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The Restless Brain

Marcus E. Raichle

Abstract

The pressing need to better understand human brain organization is appreciated by all who have labored to ex-
plain the uniqueness of human behavior in health and disease. Early work on the cytoarchitectonics of the human
brain by Brodmann and others accompanied by several centuries of lesion behavior work, although valuable, has
left us far short of what we need. Fortunately, modern brain imaging techniques have, over the past 40 years, sub-
stantially changed the situation by permitting the safe appraisal of both anatomical and functional relationships
within the living human brain. An unexpected feature of this work is the critical importance of ongoing, intrinsic
activity, which accounts for the majority of brain’s energy consumption and exhibits a surprising level of organi-
zation that emerges with dimensions of both space and time. In this essay, some of the unique features of intrinsic
activity are reviewed, as it relates to our understanding of brain organization.
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Introduction

Understanding the human brain in health and disease
is a societal imperative. Although data have accumu-

lated for several centuries from postmortem, lesion behavior,
and noninvasive electrophysiological studies (Finger, 1994;
Finger et al., 2010), these data fall short of what is needed
and certainly do not approach that available from other spe-
cies. Although critical to our understanding of brain and be-
havior, data from nonhuman brains cannot fully substitute
for information on humans as pointed out forcefully by
Crick and Jones (1993) several years ago.

It is arguably the case that the introduction of human imag-
ing in the 1970s, first with X-ray computed tomography
(Hounsfield, 1973) followed by positron emission tomogra-
phy and magnetic resonance imaging (MRI), created a critical
bridge between neuroscience more generally and the human
brain (for a recent historical review, see Raichle, 2009). Since
the introduction of functional MRI (fMRI) in 1992 (Bandettini
et al., 1992; Frahm et al., 1992; Kwong et al., 1992; Ogawa
et al., 1992), close to 15,000 papers have been published
using fMRI to study functional brain organization largely in
humans. Functional fMRI has been complimented more re-
cently by the use of diffusion tensor MRI to map, with in-
creasing sophistication, the large fiber pathways in the
brain ( Johansen-Berg and Rushworth, 2009; Wedeen et al.,
2005), resulting in more than 2000 published papers on the
subject.

Beginning with the clarion call of Crick and Jones (1993)
and stimulated by the subsequent prospect of obtaining ade-
quate functional and anatomical data through imaging, the
call for a ‘‘Human Connectome’’ was made by Sporns and
colleagues (Sporns, 2011; Sporns et al., 2005). The response
has been a recently funded National Institutes of Health pro-
ject to create a human connectome (http://humanconnectome
.org/consortia/) employing all of the tools of imaging plus
genetics and behavior. More than $30M has been allocated
over 5 years to accomplish this important undertaking with
participants from several European countries assisting inves-
tigators in the United States. The end result will be the first
truly comprehensive view of both the functional and anatom-
ical organization of the normal, young-adult, human brain.
One of the interesting features of the Human Connectome
Project is that it will exploit the unique properties of the
brain’s ongoing or intrinsic activity.

A Brief History of Intrinsic Activity

The existence of ongoing or intrinsic activity in the brain
was quite possibly first noted by Hans Berger when he intro-
duced electroencephalography in humans in 1929 (Berger,
1929; for an English translation of this work, see Gloor,
1969). In referring to the spontaneous activity in the electro-
encephalogram (EEG), Berger (1929) asked ‘‘Is it possible to
demonstrate the influence of intellectual work upon the
human electroencephalogram, insofar as it has been reported
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here?’’ He then concluded that ‘‘Of course, one should not
at first entertain too high hopes with regard to this, be-
cause mental work, as I explained elsewhere, adds only a
small increment to the cortical work which is going on contin-
uously and not only in the waking state.’’ As has been dem-
onstrated in subsequent research, extensive averaging of
the EEG has been used to significantly attenuate if not elimi-
nate this seemingly random, ongoing activity, leaving only
predictably occurring and obviously less-dominant, task-
induced changes or event-related potentials as they are
known generally.

The potential physiological significance of the brain’s on-
going intrinsic activity was noted by Bishop (1933) during ex-
periments in which he observed cyclic changes in visual
cortex excitability of the rabbit during stimulation of the
optic nerve. In commenting about this phenomenon, he pre-
sciently observed that ‘‘In general, it is not necessary to
infer that each individual impulse traveling up a fiber from
the retina arrives as a unit impulse in the cortex, and registers
there as such. Rather, we would look upon the cortex as being
in constant activity, the physiological activity of the whole
network of neurons bearing some direct relationship to the
‘present state’ of the animal’s complex behavior which is
sometimes referred to as his ‘mental state.’’’ This echoes an
idea put forth several decades earlier by the physiologist
Brown (1914) that the brain’s operations are mainly intrinsic,
involving the acquisition and maintenance of information for
interpreting, responding to, and even predicting environmen-
tal demands (for a recent review, see Raichle, 2010b).

From a functional imaging perspective, the remarkable
properties of the brain’s intrinsic activity were first noted
by Biswal and colleagues (1995) at the Medical College of
Wisconsin. In their 1995 paper, they observed that the
‘‘noise’’ in the spontaneous fMRI blood oxygen level depen-
dent (BOLD) signal exhibited striking patterns of spatial co-
herence corresponding, in their case, to the sensorimotor
regions of the cerebral cortex (Fig. 1). Remarkably, these orga-
nized patterns of activity occurred in the absence of any overt
motor activity. Although some worried that this finding
might be of cardiac or respiratory origin (Birn et al., 2006;
Chang et al., 2009; Wise et al., 2004), it has become clear
that this activity, now uniquely seen with fMRI BOLD imag-
ing, is indeed of fundamental importance for brain function
as neurophysiologists have been suggesting for some time
(e.g., see Bishop, 1933; Buzsaki, 2006; Lashley et al., 1951; Lli-
nas, 1988; Vern et al., 1997; Yuste et al., 2005).

Some General Observations

Although our understanding of the brain’s intrinsic activ-
ity is still very much a work in progress, a number of obser-
vations made about these surprising patterns of spatial
coherence appear reasonably well established.

First, functionally related, intrinsic activity likely accounts
for the major cost, in terms of energy, of running the brain.
Surprisingly little cost is added by task-evoked activity
(Raichle, 2010b; Raichle and Mintun, 2006; Sokoloff et al.,
1955). A full accounting of the components of the cost of in-
trinsic activity awaits further research [a circumstance that
has prompted me to refer to it as the brain’s ‘‘dark energy’’
(Raichle, 2010a)]. But the discovery of these remarkable spa-
tial and temporal patterns in the spontaneous activity of the

brain have been definitely an important catalyst for new re-
search at many levels trying to account for this high cost
(for a more detailed discussion, see Raichle, 2010b).

Second, the spatial organization of intrinsic activity ap-
pears to transcend levels of consciousness, being present
under anesthesia in humans (Greicius et al., 2008), monkeys
(Vincent et al., 2007), and rats (Lu et al., 2007) and also during
the early stages of sleep in humans (Fukunaga et al., 2006;
Larson-Prior et al., 2009). These observations make it unlikely
that the patterns of coherence and the intrinsic activity they
represent are solely the result of unconstrained, conscious
cognition [i.e., mind wandering or day dreaming (Christoff
et al., 2009)].

Third, although resting state patterns of coherence do re-
spect patterns of anatomical connectivity in both the monkey
(Vincent et al., 2007) and human brain (Zhang et al., 2008), it
is clear that they are not constrained by these anatomical con-
nections. Thus, the absence of monosynaptic connections be-
tween brain areas [e.g., right and left primary visual cortex
(Vincent et al., 2007)] does not preclude the existence of func-
tional connectivity as expressed in the maps of resting state
coherence. The actual details of how these multisynaptic rela-
tionships operate remains to be established.

Fourth, the strength of coherence between nodes within
systems varies with age (Fair et al., 2007, 2008), experience
(Bartels and Zeki, 2005; Jiang et al., 2004; Lewis et al., 2009;
Sun et al., 2007), and disease (Zhang and Raichle, 2010).
Developmental changes have been particularly well demon-
strated in the default mode network (Fair et al., 2008) and
the brain’s control systems (Fair et al., 2008). Such observa-
tions are consistent with the role of experience (Lewis et al.,
2009) and, possibly, spontaneous activity itself in sculpting
and maintaining these functional relationships in the
human brain (Huberman et al., 2008; Yuste, 1997). At the
other end of the life spectrum, data suggest that the young
adult pattern, for example, in the default mode network
(Buckner et al., 2008; Raichle et al., 2001), may recede as
one passes into the sixth decade of life and beyond
(Andrews-Hanna et al., 2007) even in healthy older persons.
Even more interesting are three recent studies demonstrating
disruption in default mode network coherence in cognitively
normal older persons harboring default mode network amy-
loid plaques (Hedden et al., 2009; Sheline et al., 2009; Sperling
et al., 2009). In this regard, it should be recalled that the de-
fault mode network appears to be a major target of Alz-
heimer’s disease (Buckner et al., 2005). Disruption in the
resting state coherence between nodes of a system may well
prove to be a sensitive early biomarker of incipient disease
(Zhang and Raichle, 2010).

Fifth, spontaneous fluctuations in the BOLD signal contrib-
ute significantly to both variability in evoked signals (Fox
et al., 2006) and variability in the associated behavior (Fox
et al., 2007). These observations become important as we con-
sider the neurophysiologic correlates of the spontaneous
BOLD fluctuations later.

Finally, observing that major brain systems can be identi-
fied by their unique patterns of spatial coherence (Fig. 1)
tends to obscure the fact that these systems must operate in
an integrated manner. It seems reasonable to ask whether
this integration only occurs during a task, as has been demon-
strated countless times, or whether it is present in the resting
state as well. Figure 2 addresses this question by arranging
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system-specific regions of interest is a cross-correlogram
with unique regions of interest representing each system oc-
cupying a position along the diagonal. What should be
noted from this is that relationships exist not only within
systems, as expected, but also among the systems even in
the resting state. Some of these relationships are expressed
as positive correlations and others as negative correlations,
an interesting feature first reported elsewhere (Fox et al.,
2005, 2009).

Remarkable as is the functional organization emerging
from resting state studies of the fMRI BOLD, the story can

be developed more fully by relating it to the underlying neu-
rophysiology.

Neurophysiology

There has been an active effort to ascertain the electrical
correlates of the fMRI BOLD signal (for summaries of this
work from different perspectives, see Khader et al., 2008; Log-
othetis, 2008; Raichle and Mintun, 2006). The conclusion from
this work is that the fMRI BOLD signal is best correlated with
local field potentials (LFPs). LFPs are complex signals arising

FIG. 1. From the fluctuating patterns of intrinsic activity seen in the human brain with fMRI BOLD imaging, striking patterns
of spatial coherence within known brain systems can be extracted. A single-subject example of data from which these patterns
are derived is shown (A). These data were obtained continuously over a period of 5 min (each row is 1 min, each frame is
2.3 sec). We have found it instructive to view the data occasionally in this way as it helps one understand the slowly moving,
ever-changing nature of the activity. An interpolated version of these data in a movie format may be downloaded from ftp://
imaging.wustl.edu/pub/raichlab/restless_brain. The patterns of spatial coherence shown on the bottom are obtained by plac-
ing a seed region in a single focus within a system (in this case, in the sensorimotor cortex) and extracting the resulting BOLD
time series (B). This time series is then used as a regressor to search the brain for correlated time series. The results are brain-
network–specific images of spatial coherence in the ongoing activity of the brain (C). This strategy has been applied with ever-
increasing sophistication to systems throughout the human brain. A more complete description of the data-processing steps
leading to such images is presented elsewhere along with alternate strategies (Zhang and Raichle, 2010). (D) Seven major brain
networks analyzed in this way are shown. BOLD, blood oxygen level dependent; fMRI, functional magnetic resonance imaging.
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from the integrated electrical activity in pre- and postsynaptic
terminals of the brain and are recorded with microelectrodes
placed within brain tissue. Brain electrical activity recorded
from the scalp with EEG or from surface of the brain with
electrocorticography constitutes a summation of a population
of LFPs. LFPs are conventionally described in terms of their
band-limited frequency components (delta, 1–4 Hz; theta, 4–
8 Hz; alpha, 8–12 Hz; beta, 12–24 Hz; and, gamma, > 24 Hz).

Given the relationship between LFPs and BOLD, it is im-
portant to focus on those LFP phenomena that exhibit fre-
quencies similar to that of spontaneous BOLD fluctuations
(i.e., 0.01–4.0 Hz). Two LFP phenomena fall into this category:
fluctuations in the power of higher frequencies (i.e., their
power spectral density) where particular attention has been
paid to the gamma frequency band (Leopold et al., 2003) be-
cause of its association with cognition (Fries, 2009; Uhlhaas
et al., 2009); and raw frequencies that approximate that of
the spontaneous BOLD signal. These include the delta band
(1–4 Hz), up-an-down states [*0.8 Hz; (Hahn et al., 2006;
Petersen et al., 2003; Steriade et al., 1993; Watson et al.,
2008)], and infraslow fluctuations (ISFs) [0.01 and 0.1 Hz
(Monto et al., 2008; Vanhatalo et al., 2004)]. ISFs are some-
times called direct current potentials. ISFs are much less
often recorded because of the amplifier requirements and
concerns about artifacts (Khader et al., 2008). Often all three
(delta, up-and-down states, and ISFs) are subsumed under
the designation slow cortical potentials (SCPs) (He et al.,

2008; Rockstroh et al., 1989). The term SCPs will be used in
this article, recognizing that it likely includes all three phe-
nomena to an as-yet unspecified extent.

The research shows that the spontaneous fluctuations in the
BOLD signal are best correlated with LFP activity in the range
of the SCPs (He and Raichle, 2009; He et al., 2008; Lu et al.,
2007). As is the case with the spontaneous fluctuations in the
fMRI BOLD signal, the spatial patterns of coherence exhibited
by SCPs are maintained across levels of consciousness ranging
from wakefulness to rapid eye movement (REM) and slow
wave sleep (He et al., 2008) and during anesthesia (Breshears
et al., 2010; Lu et al., 2007). In contrast, power in the gamma
frequency band is only correlated spatially with the BOLD
signal during wake and REM sleep (He et al., 2008; see also
Nir et al., 2008). This finding is consistent with the role of
gamma-band coherence in the mental activities associated
with conscious awareness (Fries, 2009; Uhlhaas et al., 2009).

Knowing that SCPs and spontaneous fluctuations in the
BOLD signal are related provides an important bridge to ad-
ditional important neurophysiology (e.g., see Buzsaki and
Draguhn, 2004; Monto et al., 2008; Rockstroh et al., 1989;
Schroeder and Lakatos, 2008; Varela et al., 2001). Emerging
from this literature are several ideas relevant to the interpre-
tation of the fMRI BOLD signal in the resting state.

SCPs and their BOLD counterpart likely represent fluctua-
tions in cortical excitability (for reviews, see Birbaumer et al.,
1990; Buzsaki, 2006; Rockstroh et al., 1989; Schroeder and

FIG. 2. A cross-correlogram constructed from regions of interest within the seven brain networks shown in Figure 1. The data
represent a 30 min average from a normal adult male volunteer resting quietly in 3T scanner (Siemens Trio) but awake. The
names of the regions are shown along the left and their spatial coordinates are shown along the right margin of the correlo-
gram. The diagonal of the correlogram represents the correlation of each region with itself. It should be noted that while cor-
relations within networks appear distinctive in this presentation, relationships among networks (both positive and negative) are
also prominent, emphasizing the integrated nature of the brain’s functional organization, which is sometimes overlooked
when viewing images of the type shown in Figure 1 and on the right. An additional important feature of the data presented
in this cross-correlogram is its temporal dynamics. Although not feasible to present in the form of static images, these temporal
dynamics in movie format may be downloaded from ftp://imaging.wustl.edu/pub/raichlab/restless_brain.
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Lakatos, 2008; Vanhatalo et al., 2004). Fluctuations in cortical
excitability have remarkable effects on the elements of the
LFP frequency spectrum, including the spiking activity of
neurons (Lakatos et al., 2005; Montemurro et al., 2008; Peter-
mann et al., 2009). This is known as ‘‘cross-frequency, phase-
amplitude coupling’’ that denotes a relationship between two
distinct frequency bands in which the amplitude of the higher
frequency is dependent on the phase of the lower frequency.
For example, the amplitude of theta activity (4–7 Hz) is influ-
enced by the phase of delta activity (1–4 Hz). In turn, the am-
plitude of alpha activity (8–12 Hz) is influenced by the phase
of theta activity and so on up the frequency spectrum of brain
electrical activity all the way to spikes. A very good example
of this comes from the work of Monto and colleagues (2008)
from Helsinki and is shown in Figure 3.

In the resting state and during sleep as well, brain electrical
activity can appear largely arrhythmic (sometimes referred to
as ‘‘scale free’’ because of the absence of specific oscillations
in, for example, the alpha and theta bands); this frequency
spectrum can be best described using a power law [i.e., 1/f a

(He et al., 2010)]. Despite the apparent absence of distinctive
oscillations, the cross-frequency, phase-amplitude coupling
can be found in brain scale-free activity as well (He et al.,
2010), reinforcing the idea of its fundamental importance in
brain functional organization.

Spatially coherent, rhythmic variations in cortical excitabil-
ity and associated cross-frequency, phase-amplitude cou-
pling provides a logical means of coordinating ongoing
functional activity and also provides a convenient explana-
tion for the variability in evoked responses (Arieli et al.,
1996; Bishop, 1933; Fiser et al., 2004; Fox et al., 2006) and be-
havioral performance (Birbaumer et al., 1990; Fox et al., 2007;
Gilden et al., 1995; Lakatos et al., 2008; Monto et al., 2008),
which are both influenced by changes in cortical excitability.
Of interest is how and why the brain uses these dynamic fea-
tures of its functional organization. For many the answer is
‘‘prediction’’ (Bar, 2011).

Prediction

In the opening of his book on Rhythms in the Brain (Buzsaki,
2006), Gyuri Buzsaki said it well: ‘‘Brains are foretelling de-
vices and their predictive powers emerge from the various
rhythms they perpetually generate.’’ Operating largely non-
consciously, brains seek predictable regularities from impov-
erished information and implement organized, learned
responses while retaining the ability to pause, adapt, and
learn anew. Examination of the temporal dynamics of the
brain’s ongoing rhythmic activities provides an important
window for us to explore the question of how prediction
might be implemented. If the brain is effectively a predictive
device then anticipation must be a component of its opera-
tion. And, indeed, SCPs and their BOLD counterpart provide
evidence in support of just such a hypothesis.

FIG. 3. This figure demonstrates that cross-frequency,
phase-amplitude coupling of EEG oscillations (1–40 Hz) are
nested in the ISFs of the EEG (0.01–0.1 Hz). The correlation
of the 1–40 Hz oscillation amplitudes (colored lines) with
the ISFs is similar to that of the behavior (black line). The
ISF phase ranges from �p to p in bins of 10 percentiles. The
thick gray line denotes a descriptive cycle of the ISFs. Repro-
duced with permission from Monto et al. (2008). EEG, electro-
encephalogram; ISFs, infraslow fluctuations.

FIG. 4. This figure depicts an fMRI experiment in which normal subjects heard a short auditory tone every 20 sec. In half the
trials (randomly interleaved), a low-contrast pattern (A) was briefly presented in varying contrasts (much lower than that
shown in this illustration) in a peripheral annulus around a central fixation point; in the other trials, no pattern was presented.
Subjects pressed one of two buttons to indicate whether they believed the pattern was present. This sequence of events is
depicted in (B). Noteworthy is the fact that the evoked fMRI BOLD signal in V1 shown in (C) was identical whether the pattern
was present or absent. This figure was reproduced with permission from Ress et al. (2000).
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An important early observation in this regard was that of
Walter and colleagues (1964) at the Burden Neurological
Institute in the United Kingdom. Their work on event-related
potentials focused on the relationship between two tempo-
rally related stimuli: a warning stimulus that alerted their
subject to the impending appearance of a second (imperative)
stimulus to which the subject was expected to respond, usu-
ally with a button press. They noted following the presenta-
tion of the warning stimulus a slow negative potential,
presumably related to increased cortical excitability, which
appeared and lasted until the subject’s response to the second
stimulus (often many seconds). They called this negative SCP
a contingent negative variation (CNV), which predictably
reoccurred as long as there was a high probability that the
warning stimulus predicted the imperative stimulus.

After its discovery, much work was done on the CNV and
its relation to behavior (nicely summarized in Birbaumer
et al., 1990; Rockstroh et al., 1989). More recently, there has
been a concordance of findings on the functional anatomy
of the CNV explored with task-based fMRI (e.g., see Gomez
et al., 2007; Lutcke et al., 2009; Scheibe et al., 2010)], but rarely
(see Nagai et al., 2004) a connection has been sought between
anticipatory signals such as the CNV and spontaneously oc-
curring SCPs, which are known to influence information pro-
cessing (e.g., see Birbaumer et al., 1990; Lakatos et al., 2008;
Monto et al., 2008; Vanhatalo et al., 2004).

A productive way to bridge this gap in our understanding
is to begin with a very interesting series of imaging studies on
attention that have focused on changes in brain activity pre-
ceding the appearance of a to-be-attended sensory stimulus.
Two papers (Kastner et al., 1999; Ress et al., 2000) are illustra-
tive. In both studies cued, covert attention produced signifi-
cant increases in fMRI-measured activity in visual cortex
independent of the presence or absence of a visual stimulus.
A particularly dramatic example of this from the work by
Ress et al. (2000) is shown in Figure 4, where cue-evoked
BOLD signals in the presence and absence of a cue-predicted
visual stimulus are indistinguishable.

Consistent with an earlier work on the CNV (Rockstroh
et al., 1989), these anticipatory changes in brain activity are
malleable in terms of changing temporal parameters in the
experiment (Sirotin and Das, 2009), predicting the subject’s
performance (Giesbrecht et al., 2006; Li et al., 2008; Ress
et al., 2000; Sapir et al., 2005), involving activity increases as
well as decreases (Sylvester et al., 2008), and not confined
to early sensory cortices (Kastner and Ungerleider, 2001).
Does a similar mechanism underlie preparatory and evoked
BOLD signals as suggested by Sylvester and colleagues
(2009) and how might this relate to ongoing, spontaneous
activity? The answer may lie in a further examination of the
underlying physiology.

The neurophysiological work of Charles Schroeder and
colleagues in humans and nonhuman primates (reviewed in
Schroeder and Lakatos, 2008; Schroeder et al., 2008, 2010; il-
lustrated in Fig. 5) is particularly illuminating in how to con-
ceptualize a link between spontaneous, cued-attentive, and
stimulus-evoked activity. In detail, they posit that ‘‘atten-
tional bias in the phase of neocortical excitability fluctuations
represents a fundamental mechanism for tuning the brain to
the temporal dynamics of task-relevant event patterns’’ (Besle
et al., 2011). On this hypothesis, the dynamic organization of
the brain into large-scale, yet flexible networks based on SCP-

FIG. 5. This figure schematically illustrates three phenom-
ena of interest in understanding the brain’s functional organi-
zation from a neurophysiological perspective. (A) The
putative relationship between neuronal excitability as
indexed by action potential firing rate (red) and the phase
of local ongoing fluctuations in membrane potentials within
neuronal ensembles as indexed, for example, by SCPs and
BOLD. Together B and C illustrate the interaction between
ongoing fluctuations in neural excitability (i.e., the phase of
SCPs) and incoming information in the form of a salient cue
or sensory stimulus at time zero. The result of this interaction
can be a phase realignment across trials such that optimal
(red) and nonoptimal (blue) phases align separately. The
end result of this process is a tuning of the neocortex to the
temporal dynamics of attended events (Besle et al., 2011;
see also Sylvester et al., 2007). As the result of cross-
frequency, phase-amplitude coupling between frequencies,
a remarkable hierarchical organization emerges from these
SCP fluctuations. This is illustrated in D, where a complex
wave form typically generated by local field potentials
(green) and recorded from the cortex is decomposed into its
component frequencies. This figure was reproduced with
the permission from Schroeder et al. (2008). SCPs, slow corti-
cal potentials.
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mediated fluctuations of neuronal excitability allows the tun-
ing of these network structures to the changing temporal dy-
namics of behaviorally relevant event streams (Figs. 1 and 2).
Through cross-frequency, phase-amplitude coupling, the full
range of brain electrical activity is represented in this dy-
namic organization scheme. As a result, responses are en-
hanced and performance is improved (see also Bressler
et al., 2008; Monto et al., 2008; Sapir et al., 2005; Sylvester
et al., 2009). The fMRI BOLD signal represents a unique but
highly focused (i.e., frequency limited) view of these events.

Much if not all work on entrainment (phase-locking) of on-
going electrical activity and the attendant cross-frequency,
phase-amplitude coupling has involved active, goal-directed
tasks involving predictable sensory stimuli. Yet, cross-
frequency, phase-amplitude coupling occurs ‘‘spontaneously’’
in intracortical LFPs (He et al., 2010; Lakatos et al., 2005). This
raises the question of what we mean by attention somewhat
more broadly defined. Are we not always attending? Could
most attending be nonconscious?

If these suppositions are correct, then capturing the rela-
tionship between cross-frequency, phase-amplitude coupling
experimentally in a goal-directed task, while serving to dem-
onstrate the dynamic and purposeful nature of the brain’s
intrinsic activities under experimentally controlled condi-
tions, should not be used to define attention as solely con-
fined to goal-directed tasks involving conscious awareness.
Given the narrow window of conscious awareness (Anderson
et al., 2005; Norretranders, 1998), it is hard to imagine
otherwise.

Finally, we need to rethink our understanding of the fMRI
BOLD signal in terms of its relationship to task-evoked activ-
ity. We have struggled in the past to relate the sluggish re-
sponsiveness of the BOLD signal to rapidly changing
electrical events in the brain all the while ignoring the fact
that the temporal characteristics of the fMRI BOLD signal
match almost perfectly the SCPs and other functionally im-
portant cellular and biochemical processes (for views of the
relevant cellular and biochemical processes, see Raichle,
2010b; Vaishnavi et al., 2010). We should ask not whether
task-induced changes in the fMRI BOLD signal represent
sluggish responses to rapidly changing, evoked electrical
events but rather whether they represent ongoing, organized
changes in excitability (i.e., SCPs) predicatively maintaining
and adjusting the brain’s functional organization. On this
view, a strict distinction between intrinsic and evoked activ-
ity (as seen by BOLD) seems incongruous with the underly-
ing neurophysiology where SCPs represent a window on
the dynamic interplay between the brain’s ongoing rhythms
and its ever-changing environment.
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