Skip to main content
. 2013 Apr 9;8(4):e60831. doi: 10.1371/journal.pone.0060831

Figure 5. Conductance gating models for the different current components used in our CG cell NEURON model.

Figure 5

Rate constants are k(0 mV) rate times the voltage dependence (ea) which is raised to the EM power (mV) to obtain the final rate. Gmax and 0 current potentials are given for each conductance. For ISA models, GISA(c) and GISA(r), the I1−I2 transition between closed inactivated states is generally not rate limiting, and thus effectively invisible, but was adjusted to preserve detailed balances. More complex models have been proposed for ISA, but these models capture the basic gating properties of the ISA channel over a wide range of voltages. For the TASK-3 channel, and the residual K2P current in CG cells remaining after mDPP6 RNAi treatment, GK2P, the model has 2 independent gates which must both be open to conduct. The linear leak component is always open and modeled to be Na+ selective to match the relatively high input resistance of CG cells while still producing the large change in Erest between Control and mDPP6 RNAi CG cells.