifted, which may indicate a difference in the
underlying dynamics rather than a simple positive offset.

Occurrence of common states

For the remaining examination of network dynamics, only
the six pairs of areas that exhibited correlation time courses
that were clearly different from those of the randomly
matched areas were retained. To further simplify analysis,
the five correlation states were compressed to three: positive
correlation ( > 0.2), weak correlation (�0.2 to 0.2), and nega-
tive correlation ( <� 0.2). This resulted in a pattern of connec-
tivity at each time point which was represented by a

6-element vector containing 1, 0, and �1 sec. For example,
using the same ordering shown in Table 4, [1 1 1–1 0 0]
would indicate that left and right SI, SII, and MI were posi-
tively correlated; left and right CP were negatively correlated;
and both SI-MI pairs were uncorrelated at a given point in
time. The time courses from all scans were concatenated,
and a count of the number of occurrences for each unique pat-
tern was obtained (Fig. 5). A total of 130 unique patterns were
detected. We identified the ten most common patterns, all of
which occurred at least 200 times throughout the concate-
nated time course. These patterns are shown in Table 4. The
most common pattern consists of positive correlation for all
area pairs (1024 occurrences), closely followed by positive
correlation for all pairs other than CP (925 occurrences). No
negative correlation was observed in the most common
patterns. Left and right SI were positively connected in all
common patterns, with the remaining areas showing varying
degrees of stability. The greatest variability was observed in
the within- and across-hemisphere SI-MI pairs.

FIG. 1. Sliding window
correlation between left MI
and right MI (top) and
between left SII and left SI
(bottom) for the first scan
from the first rat. Correlation
is plotted as a function of
image number for window
lengths of 25, 50, or 100
images (12.5, 25, or 50 sec).
As window length increases,
the variability in the
correlation time course
decreases. Correlation
between left and right SI is
mostly positive, while
correlation between left SII
and left SI is more variable
and ranges from strongly
negative to strongly positive,
particularly for short
window lengths.
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A plot of the pattern of correlation as a function of image
number for the concatenated time series from all rats is
given in Figure 6. The most common patterns are present in
all rats, while some of the less common states are unevenly
distributed. Patterns 1, 2, and 6 are spread across all rats;
while patterns 3, 4, and 5 originate primarily from two rats;
and pattern 7 is only observed in 1 rat.

Discussion

The time-varying correlation between sites in the rat so-
matosensory cortex and CP observed in this study is compa-
rable in magnitude and timing to that previously observed in
human subjects (Chang and Glover, 2010) and anesthetized
macaques (Hutchison et al., 2012). The results of the current
study provide confirmation that time-varying correlation be-
tween brain areas can be observed in multiple species and
under different anesthetic conditions. Areas that are strongly
correlated when examined with traditional ‘‘static’’ analysis
exhibit fluctuations in connectivity but maintain primarily
positive correlation. Other, less correlated areas exhibit corre-
lation time courses that fluctuate between strong positive and
strong negative values, similar to previous reports.

The findings of this study are in concordance with a work
by Handwerker and colleagues, which warns against over-
interpretation of the variations in correlation (Handwerker
et al., 2012). While many pairs of areas exhibited variable pe-
riods of very strong positive and negative correlation, similar
dynamics occurred when the time courses from one scan
were randomly matched with time courses from another
scan or another rat, suggesting that it is possible for the var-
iability to arise from inherent properties of the postprocessed
signal itself rather than the underlying biological processes.
The lowpass filter used to reduce high-frequency noise results
in strong autocorrelation within the signal, and the BOLD fre-
quencies and propagation patterns are very similar across
rats (Majeed et al., 2009). However, one would expect that
the random selection of time courses from different scans
would introduce a random phase to each pair of fluctuations,
in contrast to the phase locking that one would expect from
neurally-based changes. While strong correlation between
time courses from different scans may be present at a partic-
ular time lag, all analysis was performed with zero lag and
should, therefore, result in random phase.

In context of previous studies in humans and macaques, it
should be noted that although the sliding window correlation
time courses in our study appear similar to those previously
reported, no direct comparison was performed. Chang and
Glover showed that temporal variability in human subjects
in some areas and at some time scales was significantly
greater than would be expected by chance, and it is possible
that the species or anesthetized condition used in the current

FIG. 2. Sliding window correlation (window length 50) for
left and right SI (top) and left SI and left caudate putamen
(CP) (bottom) for a randomly chosen rat. Each time course
was segmented into 5 possible states (1 = strong anticorrela-
tion, 3 = no correlation, 5 = strong correlation), plotted along
the right vertical axis. The time course for left and right SI
falls mostly into the strong, moderate, or weak correlation
categories, while the time course for left SI and CP ranges
from strong anticorrelation to strong correlation.

Table 2. The Average and Standard Deviation for the Number of Transitions

for All Scans (Window Length of 50)

LSII LSI LMI LCP RSII RSI RMI RCP

LSII 17.2 – 4 15.6 – 1.8 16.1 – 1.9 7.3 – 6.3 16.4 – 3.7 17.3 – 3.6 15.8 – 4.9
LSI 15.1 – 5 16 – 4.6 15.9 – 2.8 11.6 – 4.4 15.3 – 5.4 16.3 – 2.1
LMI 17.8 – 3 17.5 – 2.1 16.3 – 2.3 13.5 – 4.1 16.1 – 2.5
LCP 16.3 – 3.1 17.5 – 3 17.7 – 2.1 16.2 – 5.2
RSII 17.3 – 3.9 16 – 2.7 16.2 – 3.8
RSI 13.3 – 5.4 17 – 3
RMI 16.7 – 2.9
RCP

Homologous areas are highlighted in light gray. Homologous cortical areas exhibit the lowest number of transitions, particularly in the
strongly connected SII regions, while left and right caudate putamen (CP) have a higher number of transitions. Right SI and right MI also ex-
hibit fewer transitions than most areas. A similar reduction in the number of transitions is observed in homologous cortical areas when win-
dow lengths of 25 or 100 are used (data not shown).
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study led to loss of meaningful dynamics. Both the work in
humans and in macaques examined different networks than
the sensorimotor regions characterized here. The default
mode network, in particular, has been shown to exhibit vary-
ing degrees of correlation/anticorrelation with other brain

areas (Fox et al., 2005; Kelly et al., 2008) and may be consid-
ered a better target for dynamic analysis. Additional support
for meaningful dynamics in the default network comes from a
recent study that links the variations in connectivity between
the default mode network and the task-positive network in
short time windows (*12 sec) for performance on a vigilance
task (Thompson et al., 2012), suggesting that the variability
may have behavioral importance even if conscious cognition
is not involved. However, the study by Handwerker et al.
used the same seed region (PCC) as Chang and Glover,
though different methods and parameters, and most of the
variation in correlation was comparable to that obtained
with time-randomized data. The ability to detect significant
changes in connectivity between networks may prove highly
sensitive to the methods and parameters used for analysis.
The default mode is not yet well characterized in rats,
although a candidate network has been described (Lu et al.,
2012). Since our ultimate goal is to tie network dynamics to
electrical signaling, we chose to work within the limitations
of the rodent model.

At least two distinct types of dynamics have been reported
in spontaneous BOLD fluctuations, one a quasi-periodic re-
producible pattern possibly linked to large-scale modulatory
signals (Majeed et al., 2009, 2011) and one a variation in the
strength of the connection between areas over time (Chang
and Glover, 2010; Hutchison et al., 2012). This article focuses
on the second, but it is quite plausible that the two interact.
Partial correlation resulted in a decrease of 15%–20% in the
correlation coefficient as compared with cross correlation
for connections between left and right SI and between left
and right MI, while the connections between left and right
SII were relatively unaffected. This is ideologically consistent
with our previous findings that quasi-periodic waves often
begin in SII and propagate along the cortex to SI and MI,
and, thus, common inputs from SII may be responsible for
a part of the correlation between the more medial areas.
The interesting finding of periodic variations in connectivity
(Handwerker et al., 2012) may be linked to this phenome-
non. Cross correlation rather than partial correlation was per-
formed for the dynamic analysis due to the loss of SNR
inherent in the use of short windows, but this choice is likely
to have only minor effects on the reported results.

The variation in correlation increases when shorter win-
dow lengths are used (Fig. 2). While shorter windows
increase the high frequency information in the resulting cor-
relation time course, the shorter windows also contain
fewer samples, reducing the SNR of the measurement. We
had hypothesized that the use of shorter windows would
provide more sensitivity to short-lived changes in connectiv-
ity between two areas, but this idea is not supported by the
data. For all window lengths, only 6 pairs of areas show dif-
ferences from randomly matched data. We did not observe
any areas that showed differences from randomly matched

FIG. 3. Relative time spent in each state for each pair of
areas, averaged over all scans, for window lengths of 25
(top), 50 (middle), and 100 (bottom). The first group of
areas are bilateral homologues; the second are within-hemi-
sphere pairs; and the third are cross-hemisphere pairs. Values
for randomly matched data are shown next to the homolo-
gous pairs for comparison. In general, the amount of time
spent in a state with weak to no relationship increases as win-
dow length increases, while the amount of time spent in a
strongly correlated or anticorrelated state decreases. For
most pairs of areas, the pattern is similar to that of random
data. The exceptions are the homologous pairs and within-
and across-hemisphere connections between MI and SI.

Table 3. Average and Standard Deviation for the Relative Amount of Time Spent

in Each State for Randomly Matched Data Analyzed with Three Different Window Lengths

Window length Strong anticorrelation Moderate anticorrelation Weak Moderate correlation Strong correlation

25 22.5% – 2.5% 7.4% – 1.7% 40.7% – 3.7% 7.1% – 1.4% 22.2% – 3%
50 7.4% – 1.9% 14.4% – 2.7% 56.3% – 3.5% 14.4% – 2.3% 7.8% – 1.9%
100 1.6% – 1% 13.6% – 2.5% 69.2% – 3.4% 12.3% – 2.8% 1.5% – 1%
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data at short window lengths nor at long window lengths. In
addition to the effects of window length, the method used in
this study for reducing the contribution of fluctuations near
the selected threshold (merging states that last less than
5 sec with the previous state) also reduces the high-frequency
information in the correlation time course. Of course, the he-
modynamic response itself imposes an inherent lowpass filter
on the information that can be obtained.

With these caveats in mind, our current work neither
confirms nor rules out a neural basis for the variations in
correlation over time. Similarity to randomly generated
results does not guarantee that the relationship between
two areas is actually random, and it is possible that genuine
changes in neural activity occur on the same time scales as
the random transitions. Conversely, the changes in correla-
tion in areas that exhibited different temporal characteristics
than the randomly matched data are not necessarily more
meaningful than those of other areas. They may simply be
created by adding the variation inherent to the signal to an
existing baseline of positive correlation. However, an exami-
nation of the histogram of the correlation coefficients for each

pair of areas shows that the shape of the histogram is skewed
for highly correlated areas, not simply shifted (Fig. 4 and
Supplementary Fig. S1; Supplementary Data are available
online at www.liebertpub.com/brain). While many time
courses exhibited substantial periods of anti-correlation,
most of them could not be distinguished from randomly
matched time courses based on the percentage of time they
spent in each state, and no anticorrelation was observed
within the most common states of the network. Some patterns
seem to originate predominantly from a single rat (pattern 7),
which may be due to a slight tilt or rotation of the image slice
that brings more or less of an area into the slice. The same
shift may explain why left MI and right SI are not as strongly
correlated as the other SI-MI pairs. The fluctuations in corre-
lation cannot be solely attributed to physiological noise or ex-
ternal sources, as similar patterns are present in the randomly
matched data and the noise sources would not be expected to
be time-locked across different scans or different animals.

Other limitations of the study are due to the data reduction
strategies. The segmentation of the correlation time courses
into 5 and finally into 3 states for each pair of areas discards

FIG. 4. Histograms of
correlation coefficients for
homologous areas in left and
right hemispheres after
sliding window correlation
with a window length of 50
images (all rats, all scans).
Correlation value is plotted
along the x axis, and number
of instances is plotted along
the y axis. Real data are
shown in red, and results for
randomly matched time
courses are shown in blue. All
histograms are skewed
toward positive values,
particularly for SII.

Table 4. The Ten Most Common Correlation Patterns Observed Using Sliding

Window Correlation, Ranked by Occurrence

1 2 3 4 5 6 7 8 9 10

SII-SII

SI-SI

MI-MI

CP-CP

SI-MI within

SI-MI across

Total occurrences 1024 925 506 487 391 365 321 303 242 214

A white cell indicates positive correlation; a black cell, weak or no correlation. No negative correlation was present in the most common
patterns. Left and right SI are positively correlated in all patterns. The within-hemisphere and across-hemisphere SI-MI pairs exhibit the
greatest variation.
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large amounts of information and may cause more subtle
effects to be missed. The thresholds for the segmentation
were somewhat arbitrary and may not be ideal. Another
possible approach would be to examine the temporal stan-
dard deviation of the correlation coefficients, to provide an
estimate of variability without an arbitrary threshold. This
was not implemented for this study, because we believed
that the temporal duration of each state may be important,
and that relatively minor changes in connectivity were less
likely to be physiologically relevant. We also plan to perform
further studies using pattern-detection algorithms on data
from all pairs of areas to minimize the effects of data reduc-
tion. Finally, the use of anesthesia warrants extreme caution
when extrapolating from these results to human studies.

However, the results provide an impetus for comparing
dynamics of interest in humans to randomly matched time
courses to evaluate their potential significance. Ultimately,
however, the difficulty lies in determining whether the
dynamics are meaningful markers of underlying neural pro-
cesses. The detection of time-varying connectivity in the anes-
thetized rodent will allow future studies using simultaneous
imaging and multisite recording (Pan et al., 2010, 2011) to
search for a neural basis of the dynamic connectivity. Our
previous work has suggested that low-frequency coherence
(delta and theta bands) may be most indicative of BOLD cor-
relation (Pan et al., 2011), and, therefore, changes in this co-
herence between left and right SI, for example, would be a
natural target for comparison with time-varying connectivity.

The possibility of using resting-state MRI to examine network
dynamics is an exciting and potentially transformative develop-
ment, but it remains to be seen whether the variations in BOLD
connectivity can be decisively linked to neural changes or be-
havioral outcomes. The results of this study show that time-
varying correlation can be detected in the rat but that in most
cases, the properties of connectivity over time cannot be distin-
guished from that of randomly matched time courses. While
these findings make it clear that caution is needed in interpret-
ing changes in BOLD correlation, we remain optimistic that
with the appropriate measures, some level of information
about network dynamics can be extracted from resting-state
scans. Multimodal studies will be essential in determining
which properties are neurally or behaviorally meaningful.

Acknowledgments

The authors would like to thank Josh Grooms, for discus-
sion and feedback on the article, and Dieter Jaeger, for discus-
sions about network dynamics. This work was supported by
NIH R21NS057718, NIH R21NS072810, and the Biomedical
Imaging Technology Center (BITC).

Author Disclosure Statement

No competing financial interests exist.

References

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med 34:537–541.

Chang C, Glover GH. 2010. Time-frequency dynamics of resting-
state brain connectivity measured with fMRI. NeuroImage
50:81–98.

Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA,
Moritz CH, Quigley MA, Meyerand ME. 2000. Mapping func-
tionally related regions of brain with functional connectivity
MR imaging. AJNR Am J Neuroradiol 21:1636–1644.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME. 2005. The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci U S A 102:9673–9678.

Fox MD, Snyder AZ, Vincent JL, Raichle ME. 2007. Intrinsic
fluctuations within cortical systems account for intertrial
variability in human behavior. Neuron 56:171–184.

Handwerker DA, Roopchansingh V, Gonzalez-Castillo J,
Bandettini PA. 2012. Periodic changes in fMRI connectivity.
NeuroImage 63:1712–1719.

FIG. 6. Correlation pattern as a function of image number
for the concatenated scans from all rats. State 0 includes all
time points not assigned to one of the ten most common pat-
terns, and the remaining patterns are ranked from 1 to 10 in
order of the number of occurrences. The key along the vertical
axis defines the state, where 1 is positive correlation and 0 is
weak or no correlation, as described in Table 4. From left to
right, the numbers represent left SII-right SII, left SI-right SI,
left MI-right MI, left CP-right CP, within-hemisphere SI-MI,
and across-hemisphere SI-MI. The highlighted areas on the
graph correspond approximately to the division between
the rats (3 scans each). The most common patterns are
observed in all rats, while some of the less common states
have a more inhomogeneous distribution.

FIG. 5. Plot of the number of occurrences for each of the 130
unique states detected in the concatenated, segmented time
series for all scans. The states are numbered in the order of de-
tection. Ten states occurred more than 200 times and are ex-
amined in greater detail in the following table and figure.

DYNAMIC PROPERTIES OF FUNCTIONAL CONNECTIVITY IN THE RODENT 39



Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. 2012.
Resting-state networks show dynamic functional connectivity
in awake humans and anesthetized macaques. Hum Brain
Mapp. [Epub ahead of print]; DOI: 10.1002/hbm.22058.

Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP.
2008. Competition between functional brain networks medi-
ates behavioral variability. NeuroImage 39:527–537.

Li CS, Yan P, Bergquist KL, Sinha R. 2007. Greater activation of
the ‘‘default’’ brain regions predicts stop signal errors. Neuro-
Image 38:640–648.

Lowe MJ, Mock BJ, Sorenson JA. 1998. Functional connectivity in
single and multislice echoplanar imaging using resting-state
fluctuations. Neuroimage 7:119–132.

Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. 2012. Rat
brains also have a default mode network. Proc Natl Acad
Sci U S A 109:3979–3984.

Magnuson M, Majeed W, Keilholz SD. 2010. Functional connec-
tivity in BOLD and CBV weighted resting state fMRI in the
rat brain. J Magn Reson Imag 32:584–592.

Majeed W, Magnuson M, Hasenkamp W, Schwarb H,
Schumacher EH, Barsalou L, Keilholz SD. 2011. Spatiotempo-
ral dynamics of low frequency BOLD fluctuations in rats and
humans. NeuroImage 54:1140–1150.

Majeed W, Magnuson M, Keilholz SD. 2009. Spatiotemporal
Dynamics of Low Frequency Fluctuations in BOLD fMRI of
the Rat. J Magn Reson Imag 30:384–393.

Pan W, Thompson G, Magnuson M, Majeed W, Jaeger D,
Keilholz S. 2010. Simultaneous fMRI and electrophysiology
in the rodent brain. J Visualized Exp 42:1901.

Pan W, Thompson G, Magnuson M, Majeed W, Jaeger D,
Keilholz S. 2011. Broad-band LFPs correlate with spontane-
ous fluctuations in fMRI signals in the rat somatosensory
cortex under isoflurane anesthesia. Brain Connect 1:119–
131.

Pawela CP, Biswal BB, Cho YR, Kao DS, Li R, Jones SR, Schulte
ML, Matloub HS, Hudetz AG, Hyde JS. 2008. Resting-state

functional connectivity of the rat brain. Magn Reson Med
59:1021–1029.

Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Jones SR,
Cho YR, Matloub HS, Hyde JS. 2009. A protocol for use of
medetomidine anesthesia in rats for extended studies using
task-induced BOLD contrast and resting-state functional con-
nectivity. Neuroimage 46:1137–1147.

Paxinos G, Watson C. 1998. The Rat Brain in Stereotaxic Coordi-
nates. San Diego: Academic Press.

Thompson G, Magnuson M, Merritt M, Schwarb H, Pan W,
McKinley A, Tripp L, Schumacher E, Keilholz S. 2012. Short
time windows of correlation between large scale functional
brain networks predict vigilance intra-individually and
inter-individually. Hum Brain Mapp. [Epub ahead of print];
DOI: 10.1002/hbm.22140.

Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn
M. 2006. A fully noninvasive and robust experimental proto-
col for longitudinal fMRI studies in the rat. Neuroimage
29:1303–1310.

Williams KA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Hu
X, Keilholz SD. 2010. Comparison of alpha-chloralose, medeto-
midine and isoflurane anesthesia for functional connectivity
mapping in the rat. Magn Reson Imaging 28:995–1003.

Zhao F, Zhao T, Zhou L, Wu Q, Hu X. 2008. BOLD study of stim-
ulation-induced neural activity and resting-state connectivity
in medetomidine-sedated rat. NeuroImage 39:248–260.

Address correspondence to:
Shella Keilholz

Wallace H. Coulter Department of Biomedical Engineering
Emory University and Georgia Institute of Technology

101 Woodruff Circle Ste 2001
Atlanta, GA 30322

E-mail: shella.keilholz@bme.gatech.edu

40 KEILHOLZ ET AL.


