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Current challenges and future potential of tomato breeding using omics approaches
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As tomatoes are one of the most important vegetables in the world, improvements in the quality and yield of

tomato are strongly required. For this purpose, omics approaches such as metabolomics and transcriptomics

are used not only for basic research to understand relationships between important traits and metabolism but

also for the development of next generation breeding strategies of tomato plants, because an increase in the

knowledge improves the taste and quality, stress resistance and/or potentially health-beneficial metabolites

and is connected to improvements in the biochemical composition of tomatoes. Such omics data can be

applied to network analyses to potentially reveal unknown cellular regulatory networks in tomato plants. The

high-quality tomato genome that was sequenced in 2012 will likely accelerate the application of omics strat-

egies, including next generation sequencing for tomato breeding. In this review, we highlight the current

studies of omics network analyses of tomatoes and other plant species, in particular, a gene coexpression net-

work. Key applications of omics approaches are also presented as case examples to improve economically

important traits for tomato breeding.

Key Words: metabolomics, transcriptomics, biochemical trait, Solanum lycopersicum, tomato, multinetwork,

coexpression analysis.

Introduction

The tomato (Solanum lycopersicum) is one of the most im-

portant vegetables in the world, both as a fresh fruit and as

the main ingredient of staple products like tomato puree and

ketchup. As consumer demands for more variation, im-

provement of quality and taste, year-round availability and

human health benefits have increased, scientists have had to

obtain new insights into underlying genetic factors and reg-

ulation of metabolic pathways related to biochemical traits

to accommodate such demands.

The omics approaches such as transcriptomics, proteom-

ics and metabolomics constitute a trilogy in the post-

genomics era to elucidate key steps in cellular events.

Metabolomics, transcriptomics, or an integration of these 2

omics strategies have been used to investigate the metabolic

networks of tomatoes to improve the quality and yield,

because an increased knowledge that improves taste and

quality, stress resistance, and/or potentially health-beneficial

metabolites (e.g. antioxidants) is connected to the improve-

ment of the biochemical composition of tomato plants. The

tomato genome was sequenced in 2012 (Sato et al. 2012);

therefore, annotations of tomato gene expression arrays

provided by manufacturers can now be more precise using

the information. Furthermore, metabolomic approaches

based on chromatographic separation techniques connected

with mass spectrometry (MS) as well as nuclear magnetic

resonance spectroscopy (NMR) have been widely used for

tomato metabolomics research because metabolites have

beneficial traits such as taste, fragrance, softness and colour

and are the ultimate phenotypic representatives of homeosta-

sis in highly complex biochemical networks (Bovy et al.

2007, Deshmukh et al. 2003, Kusano et al. 2011a, Le Gall et

al. 2003, Moco et al. 2008, Stark et al. 2008, Tikunov et al.

2005). Fig. 1 presents the current coverage of the tomato

metabolome using our MS-based metabolomics platforms

that consist of gas chromatography–electron ionization–

time-of-flight–MS (GC-EI-TOF-MS), ultraperformance liq-

uid chromatography–electron splay ionization–quadrupole–

TOF–MS (UPLC-ESI-Q-TOF-MS) and capillary electro-

phoresis–ESI–TOF–MS (CE-ESI-TOF-MS) (Kusano et al.

2011a). We have covered more than 80% of the tomato

metabolome when we evaluated the coverage by comparing

physicochemical properties of the detected metabolites and

those in the LycoCyc database (http://solgenomics.net/tools/

solcyc/) (Mazourek et al. 2009).

In this review, we will first highlight omics network stud-

ies to identify and infer cellular regulatory networks that
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have crucial roles in metabolic regulations of tomato plants

and other plant species using gene-to-gene correlation anal-

ysis, which were generated by microarray and next-

generation sequencer (NGS)-based technologies. Second,

key applications of omics approaches aimed to improve eco-

nomically important traits for tomato breeding are presented.

Revealing coordinated gene networks controlling

tomato metabolism

A high-quality genome sequence of the tomato (Sato et al.

2012) facilitates a better understanding of molecular mecha-

nisms regulating important traits such as yield and fruit qual-

ity characteristics. In this section, we focus on the role of the

‘omics’ network analysis using microarray- and NGS-based

technologies in plants, including tomatoes.

Genomic- and post-genomic resources in tomatoes

The Expressed Sequence Tag (EST) database for the to-

mato has many sequences corresponding to 40,000 Uni-

Genes (http://www.sgn.cornell.edu) (Mueller et al. 2005). A

large-scale collection of >13,000 full-length cDNAs gener-

ated from the tomato cultivar Micro-Tom has been previous-

ly reported (Aoki et al. 2010). TOMATOMICS, which is the

integrated omics database for tomato plants, is constructed

from the latest UniGene set (KTU4) that is made up of

125,883 ESTs from 9 cDNA libraries and other publicly

available 196,912 ESTs from Sol Genomics Network

(SGN), resulting in 58,083 UniGenes (http://bioinf.mind.

meiji.ac.jp/tomatomics/). These genomic resources contain

fundamental information reflecting complex gene expres-

sion in a plant cell. Developments in microarray technology

have had a striking impact on the ability of researchers to

monitor the expression of thousands of gene simultaneously.

In the tomato, many types of microarray platforms, includ-

ing TOM1, TOM2, Affymetrix GeneChip, Agilent custom

array and TomatoArray (COMBIMATRIX), have enabled

the investigation of responses to several stress conditions

(Cantu et al. 2009, Khodakovskaya et al. 2011, Sun et al.

2010), the comparison of the expression profiles of wild-

type and transgenic or mutant plants (Kumar et al. 2012,

Martinelli et al. 2009, Nashilevitz et al. 2010, Povero et al.

2011) and the study of host-pathogen interactions (Alkan et

al. 2012, Balaji et al. 2008, Owens et al. 2012). Archives of

these comprehensive databases are in public repositories like

NCBI GEO (Barrett et al. 2009) and ArrayExpress

(Parkinson et al. 2009). Fig. 2 shows information about the

collection of 393 Affymetrix tomato GeneChip data from

NCBI GEO, ArrayExpress and TFGD (Fei et al. 2011).

Recently, there have been tomato expression datasets gener-

ated by NGS-based RNA-sequencing (RNA-seq) and digital

expression analysis; 7 RNA-seq datasets have been stored in

the Sequence Read Archive (SRA) at NCBI (http://www.

ncbi.nlm.nih.gov/sra). Other public databases for tomato

research are summarized by Suzuki and the colleagues

(Suzuki et al. 2009).

Meta-analysis of plant transcript profiles: gene coexpres-

sion

The publicly available datasets mentioned above have

Fig. 1. To-date coverage of the tomato metabolome using the MS-based metabolomics platform in PRIMe (Platform for RIKEN Metabolomics,

http://prime.psc.riken.jp/). Principal component analysis was performed using the physicochemical properties of the metabolomic dataset ob-

tained from Kusano et al. (2011a) and those from the LycoCyc database (http://solgenomics.net/tools/solcyc/) (Mazourek et al. 2009). We used

the latest version of the metabolite information in our custom database and ChemSpider (http://www.chemspider.com/). PC, principal component.
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facilitated the development of in silico tools and databases to

predict the functions of unknown genes. These are useful for

model plants such as Arabidopsis and rice (see (Aoki et al.

2007, Usadel et al. 2009) and also for research on crops like

tomatoes. Most tools and databases use a ‘gene coexpres-

sion’ approach. Gene coexpression is based on expression

similarities between gene pairs across many experimental

samples. It is predicted that the coexpressed gene pairs share a

similar function in biological processes and have related reg-

ulatory mechanisms. In coexpression approaches, Pearson’s

product-moment correlation coefficient is the most widely

used for similarity measures. The Pearson’s correlation

coefficient, r, can range from −1 to 1. An r = 1 indicates a

perfect positive linear relationship between gene expres-

sions and r = −1 indicates a perfect negative relationship. An

r = 0 implies no linear relationship between gene expres-

sions. The calculation of Pearson’s correlation coefficient is

not robust for outliers and assumes that the data are from a

standard normal distribution. On the other hand, Spearman’s

rank correlation coefficient does not depend on a linear rela-

tionship and is more resistant to outliers than Pearson’s cor-

relation coefficient. In many cases, such associations can be

described as a ‘coexpression networks’, where nodes repre-

sent genes and links between nodes represent significant

correlations that are higher than a threshold, resulting in a

large-scale undirected graph. Accordingly, for the interpre-

tation of coexpressed gene pairs, properties concerning their

similarity measures should be noted.

Detecting meaningful associations in transcriptomic data

As several groups have demonstrated, coexpression

network-based approaches are useful to characterise gene

functions involved mainly in secondary metabolites such as

flavonoids and glucosinolates in Arabidopsis (Saito et al.

2008, Usadel et al. 2009). However, a correlation does not

always reflect a linear relationship and does not necessarily

reflect causal relationships. Markowetz and Spang indicated

that coexpression networks visualised by undirected graphs

cannot easily explain the difference between direct and indi-

rect dependencies in gene networks, although they should

contain causal regulatory relationships (Markowetz and Spang

2007). A partial correlation coefficient may be used for con-

structing coexpression networks. It measures the correlation

between 2 gene expressions x and y conditioning on 1 vari-

able z. Although partial correlation still does not indicate

causal relationships, it can be useful to exclude many indi-

rect relationships (de la Fuente et al. 2004). In this frame-

work, Ma et al. (2007) have inferred Arabidopsis coregula-

tion patterns between genes using the graphical Gaussian

model (GGM), which is a robust estimation of a direct rela-

tionship between variables (Ma et al. 2007). By measuring

general dependencies between variables, mutual informa-

tion based on information theory can identify coexpressed

genes in large-scale high-throughput data (Steuer et al.

2002). In contrast to Pearson’s correlation, Galili and col-

leagues presented a novel bioinformatics tool called ‘Gene

Coordination’ (Less and Galili 2009, Less et al. 2011). This

method is based on the number of biological perturbations

(e.g. drought stress), in which both genes of a given gene

pair are significantly upregulated or significantly downregu-

lated together, compared to non-treated controls. The au-

thors demonstrated that the approach identified highly co-

ordinated genes involved in the aspartate-family pathway in

Arabidopsis. Reshef et al. (2011) proposed the maximal

information coefficient (MIC), which is a novel measure of

the association between variables (Reshef et al. 2011). This

method can identify both linear and nonlinear relationships

(i.e. is not limited to linear relationships), allowing us to ex-

plore variable relationships in a given data set in a non-

biased manner. Construction of coexpression networks using

RNA-seq data of tomatoes will be increased in the near fu-

ture, as described for mice RNA-seq data (Lancu et al. 2012).

Expanding network concepts from single- to multinetwork

Integrating other omics data is another promising strategy

to predict unknown gene functions. The first integrative

study to construct a comprehensive multinetwork model of

molecular interactions in Arabidopsis was performed using

multiple microarray datasets treated by different combina-

tions of carbon and nitrogen sources (Gutierrez et al. 2007,

2008). Gutierrez et al. integrated multiple information, in-

cluding protein-DNA interactions, protein-protein interac-

tions, metabolic pathways and molecular interactions from

literature mining. Coruzzi and coworkers experimentally

assessed those subnetworks inferred from the multinetwork

Fig. 2. The current status of (A) experimental information and (B)

tissues in 23 tomato microarray datasets. We used a collection of 393

Affymetrix tomato GeneChip data from the NCBI GEO, ArrayExpress

and TFGD (Fei et al. 2011) public databases for this calculation (col-

lection date, July 2012).
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(Gifford et al. 2008, Katari et al. 2010, Vidal et al. 2010).

From a probabilistic point of view, functional networks inte-

grated from multiple genomic-scale data have recently

emerged for several species, including Arabidopsis and rice

(Lee et al. 2010, 2011). Of these, AraNet (Lee et al. 2010)

includes a million functional links among 19,647 corre-

sponding to ~73% of the total Arabidopsis genes and the

functional map demonstrates the usefulness of the network

by characterising the predicted function of several genes

based on the reverse genetics approach (Table 1).

Comparative coexpression networks: from model to crop

plants

Attempts to compare multiple molecular networks are

growing rapidly (Fukushima et al. 2009a, Kourmpetis et al.

2011, Lysenko et al. 2011). Investigations of coexpression

between adjacent genes along genomes in Arabidopsis and

rice demonstrated that the physically neighbouring genes

were relatively highly coexpressed (Ren et al. 2005, 2007,

Zhan et al. 2006). In bacterial genomes, multiple gene clus-

ters of coregulated genes called operons were found, which

have similar functions or belong to the same pathways. For a

long time, eukaryotic genomes were not considered to have

operons. However, several lines of evidence indicating the

presence of operon-like gene clusters in plants have recently

been reported (Field and Osbourn 2008, Field et al. 2011),

including genes related with triterpene biosynthetic path-

ways in Arabidopsis and oat, genes in the cyclic hydroxamic

acid pathways in maize and genes associated with diterpe-

noid momilactone production in rice (see the reviews by

Mizutani and Ohta (2010), Takos and Rook (2012)).

CYPedia is an expression database of Arabidopsis cyto-

chrome P450 monooxygenases (CYPs) (Ehlting et al. 2008).

It may be useful to have knowledge about coexpressed gene

pairs between each CYP and a gene in the database; the

orthologous gene pairs can be searched in tomato transcript

datasets. Furthermore, novel statistical methods have recent-

ly emerged to extract operon-like gene clusters, including

CYPs (Wada et al. 2012).

Using a combination of sequence similarity and gene co-

expression, we can examine similar expression patterns and

differences among multiple species, including humans and

mice (Piasecka et al. 2012) and important cereal crops

(Davidson et al. 2012, Van Bel et al. 2012). PlaNet (Mutwil

et al. 2011) provides multiple coexpression networks from 7

plants based on an algorithm of network comparisons. A tool

in PlaNet can extract conserved network modules across

plant species, allowing us to identify reliable homologs.

There exists a method available that evaluates the number

and significance of shared orthologs between coexpressed

modules (Chikina and Troyanskaya 2011, Movahedi et al.

2011, Zarrineh et al. 2011). Interestingly, many groups have

reported conserved modules associated with photosynthesis,

translation, cell division and DNA metabolism in dicot and

monocot plants (Ficklin and Feltus 2011, Fukushima et al.

2008, 2009b, 2012, Mao et al. 2009, Mentzen and Wurtele

2008, Movahedi et al. 2011, Mutwil et al. 2011).

Differential network analyses in plant science

Generally, graph clustering such as Markov clustering

(Van Dongen 2000) and DPClus (Altaf-Ul-Amin et al.

2006) can be used for detecting coexpressed modules or

clusters in a non-biased manner. Graph clustering is an algo-

rithm for efficiently extracting densely connected genes in

coexpression networks. Using this type of network-based

approach and >60 GeneChips, Ozaki and colleagues charac-

terised transcription factor regulating flavonoid pathways in

the tomato (Ozaki et al. 2010). This approach has also

provided insights into transcriptional organization in

Arabidopsis and rice as well as the tomato (Fukushima et al.

2009b, 2012, Ma et al. 2007, Mao et al. 2009, Mentzen and

Wurtele 2008). Together with conserved coexpressions, a

differential network strategy (Ideker and Krogan 2012) has

been applied to animals and plants (Choi et al. 2005, de la

Fuente 2010, Fukushima et al. 2012, Gillis and Pavlidis

2009). Differential metabolomic correlation analysis has

been used for dissecting complex metabolism (Fukushima et

al. 2011, Morgenthal et al. 2006, Weckwerth et al. 2004). As

we introduced in the review (Table 1), we believe that omics

network approaches are useful to understand underlying mo-

lecular mechanisms regulating important agronomic traits

such as yield and fruit development in the tomato.

Omics-related research approaches for improvement

of tomato fruit quality and yield

In this section, we will introduce application examples of

omics approaches to improve agronomically and economi-

cally important traits as well as metabolite composition in

the tomato.

Table 1. Omics databases introduced in the article

species database URL reference

Arabidopsis AraNet http://www.functionalnet.org/aranet/ (Lee et al. 2010)

CYPedia http://www-ibmp.u-strasbg.fr/~CYPedia/ (Ehlting et al. 2008)

VirtualPlant http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/ (Katari et al. 2010)

rice OryzaExpress http://riceball.lab.nig.ac.jp/oryzaexpress/ (Hamada et al. 2011)

soybean Soybean Proteome Database http://proteome.dc.affrc.go.jp/Soybean/ (Sakata et al. 2009)

tomato TOMATOMICS http://bioinf.mind.meiji.ac.jp/tomatomics/

Arabidopsis and six crop species PlaNet http://aranet.mpimp-golm.mpg.de (Mutwil et al. 2011)
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Metabolite quantitative trait loci analyses

Plant breeding uses genetic variation to identify interest-

ing traits and characteristics for growers and consumers.

Uncovering the genetic basis of quantitative variation in the

tomato is important for breeding purposes. Expression quan-

titative trait loci (eQTL) analysis, as a genome-wide associ-

ation study, is becoming a powerful tool to identify the ‘hot

spot(s)’ of genetic locations(s) of DNA sequence variation at

the mRNA transcript level across a segregating population.

Association analysis between genome-wide genetic varia-

tion and the levels of metabolites is also a promising ap-

proach in this field. In recent studies, eQTL analysis has

been applied to Arabidopsis, maize, wheat and tree species

(see the review by Druka et al. (2010)), whereas metabolite

QTL (mQTL) analysis has been applied to Arabidopsis, rice,

maize, potato, populus and tomatoes (Carreno-Quintero et

al. 2012, Lisec et al. 2008, Matsuda et al. 2012, Morreel et

al. 2006, Riedelsheimer et al. 2012, Toubiana et al. 2012,

Wentzell et al. 2007). Of these, we will summarise the

works of mQTL analysis based on metabolite profiling ap-

proaches to improve interesting traits in the tomato.

Tomato fruit quality is one of the most important traits.

The utility of introgression lines (ILs), which were generated

by crossing the cultivar Solanum lycopersicum ver. M82

with its wild relative S. pennellii, enables mQTL analysis of

each ripe pericarp of the ILs using GC-EI-MS (Schauer et al.

2006). This was the first publication of mQTL analysis using

metabolomics and correlation networks in the world. The

authors quantified 74 metabolites in the metabolite profiles

that were obtained from 2 independent experiments across

2 years (each data matrix: 76 ILs vs. 74 metabolites). Using

these data matrices, 889 mQTLs were identified by analysis

of variance (ANOVA) tests. Next, correlation network anal-

ysis was conducted to integrate metabolic and phenotypic

traits of the ILs, then the network was visualised by carto-

graphic representation to display the patterns of intra- and

intermodule connections (Guimera and Nunes Amaral

2005). The results showed that 50% of the metabolites were

considered to be morphologically associated. Additional

mQTLs were identified by examining changes in the metab-

olite levels in the fruit profiles of the additional year’s har-

vest and then the extent of heritability of metabolites was

investigated (Schauer et al. 2008). Metabolite profiling of

the fruit pericarp of the heterozygous hybrids between ILs

and M82 (ILHs) as well as that of the 76 homozygous ILs

was performed. Then, the authors identified 332 putative

mQTLs. Furthermore, the use of additional ILHs provided

the chance to classify each putative QTL derived from

S. pennellii into 4 types of mode-of-inheritance categories

using the method described by Semel et al. (2006). The

authors found that most of the putative wild species QTLs

showed an increasing effect on the metabolite content when

compared to that in the S. lycopersicum line and that these

effects were inherited in a dominant or additive manner.

Toubiana and colleagues demonstrated mQTL analysis

using tomato seeds of 76 ILs; metabolite profiles of each

fruit pericarp were harvested in parallel (Schauer et al. 2006,

2008) to determine the association between seed quality

traits and mQTLs (Toubiana et al. 2012). They compared

the extent of the broad-sense heritability of each metabolite

content in seed and fruit tissues of the ILs and the control

line M82 using ANOVA and coefficient of variation tests.

The observed patterns suggested that the broad-sense herita-

bility of metabolite content in the seed was greater than that

in the fruit. By using the seed and fruit datasets, network

analysis based on metabolite-to-metabolite associations was

applied to investigate the degree of correlation between me-

tabolites in the seed and the fruit. Metabolite-to-metabolite

correlation analyses have been widely applied to visualise

genotype-dependent relationships in Arabidopsis (Allen et

al. 2010, Kusano et al. 2007), potato (Weckwerth et al.

2004), melon (Biais et al. 2009) and the tomato (Ursem et al.

2008). This approach revealed more intensified correlation

relationships in seed metabolism than those found in the

fruit. Furthermore, the correlation analysis emphasized the

centrality of the amino acid module in the seed metabolic

network.

Taken together, these approaches introduced here show

that mQTL analysis in combination with introgression

breeding is likely to be useful not only to enhance biochem-

ical traits but also to find important ‘hubs’, which are highly

connected genes and/or metabolites in coexpression mod-

ules, in tomato metabolism.

Parthenocarpy

Parthenocarpy is the ability to produce fruits in the ab-

sence of pollination. It is an economically valuable trait for

many horticultural crops and vegetables, including toma-

toes. Parthenocarpy can prevent mechanical vibration of the

flowers to endure pollen shedding. For manufacturing, par-

thenocarpic tomatoes can reduce processing of tomato prod-

ucts. As such, parthenocarpy is an important trait for tomato

breeding. However, the molecular mechanism of fruit devel-

opment, particularly the onset of ovary development, re-

mains unclear. To address the issue, omics approaches have

been applied by combining the reverse genetic approach.

It is known that downregulation of indole acetic acid 9

(IAA9) in tomatoes showed pollination-independent fruit

production (Wang et al. 2005). IAA9 is a negative auxin re-

sponse regulator belonging to the Aux/IAA transcription

factor gene family (Abel et al. 1995, Nebenfuhr et al. 2000).

Integrated analysis of transcript and metabolite profiling of

MicroTom tomato lines downregulated in the expression

of the IAA9 gene was applied to investigate underlying

molecular events during fruit set (Wang et al. 2009). Three

independent experiments were carefully designed; these

datasets provided information about (i) natural pollination-

induced fruit set, (ii) pollination-dependent fruit set and (iii)

genotype-dependent comparison of fruit set between the

control (wild type) and 2 independent transgenic antisense

lines. Such comprehensive analysis generated a model of the

molecular events mediated by IAA9 and those underlying the
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fruit set process in tomatoes. The model showed that 1455

genes were involved in bud-to-flower transition and 1650

genes were involved in flower-to-fruit transition. Particular-

ly, novel pathways such as photosynthesis, auxin and ethyl-

ene signalling as well as the requirement of a high number of

transcriptional regulators associated with natural pollination

fruit set and pollination-independent fruit set were found us-

ing the omics approach.

The second example is the transcript profiling analysis of

a parthenocarpic line, the pat3/pat4 mutant (Pascual et al.

2009). Three major mutants that show parthenocarpic

growth in tomatoes: pat, pat-2 and pat/3pat4 have been

identified (Carmi et al. 2003, Fos et al. 2001, Gorguet et al.

2008, Philouze 1983, 1985). Pascual and colleagues per-

formed transcript profiling of the tomato carpel and fruit of

the pat3/pat4 mutant and the UC82 line as a representative

parthenocarpic and non-parthenocarpic line, respectively.

Time-series experiments allowed the extraction of 2842 dif-

ferentially expressed genes during carpel development and

fruit set. Of these, the major differences between pat3/pat4

and UC82 lines were observed at the anthesis stage. Genes

involved in cell division and cell cycle events and genes re-

sponsible for gibberellins (GAs) and ethylene biosynthetic

pathways were highly expressed in the pat3/pat4 lines at the

anthesis stage, suggesting that the transition point at the an-

thesis stage seems to be shorter in the parthenocarpic line

pat3/pat4 than in the non-parthenocarpic line, and this event

may be regulated by phytohormones such as GAs and ethyl-

ene.

The third example of a parthenocarpy study is downregu-

lation of chalcone synthase (CHS), which encodes the first

step of the enzyme in the flavonoid pathway (Schijlen et al.

2007). Flavonoids are a type of phenylpropanoid, which are

involved in one of the major pathways in the plant kingdom.

Although the study did not employ an omics approach, the

data were interesting because suppression of CHS caused

not only inhibition of pigment accumulation in the flower

tissue but also male sterility in petunia (van der Meer et al.

1992). These data imply that flavonoids and/or genes in fla-

vonoid pathways may have crucial roles in fruit develop-

ment. Indeed, RNAi-mediated suppression of CHS in toma-

to plants caused parthenocarpy. These findings encourage us

to apply omics approaches for the study of parthenocarpy,

particularly focusing on metabolomic changes in flavonoids

in parthenocarpic tomatoes.

Investigation of other important traits using omics

approaches

Omics approaches have been applied to improve other

beneficial traits, e.g. fruit architecture and biochemical traits.

Aharoni’s group performed transcript and metabolite profil-

ing of tomato peel (outer layers) and flesh (pericarp after

removal of the peel) tissues to obtain new insights into gene

expression patterns and metabolite composition of the fruit

surface (Mintz-Oron et al. 2008). As expression patterns and

changes in metabolite levels, including primary and second-

ary metabolites in peel and flesh tissues, were well captured

at the 5 growth stages in fruit, omics approaches have a great

potential to obtain insights for improvement of the tomato

fruit surface. To date, the GC-EI-MS technique has been

used for determination of cutin and wax components in the

tomato peel (Adato et al. 2009, Saladie et al. 2007). This

technique is one of the gold standards for metabolomics.

Thus, it is easy to apply peak pretreatment and data align-

ment techniques developed in the metabolomics field for

cutin and wax analyses. Using our metabolomics pipeline

based on GC-EI-TOF-MS, we recently conducted metabo-

lite fingerprinting analysis of cutin and wax fractions of a

tomato mutant, which have both sticky peel (pe) and light

green (lg) mutations, as an application example of metabolo-

mic techniques for cutin and wax analysis, although com-

plete identification of cutin and wax monomers requires

authentic standards (Kimbara et al. 2012).

Tomato fruits contain flavonoids, which are health-

protecting components in the human diet. Recently, fla-

vonoids have been shown to have critical roles in plant phys-

iology, e.g. auxin transport, allelopathy, sterility and stress

resistance (Buer et al. 2010, Mol et al. 1998, Peer and

Murphy 2007, Ulm and Nagy 2005). It is well known that

flavonoid accumulation is strongly induced to protect

against ultraviolet (UV)-induced damage when plants are

exposed to UV-B light (Kootstra 1994, Kusano et al. 2011b).

Giuntini and colleagues treated tomato fruits with a normal

sunlight spectrum deprived of the UV-B region using a poly-

ethylene film (Giuntini et al. 2008). They used 2 tomato

genotypes: the hybrid Esperanza F1 with low lycopene

levels in the fruit and the hybrid DRW 5981 with high lyco-

pene content in the fruit. Tomato fruits derived from the 2

cultivars were harvested at the 3 growth stages, and then

flavonoid content was quantified using LC-ESI-MS. The

flavonoid profiles of the 2 cultivars showed distinct patterns

in the presence or absence of the UV-B region. A similar

approach was employed by the same group to investigate

how the high pigment-1 mutant responds under UV-B de-

pleted conditions; this mutant accumulates fruit pigments

and has a mutation in the tomato HIGH-PIGMENT1/UV-

DAMAGEDDNA-BINDING PROTEIN 1 (HP1/LeDDB1)

gene (Calvenzani et al. 2010). They found that (i) flavonoid

biosynthetic genes and genes involved in light signal trans-

duction were induced by UV-B at the early growth stage and

(ii) the expression level of LeDDB1 was not regulated by

UV-B.

Conclusion and remarks

Tomato genome information provides us with more precise

gene annotations and probe sets for microarray analysis and

thus, we can use more ‘reliable’ microarray chips, such as

Arabidopsis and rice, at a lower cost than at present. More

datasets, including microarray and RNA-seq data will be

stored in public databases like NCBI GEO. Publicly avail-

able datasets enable us to generate coexpression networks in
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tomatoes. Highly connected hub genes in coexpression mod-

ules tend to be important for genomic reasons. It should be

noted that such ‘hub’ genes are not always good candidate

genes for tomato breeding when these hub genes were found

to be present in a certain gene cluster (for example, see

Fig. 3). Cytosolic glutamine synthetase (GS) and plastidic

GS have crucial roles in ammonium assimilation and recy-

cling in various plant species (Bernard and Habash 2009,

Diaz et al. 2010, Kusano et al. 2011c). These plants often

showed lethal or visual phenotypic changes when these hub

genes were knocked out (Martin et al. 2006, Tabuchi et al.

2005). To identify genes and metabolites that contribute to

important traits for tomato breeding, multiple datasets ob-

tained from phenotyping and integrated omics analysis as

introduced in this review provide great opportunities to con-

duct a systems biological approach based on multinetwork

analysis. This approach will shed light on the points of ro-

bustness and weakness in metabolic systems of tomato

plants; breeders and breeding companies may use this infor-

mation for the development of next generation breeding

strategies.
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