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Abstract

We present constrained source-based morphometry (SBM), a multivariate semiblind data-driven approach, to ex-
plore a possible brain-wide structural network in both gray matter (GM) and white matter (WM) associated with
the functional default mode network (DMN). With this approach, we utilize seed regions associated with the
DMN as constraints on GM maps and derive a joint GM and WM structural network automatically through a
multivariate data-driven approach. In this article, we first provide a simulation to validate the constrained
SBM approach. The approach was then applied to structural magnetic resonance imaging and diffusion tensor
imaging data obtained from 102 healthy controls. Regions that have consistently reported to be associated
with the DMN were used to create an a priori mask that was integrated within an independent component anal-
ysis framework to derive the structural network associated with the DMN. We identified a set of GM and corre-
sponding WM regions contributing to a structural network underlying the functional DMN. The GM regions
consisted mainly of the precuneus, superior and medial frontal gyri, middle temporal gyrus, hippocampus,
cuneus, and cerebellum. The WM regions included the cingulum, corpus callosum, corona radiata, association
fibers, and middle cerebellar peduncle. Significant gender differences in the relationship between intelligence
quotient (IQ) and the identified structural network were observed. Our findings suggest that the functional
DMN is underpinned by a corresponding brain-wide structural network. The constrained SBM approach is ad-
ditionally applicable to a wide variety of problems identifying structural networks from seed regions.
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Introduction

Resting-state functional magnetic resonance imaging
(MRI), which measures the spontaneous low-frequency

fluctuations in the blood oxygen level–dependent (BOLD)
signals without an explicit external stimulus, is used as one
approach to explore the baseline activity and intrinsic connec-
tivity of the brain. The above-mentioned fluctuations, show-
ing temporal synchronization between functionally related
brain areas during the resting state, have been identified in
many studies (Biswal et al., 1997; Damoiseaux et al., 2006).
The default mode network (DMN), one of the most frequently
studied functional networks among resting-state circuits, is of
particular interest (Greicius et al., 2003; Raichle et al., 2001).
This functional network is more active at rest and decreases

in activity during a wide range of cognitive task performance
(Lancaster et al., 2000). It has also been found to be altered in
several mental illnesses such as schizophrenia (Garrity et al.,
2007; Skudlarski et al., 2010), depression (Sheline et al., 2009),
and Alzheimer’s disease (Greicius et al., 2004).

Although, to date, there have been many functional studies
of the DMN, much less is known about its underlying brain
structural correlates. Since it is commonly assumed that
the functional connectivity reflects structural connectivity
(Greicius et al., 2009; Skudlarski et al., 2008; van den Heuvel
et al., 2009a), the detection of the structural basis of the DMN
would help to reveal the underlying anatomy on which the
functional connectivity is based. The few studies evaluating
the structural underpinnings of the DMN have used two
main approaches, the region of interest (ROI) and data-driven
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analyses. In ROI-based studies, several regions involved in
the functional DMN are selected. Then, diffusion tensor imag-
ing (DTI) tractography or pairwise correlation is utilized to
determine the structure connections among them (Greicius
et al., 2009; Honey et al., 2009). Other recent studies used
data-driven analyses in which all voxels, across the whole
brain, are searched automatically without prior information
or constraints. All the possible connections existing in the
resting-state brain are investigated, and the structural net-
work underlying the DMN is identified (Skudlarski et al.,
2008; Teipel et al., 2010).

To combine the benefits of both ROI and data-driven
analyses with a goal of studying the structural network un-
derlying the DMN, we developed a novel method called con-
strained source-based morphometry (constrained SBM). The
proposed constrained SBM method is a novel adaption of
an existing, validated method (constrained-independent
component analysis [ICA]) that has broad applicability (Lin
et al., 2010). Our approach incorporates an ROI mask as the
prior constraint and evaluates the possibility of a structural
network in both gray matter (GM) and white matter (WM) as-
sociated with ROIs throughout the whole brain. It possesses
the inherent advantages of the purely data-driven method
SBM (Caprihan et al., 2011; Xu et al., 2009). The cross-voxel
information within the MRI data is utilized, and the structural
networks showing similar intersubject co-variance can be
detected. In addition, the method integrates the prior infor-
mation of ROI into classic SBM, as the constraint and extracts
specified results.

Constrained SBM analyzes the data from structural MRI
(sMRI) and DTI. Within the brain, sMRI measures voxel den-
sities and provides morphometric information, while DTI
measures the inhomogeneity of water diffusion. The frac-
tional anisotropy (FA) measure derived from DTI is of partic-
ular interest, as this parameter quantifies the relative integrity
of WM fibers (Burns et al., 2003) and is the most commonly
used scalar index for DTI. FA values have been reported to
quantify structural connectivity, especially as a measure of
the WM integrity of the fiber tracts interconnecting brain re-
gions (Hagmann et al., 2008; van den Heuvel et al., 2008).
In the constrained SBM process (See Fig. 1), the raw sMRI
and DTI images are first preprocessed to obtain the sMRI
GM and FA WM images as the primary input. Then, the con-

strained ICA utilizes the ROI as the seed regions for the GM
data only, and derives the structural network jointly from
sMRI GM and DTI WM data associated with the seed regions.
Finally, the extracted network is subjected to a statistical anal-
ysis, and its relationship with other factors, such as age, gen-
der, and intelligence quotient (IQ) scores, is determined.

In this article, we first provide a simulation to introduce the
concept and evaluate the performance of constrained SBM
under several specific cases. Next, we detail the constrained
SBM approach and demonstrate its application to a real
data set of sMRI GM and DTI WM (fractional anisotropy)
data from 102 healthy human subjects. We selected as seed re-
gions those areas repeatedly identified elsewhere as members
of the DMN and evaluated the possibility of a structural net-
work associated with the DMN. We also determined effects of
age, gender, IQ, and their interactive effects on the identified
structural network.

Simulation

To describe the concept of the constrained SBM and evalu-
ate its performance, we conducted a simulation (see Fig. 2)
designed to contain a variety of networks in GM and WM,
such that one of them is related to the seed regions. Con-
strained SBM aims to detect a network that is associated
with the seed regions among all the networks. The detailed
design and results are as follows.

First, we generated two 256-by-256 images to simulate GM
and WM, separately (see Fig. 2a). Then, six circular regions
were generated, each with a radius of 25 voxels. Regions
1–3 were within the GM image, and regions 4–6 were within
the WM image. We created 100 GM and 100 WM images
separately to represent the GM and WM of 100 subjects.
The intensities of regions 1, 2, 4, and 6 were uniformly distrib-
uted between 40% and 50% of the original circular region
intensity; the intensities of the region 3 were uniformly dis-
tributed between 20% and 30% of the original circular region
intensity; the intensities of the region 5 were uniformly dis-
tributed between 70% and 80% of the original circular region
intensity. Hence, there were three different networks in GM
and WM. Network 1 was formed by the regions 1 and 2 in
GM and the regions 4 and 6 in WM; network 2 was region
3 in GM; and network 3 was region 5 in WM. Assume that

FIG. 1. Constrained SBM. Structural MRI and DTI images are first preprocessed into the GM value/WM FA data matrix.
Utilizing the DMN regions as seed regions and as constraints on the GM data, the constrained ICA is then applied to the
GM/WM data matrix and results in a mixing vector and a source vector representing the correlated structural network, includ-
ing both GM and WM regions. Statistical analysis is further performed on the mixing vector to detect the relationship between
the identified networks and other variables of interest. DMN, default mode network; DTI, diffusion tensor imaging; FA, frac-
tional anisotropy; GM, gray matter; ICA, independent component analysis; MRI, magnetic resonance imaging; SBM, source-
based morphometry; WM, white matter.
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the original circular intensity is 1. The distributions from
which networks 1, 2, and 3 had been sampled were Uniform
(0.4 and 0.6) (mean 0.45, SD 0.029), Uniform (0.2 and 0.3)
(mean 0.25, SD 0.029), and Uniform (0.7 and 0.8) (mean
0.75, SD 0.029), respectively. Gaussian noise was then
added to the 200 images to represent variation across the sim-
ulated subjects. Next, we generated a seed region (see Fig. 2b)
having a value of 1 within the red dot and 0 elsewhere, which
belonged to network 1.

A constrained SBM analysis was carried out on these 200
images using the seed region as the constraint. Figure 2c
shows the result thresholded at jZj > 2.0. Most of the Gaussian
noise was separated into its own component, and network 1
containing the seed region was detected. This demonstrates
that constrained SBM can successfully extract a network
that is only roughly specified by a mask/seed region. It
also illustrates a key point of our work: we are using prior
knowledge of the functional regions to (1) inform an analysis
of the underlying associated GM regions and (2) identify re-
lated WM regions from jointly analyzed DTI data and for
which we do not have available prior knowledge.

Methods

Subjects and imaging parameters

One hundred two participants (43 women; mean age 21.9,
SD 3.0, range 18–29; mean Full Scale Intelligence Quotient

[FSIQ] score 118.9, SD 13.5, range 86–144) obtained from
the Wechsler Intelligence Scales Third Edition (Wechsler,
1997) underwent MRI scans at the Mind Research Network.
Subjects were recruited by postings in various departments
and classrooms at the University of New Mexico. All partici-
pants signed a consent form approved by the Institutional
Review Board of the University of New Mexico before partic-
ipation. Before study entry, the patients were interviewed by
a licensed clinical neuropsychologist (REJ) to screen for any
neurological or psychological disorders that might affect the
brain structure and functioning (e.g., traumatic brain injury,
schizophrenia, epilepsy, and attention-deficit disorder). Sub-
jects were also screened for conditions that would prohibit
undergoing an MRI scan (e.g., metal implant, orthodontic
braces, and severe claustrophobia).

sMRI images were obtained on a 3-Tesla Siemens Tim Trio
scanner using a sagittal 3D MPRAGE sequence (TE1 = 1.64
ms; TE2 = 3.5 ms; TE3 = 5.36 ms; TE4 = 7.22 ms; TE5 = 9.08
ms; TR = 2530 ms; voxel size = 1.0 · 1.0 · 1.0 mm3; acquisition
time = 6:03). For all scans, each T1 was reviewed for image
quality. DTI images were obtained on the same scanner
using an echo planar sequence (TE = 84 ms; TR = 9000 ms;
voxel size = 2.0 · 2.0 · 2.0 mm3; 72 slices; Field of View =
256 mm; 35 diffusion directions with b = 800 sec/mm2, and 5
measurements with b = 0; acquisition time = 5:42). The DTI ac-
quisition was repeated twice. We first checked the DTI data
quality (Supplementary Materials; Supplementary Data are

FIG. 2. Simulation for constrained SBM. (a) Simulated seed region (red circular) in the GM. (b) Simulated GM and WM im-
ages. Each of the three regions (white circular) was generated within the GM and WM images, and three different networks
were simulated. Network 1 was formed by region 1 and 2 in GM and the linked region 4 and 6 in WM; network 2 was the
region 3 in GM; and network 3 was the region 5 in WM. 100 GM and WM images were created separately representing images
for 100 subjects, and Gaussian noise was then added to the images. (c) Constrained SBM analysis results. Utilizing the seed
regions as the constraint on the GM and separating most of the Gaussian noise into its own component, a constrained SBM
analysis on the 200 images successfully detected network 1 containing both GM regions and related WM regions.
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available online at www.liebertonline.com/brain), and then
performed a motion and eddy current correction. Specifically,
we had derived one 4D DTI volume and a table of corre-
sponding b-values and gradient direction vectors. Next, we
registered all the images to an image where b = 0 sec/mm2.
Twelve degrees of freedom, affine transformation with mu-
tual information cost function was used for image registra-
tion. The gradient direction vectors corrected for image
orientation are stored in Siemens dicom files and extracted
by the dicom2nii program (www.sph.sc.edu/comd/rorden/
dicom.html). The sMRI and DTI images underwent spatial
normalization and smoothing as preprocessing steps (Supple-
mentary Materials), and the sMRI GM and DTI FA images
were obtained accordingly as the primary input.

Constrained ICA

Constraint generation. A DMN template was generated
using WFU Pickatlas software (Wake Forest University;
www.fmri.wfubmc.edu), which contained the posterior pari-
etal cortex (Brodmann’s area 7), the frontal pole and the
occipito-parietal junction (both Brodmann’s area 10), as well
as the posterior cingulate and precuneus (Garrity et al.,
2007; Raichle et al., 2001). An image of the seed regions is
provided in Supplementary Fig. S1. The template was then
smoothed with a 3-mm3 Gaussian kernel and converted to
a one-dimensional vector r.

Generation of the sMRI GM/DTI FA data matrix. We con-
verted each GM map to empirical z-scores and converted to
a one-dimensional vector. The 102 image vectors were then
arrayed into one 102 row subject-by-GM matrix. The same
was done to the 102 FA WM images to get the subject-by-
WM matrix. These two matrices were stacked horizontally
to create a subject-volume matrix X. This GM/FA matrix
X was the primary input for the following the constrained
ICA.

Constrained ICA process. ICA is a commonly used
method in the biomedical signal analysis (Calhoun et al.,
2009). When used in the structural image analysis, the typical
ICA model is to decompose the subject-volume matrix X to a
mixing matrix A and a source matrix S, that is, X = AS. The
source matrix S expresses the relationship between the sour-
ces and the voxels within the brain. The mixing matrix A
expresses the relationship between subjects and the sources.
The rows are scores that indicate the relative degree each
source contributes to a given subject; the columns indicate
how one source contributes to each of the subjects. The ICA
decomposition provides a spatial filtering of the noise and
identifies interesting maximally spatially independent sour-
ces (networks) that exhibit similar intersubject co-variation
(Xu et al., 2009).

Constrained ICA is an enhanced ICA model that incorpo-
rates prior information into the decomposition process and
extracts one or several desired independent sources S. A ref-
erence R that carries prior information of the desired sources
is chosen. By utilizing an augmented Lagrange multiplier,
identification of the desired independent component, that
is, the closest to the reference was enabled (Lu and Rajapakse,
2005), and a more accurate estimation of S is possible. Recent
research has demonstrated the usefulness of the constrained

ICA in improving the potential of the ICA for an fMRI anal-
ysis (Lin et al., 2010; Lu and Rajapakse, 2005). Since determin-
ing structural correlates of the DMN is of great interest, in this
study, we applied the constrained ICA to a GM/FA analysis
using the DMN as the reference.

A closeness measure e(S, R) between an extracted signal
S and a reference signal R (i = 1, . . . , L) is defined to constrain
the learning. As a result, only one weight will be found to give
the source S, which is the closest to that of reference R. The
proposed constrained ICA framework can be formulated as
follows (Lin et al., 2010):

Maximize J(S)

subject to g(S : W)p0,

where J(S) denotes the contrast function of a standard ICA
algorithm, g(S : W) = e(S, R)� np0, and n is a threshold dis-
tinguishing one desired output S from the others.

Constrained ICA was performed on the subject-volume
matrix X using a fast fixed-point algorithm (Lin et al., 2010)
integrated in the group ICA toolbox GIFT (http://icatb
.sourceforge.net/). The specified source vector s was
extracted from the subject-volume matrix X according to
the reference vector r. The mixing vector a was also obtained
during this process, which expresses the degree to which the
source S contributes to 102 subjects. The source vector s was
then separated horizontally into the left part and the right
part, which correspond to the GM regions and WM fibers in-
volved in the network associated with the DMN. It has been
demonstrated through an extensive simulation and applica-
tion to a real data analysis that the constrained ICA algorithm
has improved signal-to-noise ratio, robustness, and speed
through the use of spatial prior information; it has also
been shown that the constrained ICA does not generate arti-
ficial sources as a result of incorrect references (Lin et al.,
2010).

The objective of this study was to capture the WM regions
that are associated with the DMN through investigation of
the co-variation of the FA and GM values employing the con-
strained ICA approach. The proposed ICA approach is not
designed to investigate traditional end-to-end structural con-
nectivity as in WM tractography, and it does not perform a
direct comparison of structural connectivity and functional
connectivity as well. Constrained ICA indirectly compared
the structural DMN and functional DMN through the FA var-
iation in the WM and GM variation. Constrained ICA does
take into account the functional DMN information by setting
ROI as the constraints without the requiring all of the func-
tional MRI data into the analyses. In future work, we plan
to extend our approach to handle more than two modalities
(e.g., fMRI, sMRI, and DTI data).

Statistical analysis

We performed a statistical analysis on the mixing vector a
to test the significant relationship between the networks and
the variables of interest. The effects of gender, age, and IQ
scores on the networks were determined by correlating and
regressing the mixing vector against gender, age, and IQ
scores. In addition, an analysis of co-variance (ANCOVA)
was performed to evaluate the main effects of gender, age,
and IQ scores together with their interactive effects on the
structural network associated with the DMN.
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Results

The constrained SBM approach utilized the DMN regions
as a priori seed regions in the sMRI GM and DTI FA data to
identify the possibility of a DMN-associated structural net-
work. The network detected includes both GM and WM re-
gions related to the DMN. The GM and WM regions were
displayed with an empirical threshold of jZj > 2, such that
we could identify details of the identified GM or WM regions.
We also determined the relationship between this structural
network and several variables of interest.

GM regions related to the DMN

We identified a set of GM regions related to the DMN con-
sisting of the precuneus, superior and medial frontal gyri,
middle temporal gyrus, hippocampus, cuneus, and cerebel-
lum (see Fig. 3, Table 1).

WM regions underlying the DMN

We also identified the WM regions of which the FA values
showed similar inter-subject co-variation with the GM re-
gions relating to the functional DMN. WM regions were la-
beled using a standardized brain WM atlas (Mori et al.,
2005) included as part of the FSL software package. WM
regions underlying the DMN mainly included the cingulum,
corpus callosum, corona radiata, superior longitudinal fascic-
ulus, inferior fronto-occipital fasciculus, uncinate, and middle
cerebellar peduncle (see Fig. 4, Table 2). Table 2 showed
the intersection of the FA-independent components with
known WM tracts and, in addition, demonstrated that
known tracts go through the FA changes and touch the
functional basis of the DMN. However, our approach is not
a direct measure of structural connectivity and does not
require an entire tract to be affected. While examining WM
tracts connecting functional DMN regions, using current trac-
tography methods is challenging and difficult; a strength of
our approach is that we can identify smaller regions within
known tracts through an analysis of FA co-variation with
the GM data.

The relationship between the structural network
and the variables of interest

The contribution of individual brain variation to the struc-
tural network is represented by the loading parameters con-
tained in the mixing vector. The variables of interest that
we chose for the statistical analysis were age, gender, and
IQ scores. The correlation coefficients between the variables

of interest and the loading parameter were all < 0.1 for age,
sex, and IQ scores. The scatter plots of loading parameter ver-
sus the variables of interest are shown in Figure 5.

An ANCOVA testing the main effects of gender, age,
and IQ scores, together with their interactive effects,
showed a significant interactive effect of IQ scores and gen-
der on the structural network ( p = 0.0325). The scatter plot
together with the linear fits between IQ scores and the mix-
ing vector, for men and women, respectively, are shown in
Figure 6.

Discussion

We present a constrained SBM approach to detect the un-
derlying structural network showing similar inter-subject
co-variation with functional DMN GM regions. We have cho-
sen FA values in the analysis because FA quantifies the integ-
rity of WM fibers and is the most commonly used scalar index
for DTI. Studies using DTI tractography have shown remark-
able consistency between the FA changes and WM volumes
in fiber bundles connecting brain regions (Teipel et al.,
2010). We could also have used other parameters for DTI,
such as mean diffusivity and radial diffusivity. While FA val-
ues have the potential to demonstrate structural connectivity
(Burns et al., 2003), it is so far unclear that the reduction of FA
values would directly imply two poorly structurally con-
nected regions ( Jones et al., 2005). To avoid this claim, we
refer to our approach as identifying co-variation of the WM
FA values with the GM intensity values rather than structural
connectivity. Regions that were consistently identified in
DMN studies were used as a prior spatial mask to jointly an-
alyze sMRI GM and DTI FA images from 102 healthy human
subjects. Results revealed a structural network containing
both GM and WM regions, which share common intersubject
co-variation. We also evaluated the relationship between the
structural network and several variables of interest (gender,
age, and IQ scores). Results support the existence of a
DMN-associated structural network showing similar inter-
subject co-variation with the functional DMN and also
demonstrate the utility of the semiblind multivariate method,
constrained SBM.

GM regions related to the DMN

Several GM regions were identified associated with the
DMN, suggesting an underlying structural support network.
The identified GM regions included precuneus, medial pre-
frontal cortex (MPFC), superior and middle temporal gyri,
hippocampus, cuneus, and cerebellum.

FIG. 3. GM regions related to the DMN detected by constrained SBM thresholded at jZj > 2.0.
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Our findings were consistent with previous studies in iden-
tifying some of the regions that have also been shown as
key areas of the DMN. The strong interactivity of precuneus/
posterior cingulated cortex (pC/PCC) with the rest regions of
the DMN has suggested a pivotal role of the pC/PCC in the
DMN (Fransson and Marrelec, 2008). The MPFC, superior,
and middle temporal gyri are other DMN regions frequently
identified by functional MRI, which is typically deactivated
and negatively correlated with task-active networks, during
a broad range of cognitive tasks, such as working memory,

language, and vision (Greicius et al., 2003, 2009). Significant
co-activation of the hippocampus in the DMN has been
reported (Greicius et al., 2004), and our identification of the
neighboring parahippocampal gyrus supports the involve-
ment of the hippocampus in the DMN.

Our results also suggested the prominent structural sup-
port to the DMN of several regions that have been implicated,
but have not received considerable attention from previous
reports. These regions, including the cerebellum and cuneus,
might also be key areas of the DMN according to our results.

Table 1. Talairach Labels for Gray Matter Regions Related to the Default Mode Network

Gray matter Brodmann area L/R volume (cc) L/R random effects: Max Z(x,y,z)

Superior and medial frontal gyri 6,8,10,9 22.1/17.2 5.8(0,8,46)/4.9(2,7,62)
Precuneus 19,31,7,39,23,18 20.4/18.0 6.5(�26,�74,30)/6.3(6,�74,44)
Cerebellum (uvula, culmen,

declive, pyramis, and vermis)
16.5/13.9 6.0(�4,�81,�21)/8.7(6,�85,�23)

Middle and inferior frontal gyri 9,6,10,8,44,45,46,11,13,47 13.8/6.7 5.5(�44,11,18)/4.2(38,28,13)
Middle and superior

temporal gyri
39,22,21,19,38,37,20,13,41,42 11.6/13.2 6.9(�40,�59,21)/6.2(42,�63,25)

Postcentral gyrus 7,5,2,40,3,1,43 9.7/8.5 5.2(�40,�34,59)/5.4(8,�51,63)
Superior parietal lobule 7,40,5 8.8/7.2 4.9(�36,�54,54)/5.3(24,�72,44)
Cuneus 17,7,19,18,30,23,31 6.5/6.9 6.9(�24,�83,13)/4.8(26,�80,33)
Inferior parietal lobule 40,7,39 6.3/6.1 5.1(�42,�36,57)/5.0(34,�33,40)
Paracentral lobule 5,6,31,4,7 5.2/3.5 5.4(0,�42,57)/5.2(2,�42,59)
Precentral gyrus 9,6,44,3,13 4.9/3.4 5.1(�34,14,38)/4.0(28,�7,50)
Lingual gyrus 18,19,17 4.3/3.0 4.8(�4,�62,3)/6.0(8,�84,�14)
Cingulate gyrus 32,24,31,23 4.3/2.6 5.1(0,27,35)/4.5(2,10,42)
Posterior cingulate 30,29,31,23 3.6/2.6 5.7(0,�56,6)/5.7(2,�56,5)
Middle occipital gyrus 18,19,37 2.4/1.3 7.2(�24,�85,15)/4.3(22,�83,17)
Inferior temporal gyrus 20,19,37,21 2.1/2.7 4.8(�48,�9,�16)/4.4(48,�9,�16)
Uncus 20,38,36,28,Amygdala 2.0/1.8 3.6(�26,0,�40)/3.3(26,4,�37)
Sub-gyral 21,37,20,6,40,7,8,Hippocampus,19 1.7/1.8 4.4(�48,�12,�11)/4.1(48,�27,�2)
Fusiform gyrus 19,37,18,36,20 1.6/1.1 3.8(�48,�49,�11)/3.9(32,�68,�5)
Insula 13,22 1.6/0.9 5.1(�44,11,16)/4.2(38,26,15)
Parahippocampal gyrus 35,36,28,Hippocampus,19,34,37,27,30 1.5/1.0 3.0(�18,�11,�28)/3.4(28,�26,�22)
Superior and inferior

occipital gyri
19,39,18,17 1.0/0.2 4.6(�26,�76,26)/2.7(38,�71,22)

Rectal gyrus 11 0.6/0.7 2.8(0,34,�24)/2.9(2,26,�23)
Anterior cingulate 32,10 0.5/0.5 4.2(0,38,24)/4.4(2,36,26)
Inferior semi-lunar lobule 0.5/0.2 3.8(�10,�80,�36)/4.4(8,�80,�38)
Transverse temporal gyrus 41,42 0.3/na 2.6(�53,�15,10)/na
Supramarginal gyrus 40 0.2/0.4 2.9(�53,�37,33)/3.9(46,�45,35)
Angular gyrus 39 0.2/0.3 3.3(�28,�62,36)/5.4(44,�67,27)
Thalamus Pulvinar,medial dorsal nucleus 0.1/0.1 2.2(�10,�25,12)/2.1(12,�29,11)
Orbital gyrus 11 0.0/0.1 2.4(�2,38,�22)/2.5(6,38,�25)

Voxels above a threshold of jZj> 2.0 were converted from MNI coordinates to Talairach coordinates and entered into a database to assign
anatomic labels for the L and R hemispheres. The concentration of voxels in each area is provided in cc. Within each area, the maximum Z value
and its coordinate are provided.

MNI, Montreal Neurological Institute; L, left; R, right; cc, cubic centimeters; na, not applicable.

FIG. 4. WM fibers underlying the DMN detected by constrained SBM thresholded at jZj > 2.0.
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The cerebellum has been found to contribute distinctly to
several intrinsic connectivity networks previously identified
to be involved in executive control, self-reflection, and senso-
rimotor function (Habas et al., 2009). The cuneus has been im-
plicated in several DMN studies (Broyd et al., 2009; Garrity
et al., 2007). Based on the relatively large volume and high
maximum values of the cuneus shown in our results, we sug-
gest that cuneus might offer an important structural support
to the DMN.

WM regions underlying the DMN

WM regions associated with the DMN through co-
variation analyses of FA and GM values were also identified.
Specifically, we identified important roles of a part of the WM

tracts of cingulum, the middle cerebellar peduncle, the corpus
callosum, association fibers, and the corona radiata associated
with the functional DMN. As demonstrated in Figure 4 and
Table 2, instead of identification of the entire fiber bundles
interconnecting cortical regions in tract tracing, it is possible
that the constrained ICA might identify only a part of the
WM tracts within which the FA values showed similar
inter-subject co-variation with the GM intensity. In the cases
where when only a part of the WM tracts was identified
through the co-variation analyses, our approach as well as
any other voxel-wise approaches would be limited in demon-
stration of the end-to-end connectivity.

Our proposed constrained ICA approach through a co-
variation analysis of FA and GM values has identified WM
regions intersected with known fibre tracts, which are

Table 2. White Matter Labels for Regions Underlying the Default Mode Network

White matter
L/R

volume (cc)
L/R

percentage (%) L/R Max Z(x,y,z)

Genu of the corpus callosum 4.528 50.04 5.86(0,30,2)
Body of the corpus callosum 4.144 29.99 3.35(4,�4,24)
Splenium of the corpus callosum 1.064 8.61 4.24(�22,�58,16)
Anterior corona radiata 4.504/3.656 65.10/53.39 3.26(�20,34,2)/3.68(16,36,4)
Posterior corona radiata 1.504/0.072 42.15/1.99 3.08(�26,�60,20)/2.84(28,�58,20)
Superior corona radiata 1.312/0.824 17.75/11.20 3.40(�26,�22,36)/3.32(16,�2,40)
Superior longitudinal fasciculus 4.112/1.512 63.06/22.91 5.44(�42,�50,8)/3.61(42,�8,28)
Inferior fronto-occipital fasciculus 1.392/0.664 71.90/31.56 2.27(�20,12,�12)/3.34(22,12,�12)
Middle cerebellar peduncle 5.456 35.93 3.81(18,�34,�36)
Cingulum (hippocampus) 0.456/0.128 43.51/10.46 3.44(�20,�24,�22)/2.65(22,�24,�22)
Cingulum (cingulate gyrus) 0.072/0.512 2.67/21.77 2.64(�6,32,12)/3.78(8,34,10)
Uncinate fasciculus 0.184/0.04 46.93/10.64 2.82(�34,�4,�18)/2.24(32,0,�20)
Anterior limb of internal capsule 0.032/0.92 0.98/43.73 2.20(20,18,14)/3.65(�14,�24,�16)
Posterior thalamic radiation

(include optic radiation)
1.376/0.04 35.98/1.02 3.96(�26,�58,18)/2.71(28,�58,18)

Fornix (crus)/stria terminalis 0.368/0.264 31.29/24.10 2.84(�32,�6,�18)/3.32(32,�8,�18)
Fornix (column and body of fornix) 0.032 4.94 2.18(0,�10,20)
Cerebral peduncle 0.336/na 15.67/na 3.54(14,�24,�20)/na
Corticospinal tract 0.176/na 12.94/na 3.27(12,�26,�22)/na
External capsule 0.328/na 9.11/na 2.72(�26,20,�2)/na
Medial lemniscus na/0.112 na/8.28 na/3.08(�12,�26,�22)
Tapetum 0.032/na 5.63/na 2.55(�26,�50,20)/na
Posterior limb of internal capsule na/0.04 na/1.28 na/2.19(�22,22,0)
Retrolenticular part of internal capsule 0.072/0.048 2.89/1.26 2.13(�28,�36,8)/2.10(�22,�16,�4)
Inferior cerebellar peduncle 0.008/na 0.98/na 2.15(12,�40,�38)/na

Voxels above a threshold of jZj> 2.0 were converted from MNI coordinates to the ICBM DTI-81 coordinates and entered into a database to
assign anatomic labels. The volume of significant white matter voxels within each fiber tract area is provided in cc. The percentage of the fiber
tract containing significant white matter voxels is also provided. Within each fiber tract, the maximum Z value and its coordinate are provided.

DTI, diffusion tensor imaging.

FIG. 5. The scatter plots between the variables of interest (gender, age, and IQ scores) and the mixing vector of the con-
strained ICA. IQ, intelligence quotient.

CONSTRAINED SOURCE-BASED MORPHOMETRY 39



consistent with recent-study findings based on either DTI
tractography or an ROI approach. One subset of the involved
cingulum was adjunct to the cingulate gyrus, consistent with
the previous report that the cingulum interconnects the PCC
and the MPFC (Greicius et al., 2009). Greicius et al. (2009)
demonstrated the direct connection between PCC and
MPFC through combining the DTI tractography with resting-
state functional connectivity. Another subset of the cingulum
bundle extended to the hippocampus, which agrees with the
findings that an interrelationship exists between the poste-
rior cingulate and hippocampal gyri (Teipel et al., 2010). By
regressing the functional connectivity between PCC and the
hippocampus on the WM FA maps, distinct WM areas match-
ing the DMN components were identified (Teipel et al., 2010).

As a WM tract linking the pons and cerebellum, the middle
cerebellar peduncle relays signals from cerebrum to cerebel-
lum. The detection of this WM tract again suggests that
the cerebellum may be an important part of the DMN. The
genu, body, and splenium of the corpus callosum were all
identified from the total collection of WM tracts underlying
the DMN. The fact that the callosal radiation conducts the
communication between two hemispheres suggests that its
involvement likely facilitates the interhemisphere connectiv-
ity of the DMN. Application of a purely data-driven method
(joint ICA [jICA]) to combine information from both the func-
tional connectivity and WM connectivity has demonstrated
that the functional connectivity in the DMN is highly depen-
dent on the WM integrity of the corpus callosum connecting
the two hemispheres. (Franco et al., 2008). The genu of the
corpus callosum was reported to play an important role inter-
connecting different regions of the DMN in a recent study
reconstructing the WM pathways between functionally con-
nected brain regions forming resting-state networks (van
den Heuvel et al., 2009a). This report also provided strong ev-
idence of the structural support of the functional DMN by
demonstrating that eight of the nine functional resting-state
networks are interconnected by anatomical WM tracts (van
den Heuvel et al., 2009a). Furthermore, we identified associa-
tion fibers that were a part of the WM network related to the

DMN, including the superior longitudinal fasciculus, inferior
fronto-occipital fasciculus, and uncinate. These long associa-
tion fibers link the frontal, occipital, and temporal lobes,
and connect the distant GM regions that make up the
DMN, suggesting their important role in forming the skeleton
of the structural network underlying the DMN. In addition,
the anterior corona radiata as well as the anterior limb of in-
ternal capsule were significantly associated with the DMN.
This bundle of pyramidal tracts carries motor-sensory infor-
mation between cerebral cortex and subcortical regions, par-
ticularly the thalamus. Because the thalamus was not
explicitly shown in our result, the fronto-pontine fibers
might be the major contributor.

The relationship between the identified GM and WM re-
gions is also of interest. Using a constrained ICA approach
on the co-variation analysis of the GM values and WM FA
values, we identified a structural network underlying the
functional DMN that consists of a series of closely related
GM regions and WM regions. The relationship among a sub-
set of the identified GM and WM regions was supported by
literature findings. Important roles interconnecting different
regions of the resting-state networks have been broadly dem-
onstrated for the cingulum tract (Greicius et al., 2009; van den
Heuvel et al., 2008), the left and right superior longitudinal
fasciculus (van den Heuvel et al., 2008; Wakana et al.,
2004), as well as the corpus callosum tracts (van den Heuvel
et al., 2008; Wakana et al., 2004). It has been demonstrated
that the cingulum bundle directly connects the PCC to the
MPFC (Greicius et al., 2009). In addition, it has been reported
that there was a direct association between the microstructure
of the interconnecting cingulum tract and the level of func-
tional connectivity between the PCC and medial frontal
cortex (van den Heuvel et al., 2008). A significant association
of the functional connectivity between the posterior cingulate
and the hippocampus with the WM microstructure in the
cingulate bundle interconnecting them was also reported.
(Teipel et al., 2010).

The relationship between the structural network
and the variables of interest

The correlation values between the variables of interest
and the ICA loading parameter were all low. This was also
demonstrated by Figure 5 showing no significant trends be-
tween the loading parameter and the variables of interest.
With regard to gender effects, although the previous study
observed significant gender differences in functional activa-
tion (Keller and Menon, 2009), our study supports the notion
that the overall associations of gender with the structural
DMN are quite small (Bluhm et al., 2008). With regard to
age effects, earlier studies have shown prominent differences
of DMN between 7–9 years old and 19–22 years old, which
indicated an age-related developmental trajectory (Supekar
et al., 2010). Our study involves a rather restricted age
range between 18 and 29, suggesting that the structural devel-
opment of the DMN might be largely completed by late ado-
lescence (Bluhm et al., 2008) and that this structural network
remains stable in early adulthood. While previous studies
have shown significant relationships between the brain struc-
ture and IQ scores in normal healthy cohorts ( Jung and Haier,
2007), the current results show no significant relationship be-
tween the structural DMN and IQ. Since our result is based

FIG. 6. The scatter plot together with the linear fits between
IQ scores and the mixing vector of the constrained ICA, for
men and women, respectively. An analysis of co-variance
showed a significant interactive effect of IQ scores and the
gender on the structural network ( p = 0.0325).
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upon the predominant regions underlying the DMN, it does
not preclude the hypothesis that a short path length, or a dis-
crete structural network, might be crucial for efficient infor-
mation processing across the functional brain network and
consequently IQ-related (van den Heuvel et al., 2009b).

Although the main effects of gender, age, and IQ scores on
the structural DMN are mild, a significant meditative effect of
gender on the relationship between IQ and the brain struc-
tural network has been identified. While the loading param-
eter represents the linked pattern between the structural
network and the functional DMN for specific subjects, Figure
6 demonstrated that for men, this linked pattern gets weaker
as the IQ scores increase, but for women, the linked pattern
becomes stronger as the IQ scores increase. This finding is
consistent with previous reports, and will add to knowledge
in studying the functional and structural DMN. Substantial
sex differences in the structural brain organization underly-
ing intellectual functioning have been reported (Haier et al.,
2005). A regression of intelligence on the total brain WM sug-
gested greater WM associations with cognition in women
than in men (Gur et al., 1999). It has also been observed
that the biochemical substrate of normal intellectual perfor-
mance is mediated by sex, and that women exhibited much
stronger associations between WM biochemistry measures
and cognitive measures compared to men ( Jung et al.,
2005). Furthermore, our findings of the significant IQ by gen-
der interaction in the DMN are supported by the significant
FSIQ by sex interaction that was demonstrated in the inferior
frontal gyrus and in the middle temporal gyrus (Schmithorst
and Holland, 2006). Significant negative correlation of BOLD
activation with FSIQ in both the inferior frontal gyrus and the
middle temporal gyrus was reported in boys, while girls ex-
hibit positive correlation in the inferior frontal gyrus and no
significant correlation in the middle temporal gyrus, respec-
tively (Schmithorst and Holland, 2006).

Resting-state functional MRI studies detect multiple func-
tionally connected brain regions forming the DMN. Although
it is commonly hypothesized that highly functionally con-
nectivity reflects structural connectivity, the underlying
structural connectivity architecture remains underexplored.
An integrated analysis of the sMRI GM data and DTI WM
data will enrich our understanding of the brain structural
networks. It has been increasingly reported in several stud-
ies that combining multimodal imaging provides a richer
representation of the brain connectivity (Franco et al.,
2008; Greicius et al., 2009; Skudlarski et al., 2008; Teipel
et al., 2010). With the aid of the newly introduced concept
of the DTI connectivity, a significant overall agreement
was achieved by comparing the quantified anatomical con-
nectivity with resting-state functional connectivity (Skudlar-
ski et al., 2008), which provides a powerful validation for
the representation of neuronal connectivity by resting-state
correlations. A jICA approach has been used to combine
fMRI resting-state data with DTI, which demonstrated that
resting-state functional connectivity is highly dependent
on the integrity of WM connections both between (corpus
callosum) and within (cingulate bundles) the two hemi-
spheres (Franco et al., 2008). The shared variance between
the DMN and the FA values has also been discovered
using the jICA approach, which would have been missed
in the standard analysis of each individual modality sepa-
rately (Franco et al., 2008).

The two most common methods for studying the structural
underpinnings of the DMN include an ROI approach and
data-driven analyses; however, there is some disagreement
about which one is superior (Bluhm et al., 2008). Our pro-
posed constrained-SBM approach maximally utilized our
prior knowledge of the functional regions to inform the un-
derlying associated GM regions, while searching the whole
brain at the same time for the associated WM regions
where we had less prior knowledge. To our knowledge, the
proposed strategy is the first method to combine the advan-
tages of both ROI and data-driven approaches in multimodal
imaging. Our results not only identified GM regions that
were previously reported to be an important part of the
DMN, but also detected the GM regions that were implicated
in previous studies but not received considerable attention,
which might also potentially play an important role in the
DMN. We were also able to simultaneously identify the un-
derlying WM regions associated with the DMN from the
DTI data. The identified WM regions through the co-variation
analysis of FA and GM values agreed with and extended the
previous study findings in investigation of the structural con-
nectivity architecture of the human brain. The possibility that
higher order morphometric changes are driving some of the
findings would be another potential limitation of our ap-
proach as well as any voxel-wise approach.

There are a growing number of methods designed to
jointly analyze GM and FA data (Xu et al., 2009; Groves
et al., 2011); however, these methods do not incorporate spa-
tial constraints. We have presented a novel approach employ-
ing prior information in the form of the functional DMN to
investigate the GM and FA variability underlying the DMN
through a co-variation approach. Our approach is an adapta-
tion of an existing, validated method that has broad applica-
bility. The novel adaptations consist of two main aspects;
first, we use a functional network to constrain a structural
network (whereas the original application was a functional
network constraining a functional network), and secondly,
we use it in a joint context with WM, using an assumption
that FA regions that co-vary with GM regions are informative
(which is the aspect that our included simulation is designed
to address).

Our primary purpose was to study the structural under-
pinning of the DMN. The proposed constrained SBM ap-
proach identified a structural network containing both GM
regions and WM regions associated with the DMN. We iden-
tified GM regions that were frequently reported by functional
DMN studies, such as precuneus, MPFC, superior, and mid-
dle temporal gyri. In addition, we identified closely related
WM regions, including the cingulum, corpus callosum, and
superior longitudinal fasciculus, which were demonstrated
to play important roles interconnecting different regions of
the resting-state networks. This new approach provides at
least four distinct advantages. First, as a multivariate strat-
egy, it takes into account the interrelationship between voxels
and identifies the naturally existing structural networks. Sec-
ond, as a semiblind method, it both incorporates the prior in-
formation as a constraint and also incorporates data mining
to identify nonpredicted associations throughout the entire
brain. In addition, our strategy provides spatial filtering
that reduces noise, which can possibly contaminate the con-
nectivity maps. And finally, our approach enables examina-
tion of the associations of other variables of interest (e.g.,
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gender, age, and IQ scores) with the identified structural net-
works. The application of constrained SBM to structural brain
images thus creates new opportunities to extract structural
networks based on prior information.

Conclusion

We present a semiblind multivariate method, constrained
SBM, to incorporate prior information and to enhance the per-
formance of SBM. The application of constrained SBM uti-
lized a DMN mask as a constraint and sought a structural
network associated with the DMN throughout the whole
brain. Our findings support the existence of such underlying
structural network associated with the DMN, including both
GM regions and corresponding WM regions. Our approach is
also generally applicable to a wide variety of studies to ex-
tract structural networks incorporating prior information.
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