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Abstract
Temperature replica exchange molecular dynamics (T-REM) has been successfully used to
improve the conformational search for model peptides and small proteins. However, for larger and
more complicated systems, the use of T-REM is computationally intensive since the complexity of
the free energy landscape and number of replicas required increase with system size. Achieving
convergence of systems with slow transition kinetics is often difficult. Several methods have been
proposed to overcome the size and convergence speed issues of standard T-REM. One of these is
the Reservoir Replica Exchange Method (R-REM), in which the conformational search and
temperature equilibration are separated by exchanging with a pre-existing reservoir of structures.
This approach allows the integration of computationally efficient search algorithms with replica
exchange. The Conformational Space Annealing (CSA) method has been shown to be able to
determine the global energy minimum of proteins efficiently and has been used in structure
prediction successfully. CSA uses a genetic algorithm to generate a diverse set of conformations to
determine the minimum energy structure. We combine these methods by using conformations
generated by the CSA method to build a reservoir. R-REM is then used to seed the top replica with
the structures from the reservoir; fast convergence at every temperature is observed. The
efficiency of this method is then demonstrated with model peptides and small proteins, and
significant improvement of efficiency is observed while maintaining the overall shape of the free
energy landscape.

Introduction
Conformational sampling is one of the most important challenges in simulating biologically
relevant events in atomistic detail. Since the potential energy landscape for biological
molecules is rugged, simulations tend to get trapped in local minima, which prohibits
thorough exploration of the conformational space, even with accurate, state of the art force
fields. Over the years, significant effort has been put into improving conformational
sampling methods to overcome such traps and improve transitions between minima; these
have been summarized in the recent review by Zuckerman.1

Temperature replica exchange (T-REM),2–4 where high temperatures are used to speed up
conformational transitions while preserving the canonical ensemble, has become a popular
method used to enhance sampling. In T-REM, multiple simulations (called replicas) of the
system are conducted simultaneously at different temperatures. At regular intervals,
exchanges between neighboring replicas are attempted, and at every successful attempt the
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structures are exchanged. This scheme allows the simulations at lower temperatures to
exchange to higher temperatures where, with the added thermal kinetic energy, they will be
able to overcame barriers, escape local minima and explore the free energy landscape. While
low temperature replicas are heated to enhance the sampling, the high temperature replicas
are cooled down to where they can explore the current minima they visit. When a T-REM
simulation is converged, temperature dependent properties can be calculated since each
replica will show the equilibrium properties corresponding to its assigned temperature.5–9

Even though T-REM is very successful in enhancing conformational sampling, it still has
some problems. It is not size extensive, meaning that as the number of degrees of freedom in
the system increase, more replicas are required to cover the same temperature range. Added
with the fact that a system with many degrees of freedom will have a more complex free
energy landscape requiring more simulation time to reach convergence, the computational
cost for larger and biologically more relevant systems often increases drastically. Another
problem with T-REM is that while the high temperature replicas search for new
conformations, the low temperature ones get stuck and oversample their current minima.
Until proper sampling across all of the temperatures is achieved, none of the replicas
represent a Boltzmann distribution and can be considered converged. In other words, at the
beginning of the T-REM simulations during the search phase, the sampled states, especially
at lower temperatures, are most likely to be trapped and should be ignored for analysis,
which may mean that a large portion of the collected data may have to be discarded. Several
improvements have been reported that overcome the increased computational cost of T-
REM with large systems.10–20

One of the enhanced replica methods is called the Reservoir Replica Exchange Method (R-
REM).15,16 The R-REM scheme separates the conformational search phase from thermal
equilibration by performing an extensive conformational search that generates many
structures representing all accessible local minima. These conformations are then collected
in a structure reservoir and used to seed the REM simulation by having the highest
temperature replica make “exchange” attempts with a random conformation from the
reservoir. Upon a successful “exchange,” the selected reservoir conformation replaces the
one from the highest temperature replica and the simulation resumes. R-REM assumes that
the reservoir is completely converged and every possible minima is represented. Since the
conformational search and the thermal reweighting are separated, the aforementioned
oversampling problem at lower temperatures is eliminated. Coupled to a proper reservoir,
the replicas quickly converge to their equilibrium values, reducing the computational cost.
Initial tests with simple systems show a 5–20 fold increase in convergence speed over
standard T-REM simulations.15

A key assumption of R-REM approach is that the sampling performed prior the REM step is
completely converged and the structures in the reservoir represent a Boltzmann distribution,
meaning that for each accessible minimum correct relative populations are needed at the
reservoir temperature. In the original implementation of the R-REM, simple test cases were
used so that achieving a “perfect” reservoir with conventional methods such as high
temperature molecular dynamics were possible. For larger systems with many degrees of
freedom and complex energy landscapes, it may be impossible to generate such a reservoir.

However, if the distribution of the reservoir is known, the exchange criterion between the
reservoir and the highest temperature replica can be adjusted, eliminating the need to
generate a Boltzmann weighed reservoir. This concept, called non-Boltzmann Reservoir
Replica Exchange (nBR-REM),16 was introduced with a reservoir having a flat distribution
(e.g. one representative conformation for each local minimum). The flat distribution was
obtained via performing cluster analysis of the original reservoir and only selecting the
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representative conformations for each cluster. Using the modified exchange potential, the
results were in excellent agreement with standard T-REM simulations while still showing
the same enhanced convergence speed of R-REM.15,16 The advantage of nBR-REM is that
since only representative conformations are needed for each accessible minimum; it is
possible to use many different and efficient methods for generating the reservoir. The
reservoir generation and R-REM are independent from each other, allowing any enhanced
and efficient sampling method to be used for conformational search.

Over the years many structure prediction methods have emerged and proven successful in
blind prediction of native states in the Critical Assessment of Techniques for Protein
Structure Prediction (CASP) experiments.21,22 Shenoy and Jayaram summarize the
advancements in structure prediction algorithms and describe the current state in their
excellent review.23 Many such methods perform extensive conformational search to identify
the global energy minimum via physics and knowledge based potentials.

One of these methods is called Conformational Space Annealing (CSA),24,25 where
conformational search is performed by generating a set of trial conformations and using a
genetic algorithm to modify and score them according to the energy function used. A
distance metric is chosen to ensure that the search space is expanded at each cycle and
different conformations are explored through the algorithm. Once the calculation is finished,
the lowest energy structures are taken for further evaluation and prediction. The CSA
method has been very successful in de novo structure prediction, and has been one of the
most successful methods in recent CASP21,22 competitions. The CSA method has also been
implemented in finding lowest energy configurations of Lennard-Jones clusters,26 off-lattice
protein AB models,27 molecular docking,28 and multiple sequence alignment.29 The CSA
method has recently been implemented in the CHARMM30 molecular simulation program.

The CSA method is mainly used for structure prediction purposes where only the lowest
energy structures are selected for further analysis. However, the algorithm generates many
structures representing conformations for local minima with higher energies than the global
energy minimum. It is possible to direct the algorithm to generate a large enough set of
structures to determine numerous minima on a complex energy landscape, which can be
used as reservoir conformations. Since the structures are generated and ranked based on the
potential energy function used, it is not straightforward to obtain free energies for each
conformation. Through REM, it is possible to explore the energy landscape and calculate
relative probabilities of each local minimum. The implementation of CSA in CHARMM
enables the use of exactly the same parameters (force field, implicit solvent, same non-bond
parameters etc.) with CSA and REM, ensuring that an identical Hamiltonian is used in
reservoir generation and thermal reweighting.

In this study the CSA method implemented in CHARMM is used to generate structure
reservoirs for simple model systems, which are used to run non-Boltzmann Replica
Exchange (CSA-nBR-REM) simulations. The free energy profiles generated via CSA-nBR-
REM are compared to standard T-REM. Simple model systems such as Alanine Tetrapeptite
(Ala3), Alanine-10 (Ala10), and the Trpcage31 mini-protein are used to make sure that the
available conformation space can be explored with traditional methods such as T-REM.
Sampling qualities of each system are investigated by comparing free energy profiles
generated by T-REM and R-REM on chosen reaction coordinates. Both alanine peptides are
small and topologically simple enough that transitions between different conformations are
relatively quick and obtaining converged simulations is straightforward even with
conventional MD. For Ala3 identical free energy profiles are obtained from T-REM and
CSA-nBR-REM simulations using different reservoirs. For Ala10, similar free energies are
also obtained, although CSA-nBR-REM simulations have more coverage of higher energy
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minima and more transitions between each minima. Faster folding times and convergence
between independent simulations are observed with Trpcage. These results are consistent
with the observations previously reported on reservoir replica exchange methods.15,16

Methods
Temperature Replica Exchange

Standard temperature replica exchange (T-REM) simulations for all model systems (Ala3,
Ala10 and Trpcage) were performed to generate the benchmark results that were used to
validate the CSA-nBR-REM scheme. In the T-REM simulations exchanges were attempted
every 1000 molecular dynamics steps with a 1 fs timestep. For each system, the number of
replicas and their temperatures were selected to ensure an ~20% exchange probability
between neighboring replicas while covering a temperature range of 300–550K. Exchanges

were attempted using the standard exchange criterion3,4 (Equation 1), where  represents

conformation j at temperature s with energy Ej, and  represents conformation k at
temperature t and with energy Ek and β = 1/kT. The Langevin thermostat was used to
maintain temperature with a collision frequency of 2 ps−1 and SHAKE32 was used to
constrain bonds involving hydrogen atoms. Each simulation was run with the
CHARMM2233 protein force field with CMAP corrections,34 and the SCPISM35 method
was used to include the solvent effects implicitly. All replica exchange simulations were run
with the distributed replica “REPDstr” functionality in CHARMM.30

(1)

Conformational Space Annealing
Conformational Space Annealing (CSA), developed by Lee et. al.,24,25 uses a genetic
algorithm to perform the conformational search. At the beginning of the CSA process a
random set of trial structures are generated, minimized, and ranked based on their potential
energies. The bottom half of the conformations are kept, and the top half with higher
energies are modified by changing dihedral angles. The distances Dij between each pair of
conformations are calculated by comparing dihedral angles and root mean square deviations,
and if the distance is smaller than a cutoff value Dcut then the two conformations are
assumed to be of the same family. At each iteration, the lowest energy members of each
family are kept and the others are modified and again minimized. The value of Dcut is
initially set to a large number and gradually reduced throughout the calculation; this has the
effect of forcing the structures apart, which increases the structural diversity and overcome
barriers. The algorithm finishes once each conformation generated can be classified as a
unique family (i.e. for each conformation Dij ≥ Dcut).

Reservoir generation via Conformational Space Annealing
The Conformational Space Annealing (CSA) method has been implemented in the
CHARMM Molecular Modeling Program.30 The same force field and implicit solvent
models were used as in the T-REM simulations (CHARMM22/CMAP and SCPISM). All
CSA calculations were started with nearly linear extended conformations. None of the final
generated conformations retains the initial linear conformation. For the Alanine Tetrapeptide
(Ala3) system, we generated 64 and 256 conformations, for the Alanine-10 (Ala10) system
we generated 256 conformations, and for Trpcage we generated 1024 conformations to build
the reservoirs.
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The CSA method is very efficient in overcoming energy barriers regardless of their height.
During the reservoir generation stage many conformations with incorrect chiralities and cis-
trans isomerization on peptide bonds were observed, making validation against traditional
methods impossible. Improper dihedral angle restraints were added to prevent chirality flips,
and flat bottomed (180° ± 60°) harmonic dihedral restraints were used to keep the peptide
bonds in their trans conformations and limit the CSA search space to that of T-REM. It is
very important to restrict the conformational space of the CSA generated structures to those
that are relevant to a particular study. The effects of having a reservoir with D-amino acids
and cis-peptide bonds is explained in the discussion section.

Non-Boltzmann Reservoir Replica Exchange
Both the Boltzmann and non-Boltzmann reservoir replica exchange schemes have been
implemented in the “REPDstr” module in CHARMM. CSA generates conformations
representing different minima via the distance criterion used in the algorithm, corresponding
to a flat distribution (1/N, N = Number of reservoir conformations) instead of a Boltzmann
distribution. The results are one representative structure for each minimum found. This
allows us to use the non-Boltzmann Reservoir Replica Exchange (nBR-REM) method
exactly as it was described in Roitberg et. al.16

Because of the assumption of a flat reservoir distribution, 2 can be used as the exchange
criterion. The exchanges depend solely on the potential energy differences between the
replica and reservoir conformations. It should be noted that this equation is only valid when
there is one structure per minimum in the reservoir. Any deviations from this assumption
(such as duplicate conformations etc.) would lead to wrong population distributions at every
temperature.

Even though the reservoir temperature does not appear explicitly in the nBR-REM exchange

equation (Equation 2), where  represents conformation j at reservoir R, the reservoir
structures still have to be thermally equilibrated to obtain an accurate ΔE between the
reservoir and highest temperature replica.

(2)

The CSA method produces minimized conformations, which have to be equilibrated to the
correct reservoir temperature. Different equilibration schemes involving short MD runs at
reservoir temperature using weak positional restraints were tried, but noticeable changes in
the reservoir conformations were observed, causing a change in the energy-based ranking of
structures compared to initial reservoir set. Therefore, we decided to skip the equilibration

altogether and add  for each degree of freedom to the minimized CSA energies for each
system. The number of degrees of freedom is calculated after all the simulation parameters
such as SHAKE are defined, and the resulting energy correction factors are shown in Table
1.

Even though the energies are corrected to represent realistic values for the reservoir
temperatures, the structures themselves are taken directly from CSA and are minimized. To
ensure proper equilibration, different values of the Langevin collision frequency were
investigated, it was seen that for frequencies above 2 ps−1 identical potential energy
histograms to standard T-REM simulations were obtained. Therefore, collision frequency of
2 ps−1 was used for each T-REM and CSA-nBR-REM simulations.

Okur et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The highest temperature replica of the nBR-REM simulations were run coupled to the CSA
generated reservoirs using the exchange criterion described in Equation 2. All other
exchanges between replicas use the standard exchange equation (Equation 1). As with T-
REM, for each system two independent simulations with different initial conformations
were run, where for alanine peptides simulations were started from all extended and all
helical conformations and for Trpcage simulations were started from all extended and native
conformations. The same simulation parameters used for the CSA were used during replica
exchange runs. Exchanges between replicas were attempted every 1000 dynamics step.

Data analysis
Dihedral angles, end-to-end distances, radii of gyration and root mean square deviations
(RMSD) were calculated using CHARMM’s “CORRel” functionality. End-to-end distances
were calculated as the distance between Cα atoms of the first and last residue for each
peptide. Ramachandran free energy lanscapes were constructed through 2-D histograms of
dihedral angles using 5° by 5° windows. The window with the highest population (minimum
free energy) was assigned a free energy of 0 kcal/mol and contour lines were drawn in 0.5
kcal/mol intervals. The end-to-end distance and radius of gyration data were divided into
100 bins between their minimum and maximum values, and again the bin with the highest
population was assigned a free energy of 0 kcal/mol. The first 10000 snapshots of each
simulation were discarded to eliminate starting structure bias. For Trpcage simulations,
conformations were designated as native if their backbone RMSD was less than 2.5 Å with
respect to the published structure (1L2Y.pdb31). All histograms and resulting free energies
were calculated using the “numpy” module, and the free energy landscapes were plotted
using the “matplotlib” module of Python version 2.6.5.

Results and Discussion
To test the applicability of a new enhanced sampling method, a simple enough system is
needed that the accessible energy landscape can be explored through conventional methods
such as MD or T-REM so that the new method can be compared against their results.
Alanine tetrapeptide (Ala3) is an established test system with few degrees of freedom,
allowing such a comparison. To ensure full coverage of the accessible free energy
landscape, standard T-REM simulations were run for 200000 exchange attempts (200 ns/
replica) using 8 replicas where all replicas were started from the linear conformation. The
Ramachandran free energy landscape of the dihedral angles of the central Alanine residue
was constructed (Figure 1) at 300K, which will be the baseline for comparison. Multiple
transitions between conformational regions were observed in every replica, suggesting that
convergence in sampling was achieved for this residue.

As seen in Figure 1, good coverage for each secondary structure was observed since the free
energy for α and β regions are within 0.5 kcal/mol with a 3.0–3.5 kcal/mol barrier between
them. The Polyproline-II (PII) region is about 1.5–2.0 kcal/mol higher than the α and β
regions, and the left handed helix region (αL), which is around 2.5–3.0 kcal/mol higher in
free energy, has some coverage. For the nBR-REM simulations with a CSA generated
reservoir, this plot will be used as a baseline and the free energies for each region and the
barriers between them will be compared. When the same Hamiltonian is used for reservoir
generation and R-REM, identical free energy profiles are expected if all minima are
represented in the reservoir. Since Ala3 is a small system, relatively few reservoir
conformations should be needed to generate an accurate free energy profile. Two reservoirs,
containing 64 and 256 structures respectively, were constructed via CSA to be used for
nBR-REM simulations.
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For both reservoirs (64 and 256 CSA generated structures), nBR-REM simulations were run
for 200000 exchange attempts as in standard the T-REM simulations. The reservoir
temperature was determined to be 400K, and 4 replicas were run under 400K, with the
highest temperature replica (375K) attempting exchanges with the reservoir based on
Equation 2. The resulting free energy profile for the nBR-REM run with 64 reservoir
conformations for the central Ala residue at 300K is plotted in Figure 2.

Figure 2 shows that the free energy profiles are similar between T-REM and CSA-nBR-
REM simulations. Two major minima (the α and β conformations) are again within 0.5
kcal/mol with a 3.0–3.5 kcal/mol barrier separating them. The PII region id about 1.5–2.0
kcal/mol higher than the α and β regions, which is in excellent agreement with T-REM.
However, at the left handed helix region (αL) has a much higher population and
significantly lower free energy (0.5–1.0 kcal/mol) as compared to T-REM simulations (2.5–
3.0 kcal/mol). The simulations using 256 reservoir structures have near identical results to
those using a reservoir size of 64 (data not shown). Even though the R-REM approach
increases the speed of conformational transitions, enabling transiently sampled states to get
more coverage, such a drastic change in free energy is not expected. Upon careful analysis
of the trajectories, uncommon conformations where peptides with incorrect chiralities and
cis-conformations along peptide bonds were observed. These are high free energy barriers to
cross even for enhanced techniques such as replica exchange, and further analysis revealed
that such conformations were produced by the CSA algorithm and were present in the
reservoir set. Using an enhanced algorithm is important for generating a low energy
conformations quickly and efficiently, but it became apparent that the CSA method is very
powerful in crossing such high barriers, resulting the presence of D-peptides and cis-
peptides in the reservoir. While crossing both barriers is theoretically possible and there are
naturally occurring cis-peptides,36,37 it is highly unlikely that conventional methods such as
T-REM would be able to sample such transitions. The presence of these “unusual” structures
makes it nearly impossible to validate a new enhanced sampling approach against standard
T-REM. The CSA method can efficiently overcome such high barriers and might be a good
tool to investigate such transitions in future studies. An additional problem is that the force
field used (CHARMM22+CMAP) is not optimized for D-peptides in that the CMAP term is
dependent on specific chirality.

For this study, it was decided to focus the search space to MD accessible minima and to
eliminate D-peptide and cis-peptide conformations. Therefore, improper dihedral angle
restraints to prevent chirality flips and additional restraints to prevent cis-trans isomerisation
around the peptide bond were added as described in the Methods section, and CSA
calculations were repeated to generate new reservoirs (again containing 64 and 256
structures). A flat bottomed harmonic restraint function around the peptide bond was used to
make sure that no additional energy was introduced while the peptide was in its correct trans
conformation. Once new reservoirs were generated and all the reservoir conformations were
checked to make sure that all residues had correct chiralities and trans peptide bonds, the
nBR-REM simulations were repeated. The resulting free energy profile for the reservoir
with 64 structures is shown in Figure 3.

Once a “proper” reservoir is generated, an almost identical free energy landscape as the
benchmark T-REM simulations can be obtained. Once the efficient CSA algorithm is
restricted to the accessible minima by T-REM, both methods show the same free energy
values for each observed minimum and the same barriers between the α and β regions.
However, even with a “correct” reservoir, the αL region shows more population with a free
energy about 1 kcal/mol lower than T-REM. The αL region is separated by a large barrier
from other regions with negative ϕ values, so it is possible that the use of CSA generated
reservoir increased conformational transitions over this large barrier.
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Ala3 is a very small system with a limited number of degrees of freedom, and generating a
reservoir for it with a method like CSA takes only a few minutes on a modern computer.
Since the accessible free energy landscape is simple, Ala3 simulations converge very quickly
even with unenhanced molecular dynamics, making direct efficiency comparisons on
convergence speed very difficult. However, since the reservoir generation is almost
instantaneous and fewer replicas (4 instead of 8) were used for CSA-nBR-REM simulations,
the computational cost was reduced by ~50% to generate data of the same quality.

One other important variable to consider is the size of the reservoir. The main assumption of
the reservoir replica exchange approach is that the reservoir contains representative
conformations for every accessible minima. Not having enough structures in the reservoir
could leave out important regions in the free energy landscape leading to skewed results. To
test if a reservoir size of 64 structures was sufficient for Ala3, the same calculations were
repeated while using a new reservoir of 256 conformations. As before, the same restraints
were applied during the CSA step to prevent chirality flips and cis-trans isomerizations.
Figure 4 shows the free energy landscape, which is very similar to the T-REM and the CSA-
nBR-REM simulations with 64 conformations, meaning that 64 CSA generated structures
are enough to build a reservoir for a simple model system like Ala3.

The consistency in results between R-REM simulations using reservoirs with 64 and 256
structures is expected since Ala3 is a small system. The addition of extra conformations in
CSA expands the search space, and more local minima with higher energies are found and
reported. Table 2 shows the energies for the highest and lowest potential energy structures
found by CSA. As seen from the table, both CSA calculations find the same global energy
minimum. The larger calculation has an expanded search space, and as a result minima with
higher energies were found. When used as reservoir conformations, these higher energy
structures have very low probability to be selected (via Equation 2) when compared to the
lower energy ones, and the overall free energy landscape at 300K is not affected. However,
it should be noted that for larger and more complicated systems there will be many minima
with similar energies and one should probably generate a reservoir as big as can be
computationally afforded.

Up until this point dihedral angles of the central alanine residue have been used for
comparing free energy profiles between T-REM and CSA-nBR-REM. Obtaining converged
results for one residue is straightforward, and the resulting free energy landscapes can
conveniently be used for comparison. However, when evaluating the accuracy of a model,
more than one order parameter should be used for comparison to eliminate any potential
bias. Therefore, the free energy profiles of two commonly used order parameters, end-to-end
distance and radius of gyration, were also used for comparison. Both of these parameters
take into account the whole system and can be assumed to represent global properties of the
system. Figure 5 shows the comparisons of the free energy profiles for both parameters. As
can be seen from the figure, when a reservoir containing representative conformations
accessible via T-REM is generated, identical free energy profiles are observed. It is evident
that when a full reservoir containing uncommon peptide conformations is used, the shape of
the free energy profiles change significantly while maintaining the two minima. The
addition of cis and D-peptides cause the presence of more compact conformations and lower
free energies for structures with low end-to-end distances and radius of gyration.

As mentioned before, Ala3 is a simple system whose conformational space can be
investigated easily via normal molecular dynamics. It is a great candidate for model
validation and obtaining accurate results from it is a necessary test for each new method to
pass. However, obtaining good Ala3 results cannot be assumed to be conclusive, and further
validation with larger systems having more complex and rugged energy landscapes is
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needed. Therefore, the CSA-nBR-REM calculations were repeated with Ala10 using a
reservoir with 256 conformations. As with Ala3, improper dihedral restraints and restraints
on the peptide bond were used to limit the search space. Like before CSA-nBR-REM
simulations were run using 4 replicas, and the results were compared to standard T-REM
simulations with 8 replicas. For Ala10 2 sets of simulations with different initial
conformations (all linear and all helical) were run for T-REM and CSA-nBR-REM, each
with 500000 exchange attempts. Instead of looking at dihedral angles of individual residues,
radius of gyration and end-to-end distances were calculated and a 2-D free energy landscape
was constructed. The free energy landscapes shown in Figure 6 are used for comparison.

As shown in Figure 6, Ala10 has three distinct minima. The lowest free energy state
(minimum 1) corresponds to a uniform α-helical conformation. The other minima, (2 and 3)
with free energies of 1.5–2.0 kcal/mol and 2.0–2.5 kcal/mol, represent more compact but
still helical conformations, with some kinks and more flexibility at the terminal residues.
The two profiles obtained from independent T-REM simulations (Figure 6-A and B) with
different initial starting structures show minor differences in the shape and depth of the
minima 2 and 3. The same analysis with CSA-nBR-REM yields a free energy profile similar
to T-REM (Figure 6-C and D).With this method the barriers between minima are lower,
indicating faster transitions between them as compared to the T-REM simulations. The free
energies for minima 2 and 3 seem to be about 0.5 kcal/mol lower than they are in the T-
REM simulations. Even though CSA-nBR-REM simulations were started from two different
initial starting structures, identical free energy profiles were observed since they are bound
to the same reservoir.

Figure 6 shows the overall free energy profile for each simulation and that the three
dominant minima are clearly separated. To get a better idea of the speed of conformational
transitions and convergence, we calculated the relative free energies for all three minima by
population for smaller portions of the trajectories. For each simulation, the trajectories at
300K were divided into 10 equal parts of 50000 frames each, and average relative free
energies, standard deviations and the average number of barrier crossing events for each
minima were calculated. The resulting free energy values are summarized in Table 3. As
indicated by Figure 6, the T-REM simulations show slightly different free energies between
each minima, with larger standard deviations compared to CSA-nBR-REM simulations.
This suggests that 50000 exchange attempts may not be enough to obtain converged results
with T-REM even for a simple system like Ala10. CSA-nBR-REM simulations show almost
identical free energies with small standard deviations between different parts of the
trajectory, suggesting frequent barrier crossings and quick convergence. Comparing the
number of barrier crossing events shows that on average using the CSA-nBR-REM method
yields twice as many transitions as using T-REM.

To investigate relative the convergence speeds of the T-REM and CSA-nBR-REM
simulations further, the free energy histograms of all the simulations started from both
conformations were compared every 250 exchange attempts. Each histogram was compared
to the equilibrium histogram, generated by combining both of the T-REM simulations used
to generate the free energy landscapes shown in Figure 6, and the resulting differences are
plotted in Figure 7. By comparing the entire landscape, it is possible to show differences in
the convergence speeds of higher energy states. However, Figure 7-A shows that both the T-
REM and CSA-nBR-REM simulations converge to their final equilibrium values at similar
rates. This is because the helical conformation has a much lower free energy, and therefore
both methods sample it extensively at similar rates, which dominates the shape of the curve.
Figure 7-A shows the average root mean square (RMS) error throughout the trajectory,
which smooths out the local fluctuations. To make such fluctuations visible, running
averages over 25000 exchanges are shown in Figure 7-B. This analysis yields similar
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conclusions, with the T-REM simulations having larger fluctuations. Since CSA-nBR-REM
simulations cross barriers more frequently, any 25000 exchange section of the trajectory
would give similar ensemble averages. These observations are consistent with the earlier
studies of reservoir replica exchange methods.15,16

Ala10 has a simple topology with three well defined free energy minima. When using an
enhanced sampling method like T-REM, the peptide quickly folds to the helical structure,
even when starting from the all extended conformation. However, when the overall free
energy landscape is investigated, T-REM shows differences in populations of the other
minima having higher free energy even after 500000 exchange attempts (500ns per replica).
This is seen in Figure 6, where minima 2 and 3 have slightly different shapes and in Table 3,
where minima 2 and 3 have slightly different free energies and standard deviations. When a
reservoir generated via CSA is used, all minima are populated quickly and many transitions
between minima are observed.

The Ala10 results clearly indicate that the combination of CSA and reservoir REX is a very
effective strategy for crossing free energy barriers. To test this on a more realistic system,
we used CSA-nBR-REM on the Trpcage31 mini-protein. Trpcage has 20 amino acid
residues with a more diverse set of side chains than alanine polypeptides, and it has been
studied extensively experimentally and computationally.38–49 Because of the increased
system size and number of degrees of freedom, it was necessary to generate 1024
conformations via CSA to find the native conformation, employing the same type of chiral
and dihedral restraints as before. These conformations were used as a reservoir at a
temperature of 440K. 6 replicas were run under the reservoir temperature for 100000
exchange attempts (100ns/replica). As before, reservoir results were compared to standard
T-REM simulations using 8 replicas. Two sets of simulations were run for each method,
starting from the native and fully extended conformations.

Trpcage is a relatively large system, and T-REM simulations of 100ns/replica are not
sufficient to fully explore the free energy landscape, but it is possible to make qualitative
observations comparing the populations of the lowest energy states. Figure 8-A shows the
fractional population of the native state conformation throughout the simulations, showing
that the T-REM simulations slowly converge towards each other. The simulation starting
from the linear conformation finds and starts populating the native conformation after
around 10000 exchange attempts. The CSA-nBR-REM simulations almost immediately find
the native state and both simulations reach their equilibrium native populations within first
few thousand exchange attempts and retain them. The end-to-end distance autocorrelations
(Figure 8-B) show a similar picture, in which the T-REM trajectories slowly converge
towards their equilibrium value. As expected, instant equilibration with CSA-nBR-REM
was observed.

As seen in Figure 8 the T-REM simulations start to show similar populations for the native
conformation after 100000 exchange attempts. Using 8 replicas, it took about 3000 CPU
hours per starting conformation to generate this data, resulting in 6000 CPU hours of total
computer time. We needed about 1350 CPU hours to generate the 1024 reservoir
conformations with CSA. Even though we ran the CSA-nBR-REM simulations to 100000
exchange attempts for better comparison with T-REM, the simulations converged in under
10000 exchange attempts. The cost for running 6 replicas for 10000 attempts is about 250
CPU hours per simulation per starting conformationm resulting in 500 CPU hours. The total
computer time spent by CSA-nBR-REM scheme is about 1850 CPU hours to obtain
converged data, making it more than 3 times more efficient than T-REM.
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Conclusions
Obtaining converged sampling for biomolecular simulations at atomic detail is still a
formidable problem. While there are advanced methods available, many of them rely on
changing the Hamiltonian during sampling. In most cases equilibrium properties can be back
calculated, however errors can be introduced during the sampling and reweighting steps. We
have introduced an enhanced method combining two of the most powerful sampling
methods, Conformational Space Annealing and Reservoir Replica Exchange, and obtain
identical sampling to standard methods on model peptides. Since both the CSA and R-REM
methods use the same Hamiltonian during reservoir generation and replica exchange, no
additional energy terms or forces are introduced, meaning that no extra reweighting and
correction steps are necessary. Once a large enough reservoir is generated, containing
representative conformations for each accessible minimum, the replica exchange step
quickly yields correct populations for each minimum.

CSA is a very powerful tool for conformational search and finding the global energy
minimum as well as for generating structures corresponding to many local minima. While
having minimum energy structures is extremely useful, especially in structure prediction,
there is no direct and efficient way of calculating free energies via CSA. By using the CSA
generated conformations as a reservoir for replica exchange simulations, free energy profiles
for systems of interest can be calculated quickly and a much clearer overall picture of the
relationships between various minima can be obtained. We have tested this approach with
small model peptides where we compared resulting free energy profiles to those generated
via conventional methods, obtaining effectively identical results. Simulations on a larger
system showed significantly increased sampling efficiency through the combining CSA and
R-REM.

The combination of CSA and R-REM is very powerful in exploring conformational space
and should be a valuable tool in investigating peptide and protein folding at all atom
resolution. However, except for small systems such as Alanine polypeptides or Trpcage,
current all-atom force fields, solvation models, and other parameters may not be fully
adequate for such a task yet. Furthermore, it should be noted that the overall free energy
landscape strongly depends on the sampling quality of the CSA calculations. The user
should be very careful interpreting the results. For larger systems as many conformations as
the user can computationally afford should be generated to minimize errors. If enough
structures are generated to capture all relevant minima, CSA-nBR-REM can very efficiently
estimate the free energies of each. If used carefully such an efficient method can help in
developing and testing new force field parameters or other simulation methods.

Even though no additional energy terms are used for the CSA-nBR-REM scheme, it still
relies on the very important assumption that the reservoir sampling is complete and all the
conformations visited during the replica exchange can be classified as part of one of the
structure families already present in the reservoir. There is always the possibility that the
reservoir may have multiple conformations for one minimum or have implausible structures
such as cis-peptides, introducing bias towards a particular state. Ideally we would like to
devise an adaptive R-REM scheme allowing the reservoir to expand if new structures are
discovered during the replica exchange stage. Such a scheme would be able to converge to
the true distribution in the long time limit and correct potential errors introduced by the
initial reservoir. We have developed a transition state based method called the Molecular
Dynamics Meta Simulator (MDMS) model to develop such schemes in an efficient way.50

We will be investigating different reservoir generation schemes and other tools for R-REM
methods in the future.
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Figure 1.
Ramachandran Free Energy profile for the central Alanine residue in Ala3 from standard T-
REM simulations at 300K. Major conformational regions are labeled.
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Figure 2.
Ramachandran Free Energy Profile for central Alanine residue from CSA-nbR-REM
simulations at 300K. Similar profile to T-REM for α, β and PII regions. The αL region has
significantly more population compared to T-REM.
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Figure 3.
Ramachandran Free Energy Profile for the central Alanine residue from CSA-nbR-REM
simulations with 64 reservoir conformations at 300K. The simulations were repeated with
the newly generated reservoir containing no D- and cis-peptides. An almost identical free
energy landscape as standard T-REM simulations were observed, however the αL region has
around 1 kcal/mol lower free energy.
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Figure 4.
Ramachandran Free Energy Profile for central Alanine residue from CSA-nbR-REM
simulations. 256 CSA generated conformations were used as reservoir. Essentially identical
free energy landscape as standard T-REM and CSA-nbR-REM simulations with a 64
structure reservoir were observed.
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Figure 5.
Free energy comparison for T-REM and CSA-REM simulations using end-to-end distances
and radius of gyration. CSA-REM simulations using the new reservoir show identical
behavior compared to standard T-REM. The simulations using the full reservoir containing
cis-peptides and D-peptides still show same major minima, but explore compact
conformations not observed in T-REM as well.
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Figure 6.
Free energy landscapes of the 300K replica of Ala10 via T-REM (starting from linear (A)
and starting from helical (B) conformations) and CSA-nBR-REM (starting from linear (C)
and starting from helical (D) conformations) simulations using radius of gyration and end-
to-end distances as coordinates. Contour lines are drawn for every 0.5 kcal/mol. Three broad
free energy minima were observed for both T-REM and CSA-nBR-REM simulations. The
lowest energy conformation (1) has a uniform α-helical conformation. The other minima (2
and 3) still have many residues in helical form but with kinks and turns resulting in a more
compact overall structure. There are more observed transitions between minima when CSA-
nBR-REM is used.
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Figure 7.
RMS Error with respect to simulation time for T-REM (black) and CSA-nBR-REM (red)
simulations for Ala10 starting from all helical (solid lines) and all linear (dashed lines) initial
conformations. RMS errors are calculated by comparing histograms at each 250 ps window
with the equilibrium histogram used to construct the free energy landscapes in Figure 6. The
overall error (A) and the running average error over 25000 exchange attempts (B) are shown
for both simulations.
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Figure 8.
Fraction Native (A) vs. number of exchange attempts for Trpcage. Black curves show the
evolution of the native population via T-REM simulations and red curves show CSA-nBR-
REM simulations. For both methods, solid lines are simulations starting from linear
conformation and the dashed lines are those starting from native conformation. The blue line
represents the average native population calculated after first the 25000 exchanges were
dropped from both linear and native T-REM simulations. The end-to-end distance
autocorrelation is also shown in (B) where the black curve is obtained from T-REM and the
red curve is from CSA-nBR-REM simulations both starting from linear conformation.
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Table 1

Number of degrees of freedom and energy corrections for each simulated system with respect to reservoir
temperatures.

System Degrees of Freedom Energy added (kcal/mol)

Ala3 104 41.33 (400K)

Ala10 279 117.81 (425K)

Trpcage 762 333.13 (440K)
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Table 2

Energies of the minimum and maximum energy conformations for Ala3 CSA calculations generating 64 and
256 structures. Both calculations find same energy minimum. A higher number of conformations expands the
search space and minima corresponding to higher energy states are also found.

Number of CSA Generated Conformations Emin (kcal/mol) Emax (kcal/mol)

64 −265.19 −251.93

256 −265.19 −242.69

J Chem Theory Comput. Author manuscript; available in PMC 2014 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Okur et al. Page 24

Ta
bl

e 
3

Fr
ee

 e
ne

rg
ie

s 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 f
or

 e
ac

h 
ob

se
rv

ed
 m

in
im

um
. T

he
 lo

w
es

t f
re

e 
en

er
gy

 c
on

fo
rm

at
io

n 
(m

in
im

um
 1

) 
is

 s
el

ec
te

d 
as

 a
 r

ef
er

en
ce

.
A

ve
ra

ge
s 

an
d 

st
an

da
rd

 d
ev

ia
tio

ns
 f

or
 e

ac
h 

ru
n 

w
er

e 
ca

lc
ul

at
ed

 b
y 

di
vi

di
ng

 th
e 

30
0K

 tr
aj

ec
to

ry
 in

 1
0 

eq
ua

l p
ie

ce
s 

(5
00

00
 f

ra
m

es
 e

ac
h)

. C
SA

-n
B

R
-R

E
M

si
m

ul
at

io
ns

 s
ho

w
 m

or
e 

co
ns

is
te

nt
 f

re
e 

en
er

gy
 v

al
ue

s 
be

tw
ee

n 
ea

ch
 r

un
 a

nd
 lo

w
er

 f
re

e 
en

er
gi

es
 th

an
 T

-R
E

M
, w

hi
ch

 s
ug

ge
st

s 
m

or
e 

fr
eq

ue
nt

 b
ar

ri
er

cr
os

si
ng

s.

M
et

ho
d

St
ar

ti
ng

st
ru

ct
ur

e
M

in
im

um
 1

M
in

im
um

 2
M

in
im

um
 3

N
um

be
r 

of
 b

ar
ri

er
cr

os
si

ng
s

T
-R

E
M

L
in

ea
r

0.
0

1.
83

 (
0.

12
)

2.
32

 (
0.

23
)

22
91

.6
0 

(3
66

.5
3)

T
-R

E
M

H
el

ic
al

0.
0

1.
70

 (
0.

08
)

2.
13

 (
0.

24
)

27
32

.2
0 

(2
64

.8
4)

C
SA

-n
B

R
-R

E
M

L
in

ea
r

0.
0

1.
13

 (
0.

04
)

1.
63

 (
0.

05
)

50
65

.7
0 

(1
91

.8
3)

C
SA

-n
B

R
-R

E
M

H
el

ic
al

0.
0

1.
13

 (
0.

04
)

1.
64

 (
0.

08
)

49
31

.9
0 

(2
15

.1
5)

J Chem Theory Comput. Author manuscript; available in PMC 2014 February 01.


