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Abstract
The ability to accurately determine the elastic modulus of each layer of the human cornea is a
crucial step in the design of better corneal prosthetics. In addition, knowledge of the elastic
modulus will allow design of substrates with relevant mechanical properties for in vitro
investigations of cellular behavior. Previously, we have reported elastic modulus values for the
anterior basement membrane and Descemet’s membrane of the human cornea, the surfaces in
contact with the epithelial and endothelial cells, respectively. We have completed the compliance
profile of the stromal elements of the human cornea by obtaining elastic modulus values for
Bowman’s layer and the anterior stroma. Atomic force microscopy (AFM) was used to determine
the elastic modulus, which is a measure of the tissue stiffness and is inversely proportional to the
compliance. The elastic response of the tissue allows analysis with the Hertz equation, a model
that provides a relationship between the indentation force and depth and is a function of the tip
radius and the modulus of the substrate. The elastic modulus values for each layer of the cornea
are: 7.5 ± 4.2 kPa (anterior basement membrane), 109.8 ± 13.2 kPa (Bowman’s layer), 33.1 ± 6.1
kPa (anterior stroma), and 50 ± 17.8 kPa (Descemet’s membrane). These results indicate that the
biophysical properties, including elastic modulus, of each layer of the human cornea are unique
and may play a role in the maintenance of homeostasis as well as in the response to therapeutic
agents and disease states. The data will also inform the design and fabrication of improved corneal
prosthetics.

1. Introduction
The cornea provides a protective barrier to maintain ocular integrity while simultaneously
acting as the most powerful refractive surface in the eye responsible for transmitting and
focusing light onto the retina. The human cornea is comprised of distinct layers including
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the epithelium, anterior basement membrane, Bowman’s layer, the stroma, Descemet’s
membrane (posterior basement membrane) and the endothelium as seen in Fig. 1 (Klyce and
Beuerman, 1988). The structure of each of these layers is unique. The native corneal stroma
constitutes approximately 90% of the corneal thickness and thus is important in maintaining
its mechanical shape and structure. The stroma is a rich topographically patterned
environment comprising sheet-like transparent fibrillar parallel bundles of collagen, with a
sparse population of keratocytes located between the lamellae. In contrast, the collagen fibril
arrangement of Bowman’s layer is more random in organization compared to the largely
parallel arrangement found within lamellae of the stoma. The corneal basement membranes
are specializations of extracellular matrix through which the epithelial and endothelial cells
attach to the underlying or overlying stroma, respectively. Basement membrane topography
is complex, consisting of a network of fibers, pores and bumps with feature sizes in the
submicron to nanoscale range (Abrams et al., 2000). The average pore size of Descemet’s
membrane is smaller than that of the anterior basement membrane, creating a more compact
structure (Abrams et al., 2000).While each layer has a distinct structure, the mechanical
properties of the cornea are typically reported only for the composite structure.

Several different methods have been used to determine the bulk elastic modulus of the
cornea (a value that integrates all layers of the cornea), and a wide range of values has been
published (0.01 – 11.1 MPa) (Elsheikh et al., 2007; Hjortdal, 1996; Hoeltzel et al., 1992;
Jayasuriya et al., 2003a; Jayasuriya et al., 2003b; Jue and Maurice, 1986; Liu and Roberts,
2005; Nash et al., 1982; Nyquist, 1968; Wollensak and Iomdina, 2009; Wollensak et al.,
2003; Zeng et al., 2001). Two common testing methods that have been used are tensile
testing, which involves pulling on a strip of the cornea,(Hoeltzel et al., 1992) and bulge
testing (Elsheikh et al., 2007), which involves pressure being applied behind the cornea and
measuring the deflection of the cornea as a function of pressure (Elsheikh et al., 2007). The
latter method has the added advantage of relating the applied pressure to the intraocular
pressure (IOP) and the elastic modulus can then be determined as a function of the IOP.
Neither of these techniques is applicable for determining the specific elastic modulus of each
discrete corneal layer. In addition, it is difficult to isolate each layer for testing and tensile
testing require a mechanical grip to hold and pull the material, which would be difficult for
the thin Bowman’s layer (~8–12 µm).

Atomic force microcopy (AFM) has proven to be a useful technique for the imaging and
characterization of soft, biological materials and there are many reviews that describe the
uses and advantages of AFM for biological materials, including applications in high
resolution imaging, real time imaging in physiological conditions, indentation experiments
and single molecule force measurements.(Alessandrini and Facci, 2005; Cohen and Bitler,
2008; Costa, 2003; Deniz et al., 2008; Ebner et al., 2008; Franz and Puech, 2008; Frederix et
al., 2009; Gadegaard, 2006; Goksu et al., 2009; Haupt et al., 2006; Ikai, 2008; Kasas and
Dietler, 2008; Morris et al., 1999; Muller, 2008; Muller and Dufrene, 2008; Noy, 2006;
Parot et al., 2007; Radmacher, 2007; Ritort, 2006; Santos and Castanho, 2004; Seantier et
al., 2008; Veerapandian and Yun, 2009; Withers and Aston, 2006; Wright and Armstrong,
2006; Zhu and Sun, 2006)

The AFM has several advantages in the study of biological materials over electron
microscopy, including the ability to image in liquid with minimal sample preparation (no
labeling, fixing or coating). The AFM is also able to exert and measure forces on the order
of pico-Newtons, enabling the indentation of cells or tissues at small indentation depths and
low forces. AFM has been successfully used for determining the mechanical properties of
many tissues and cells.(Alessandrini and Facci, 2005; Bowen et al., 2000; Canetta and Adya,
2005; Costa, 2003; Docheva et al., 2008; Hsieh et al., 2008; Jandt, 2001; Kasas and Dietler,
2008; Li et al., 2008; Mathur et al., 2001; Rabinovich et al., 2005; Radmacher, 2007; Rico et
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al., 2005; Sirghi et al., 2008; Wagh et al., 2008) AFM nanoindentation allows for a
determination of the local, elastic modulus of each of the corneal layers. Our laboratory
recently determined the elastic modulus of anterior basement membrane and Descemet’s
membrane of the human cornea to be 7.5 ± 4.2 and 50 ± 17.8 kPa, respectively (Last et al.,
2009). The purpose of this study was to determine the elastic modulus of Bowman’s layer
and the anterior stroma of the human cornea and compare these results to the elastic
modulus values obtained previously for the anterior basement membrane and Descemet’s
membrane.

2. Methods
2.1 Sample Preparation

Human corneas determined unsuitable for transplantation were obtained from the Missouri
Lions Eye Bank (Columbia, MO). The ages of the cornea donors ranged from 19 to 73
years, with a median age of 61 years for Bowman’s layer and 62 years for the stroma. The
corneas were stored in Optisol (Chiron Ophthalmics, Irvine, California) at 4° C. The
epithelial and endothelial cells were removed to reveal the anterior basement membrane and
Descemet’s membrane, respectively, using previously reported procedures (Abrams et al.,
2000). The epithelial cells were removed by placing the corneas in 2.5 mM ethylenediamine
tetraaceticacid (EDTA) in HEPES buffer (pH = 7.2) for 2 hours at 37° C (Abrams et al.,
2000). The endothelium was removed by placing the corneas in the EDTA solution for 30
minutes at 37° C followed by sonication (Crest Ultrasonic Cleaner, WI, USA) in PBS at 2
amps for 3 minutes. Prior to laser ablation any remaining epithelial cells were removed with
a 69 beaver blade. A VISX Star S4 IR Excimer Laser (Abbott Medical Optics Inc, Abbott
Park, IL) was used to photoablate the superficial elements of the cornea to either partially
enter into Bowman’s layer (6 mm diameter, 6 Hz, 8 pulses = 2 µm) or ablate through
Bowman’s layer into the anterior stroma (6 mm diameter, 6 Hz, 84 pulses = 20 µm).
Histologic examination of photoablated specimens not used in AFM analysis was performed
to confirm that the layer of interest was intact and exposed for AFM analysis. The edges of
the photoablated area were marked with a 69 Beaver blade using the surgical microscope of
the Visx laser blade. Samples were prepared for AFM by dissection of a piece of tissue from
within the photoablated area. The tissue was adhered with cyanoacrylate glue (Loctite Super
Glue Gel, Henkel Corporation) in the center of a 5 mm diameter well, created with a nylon
washer, on a stainless steel disk. The samples were stored in Optisol for a minimum of 30
minutes after preparation and AFM analysis was performed within 12 hours in 1x phosphate
buffered saline (PBS).

2.2. Instrumentation
Force curves were acquired with a Nanoscope IIIa Multimode scanning probe microscope
(Bruker, Santa Barbara, CA). The samples were transferred to the AFM without drying and
placed in a commercially available liquid cell (Bruker, Santa Barbara, CA). Silicon nitride
cantilevers with a borosilicate sphere as the tip (1 µm radius, Novascan Technologies, Inc.
Ames, IA) were used. The nominal spring constant of the cantilevers was 0.06 N/m. Force
curves were obtained on at least 10 different locations on the sample surface. Each force
curve was taken at a rate of 2 µm/sec. Data was collected from the Bowman’s layer of 6
different human donor corneas and the anterior stroma of 5 different human donor corneas.

2.3 Data Analysis
The force curves were analyzed using the Hertz model for a sphere in contact with a flat
surface as previously described (Domke and Radmacher, 1998; Last et al., 2009). The
applicability of this method of data analysis to soft biological materials has been previously
discussed.(Cappella and Dietler, 1999; Lin and Horkay, 2008; McKee et al., 2011;
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Radmacher, 2007) The optical sensitivity and the spring constant of each cantilever were
determined for accurate measurement of the elastic modulus. Optical sensitivity was
measured as the slope of the force curve, taken in PBS, when the tip was in contact with a
rigid surface. The optical sensitivity was used to convert cantilever deflection in volts to
deflection in nanometers (x). Spring constants (k) were measured using Sader’s
method(Sader, 1995). The Hertz model provides a relationship between the loading force
and the indentation, which for a spherical indenter is:

(1)

where F is the loading force in Newtons, ν is Poisson’s ratio (assumed to be 0.5), δ is the
indentation depth (= (z-zo)-(d-do)), E is the elastic modulus in Pascals and R is the radius of
the tip. The values obtained from the force curve are z, zo, d and do, where z is the piezo
displacement, d is the cantilever deflection, and zo and do are the values at initial contact of
the tip with the sample. Using this equation with F = k(d-do) gives an expression for E:

(2)

3. Results and Discussion
3.1. Bowman’s layer and the stroma

Force curves were obtained after photoablation to determine the compliance of Bowman’s
layer or the stroma. Force curves acquired for Bowman’s layer were typical of an elastic
material, generally consisting of a straight line approach when the tip is not in contact with
the substrate and having no jump-to-contact as the tip approaches the surface, indicating
minimal interactions of the tip with the surface (Fig. 2A). The approach and retract curves
overlap, indicating an absence of viscoelastic effects at the indentation rate used (2 µm/sec).
In approximately 20% of the force curves, a small adhesion (an average of less than 1nN) of
the tip to the surface upon retraction, which increased with increasing indentation depth, was
observed. In such cases, the indentation depth was decreased to minimize the adhesion. The
mean elastic modulus values on the six samples ranged from 84 – 123 kPa, with an overall
mean of 109.8 ± 13.2 kPa (Fig. 3A).

Force curves obtained for the anterior stroma also typically were consistent with those of a
soft, elastic material (Fig. 2B). The mean elastic modulus on the five anterior stroma
samples ranged from 24 – 39 kPa, with an overall mean of 33.1 ± 6.1 kPa (Fig. 3B). In the
stroma samples, tip – sample adhesion was observed in 30% of the force curves, an increase
from Bowman’s layer. In addition, a large hysteresis in the approach and retract force curves
was often observed and these force curves were not used in the analysis. The topography of
the corneal surface before and after photoablation has been characterized, revealing an
increase in the surface roughness (Nogradi et al., 2000). In particular, it was found that
photoablation to Bowman’s layer resulted in a surface that remained smooth. After
photoablation to the anterior stroma, however, there was an increase in the surface
roughness. It is therefore likely that this increase in roughness of the stromal surface is a
contributing cause of the increased difficulty in obtaining force curves for analysis for the
anterior stroma.
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3.2. The anterior basement membrane and Descemet’s membrane
Previously, our laboratory has reported mean elastic modulus values for the human corneal
basement membranes (Last et al., 2009). The anterior basement membrane and Descemet’s
membrane are the surfaces directly in contact with the epithelial and endothelial cell layers,
respectively. The value obtained for the modulus of the anterior basement membrane was
7.5 ± 4.2 kPa, while the modulus obtained for Descemet’s membrane was 47.6 ± 16.5 kPa
(Fig. 4) (Last et al., 2009). The topography of Descemet’s membrane is similar to that of the
anterior basement membrane but has a more compact organization, with smaller pore
dimensions in Descemet’s membrane. This important structural difference is consistent with
the observed differences in elastic modulus.

3.3. Discussion of values
This study utilized AFM nanoindentation to measure the local compliance of Bowman’s
layer and the anterior stroma of the human cornea. Similar to our previous study on corneal
membranes (Last et al., 2009), a spherical AFM tip (nominal radius of 1 µm) was selected
for several reasons. A spherical tip was chosen because typical conical AFM tips (nominal
radius of 10 nm) create a larger strain field than spherical tips during indentation which may
impact the measured modulus of these soft biological materials and because the topographic
features of the collagen fibers are of approximately the same size as the conical AFM tip
radius with a fiber size of 30 nm (Edelhauser and Udels, 2003).

Similar to the previous study characterizing corneal basement membranes (Last et al., 2009),
inter-individual variability in elastic modulus was observed at both corneal locations. This
variation in the modulus among corneas is not surprising due to the inherent differences
between human donors. The age, sex, and differences in stromal thickness of the corneas
may impact the measured elastic modulus. It is known that many human tissues stiffen with
age, including the human cornea and lens (Elsheikh et al., 2007; Fisher, 1987; Hollman et
al., 2007). In addition, aging has been associated with increased microdots or dysgenic
cellular remnants in the anterior stroma and folds in the posterior stroma, which could also
alter local compliance (Hillenaar et al., 2011). It is also possible that an undisclosed
underlying disease state of an individual donor impacted the elastic modulus as has been
shown for normal versus osteoarthritic chondrocytes and normal and malignant breast tissue
(Hsieh et al., 2008; Samani et al., 2007).

Interestingly, Bowman’s layer had an approximately 3-fold greater greater elastic modulus
in comparison to the anterior stroma. A recent study investigating the three dimensional
arrangement of collagen fibers within the cornea found “bow spring-like structures” attached
to Bowman’s layer and deeper layers of the anterior stroma which would serve to reinforce
and thus stiffen Bowman’s layer similar to load-bearing elements of girders and bridges
(Winkler et al., 2011). Other differences between Bowman’s layer and the anterior stroma
that could explain the disparity in elastic modulus include collagen fiber composition,
collagen fiber diameter and proteoglycan composition. The more randomly oriented, smaller
diameter collagen fibrils of Bowman’s layer results in a denser collagen arrangement and
likely contributes to the increase in stiffness in comparison to the lamellar arrangement of
larger collagen fibrils within the anterior stroma. These results mirror the previous study
from our laboratory which showed that more densely packed Descemet’s membrane had a
greater elastic modulus than the anterior basement membrane (Last et al., 2009).

The elastic modulus for the anterior stroma found in the present study was approximately 20
fold greater than what has been recently reported (Winkler et al., 2011). There are several
reasons that could account for these differences. First, the depth of measurement of the
stroma was more anterior in the present study (less than 20 µm) in comparison to the
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previous study (140 µm). Second-harmonic imaging has revealed a higher degree of lamellar
interconnectivity in the anterior cornea(Morishige N, 2007). In addition, a study by Winkler
and colleagues demonstrated that an 8 fold greater elastic modulus in the anterior stroma in
comparison to the posterior stroma (Winkler et al., 2011). Thus, it is likely that the increased
fiber interconnectivity present within the anterior stroma just underlying Bowman’s layer is
responsible for the greater elastic modulus in the present study. Second, atomic force
microscopy and indentation testing were used in the present and previous studies,
respectively, to determine the elastic modulus of the anterior stroma. The probe tip used in
indentation testing was much larger in comparison to the tip used in atomic force
microscopy and this could dramatically alter the measurement of local compliance (McKee
et al., 2011). Finally, corneal preservation techniques differed between the two studies. In
the present study, the corneal buttons unsuitable for transplantation were stored in Optisol
then incubated in PBS for a minimum of 30 minutes prior to measurement. In contrast,
corneas tested in the previous study were obtained as whole eyes and first infused with PBS
under pressure then treated with dextran to decrease post-mortem corneal edema following
epithelial removal (Winkler et al., 2011). It is possible that the differences in hydration states
between the corneal samples in the present and previous study resulted in different elastic
modulus measurements for the anterior stroma.

Another recent study measuring the elastic modulus of the anterior stroma as measured by
AFM reported values ranging from 1.14 – 2.63 MPa, several orders of magnitude greater
than that reported by Winkler, et al or described here.(Lombardo et al., 2012) There are
many experimental differences that may contribute to this large discrepancy including tip
size, scan rates and indentation depths. Lombardo et al. used a conical tip for indentation
with a radius of curvature of 10 nm. This tip size is smaller than the average diameter of an
individual collagen fiber (30 nm) and it is possible that the larger elastic modulus value
reflects the modulus of the fiber. In addition, slower scan rates (2 μm/sec vs. 3 – 95 μm/
sec), and lower loads (1 nN vs. 0.25 – 2.5 μN) were used in the present study, eliminating
hysteresis in the force curves. It should also be noted that in the present study we are
photoablating the sample 20 μm through the anterior basement membrane and Bowman’s
layer to expose the anterior stroma. Lombardo et al. are indenting up to 2.7 μm from the top
of the anterior basement membrane. Since the central Bowman’s layer has been reported to
have a thickness of 17.7 ± 1.7 μm, it is likely that this measurement is from Bowman’s layer
and not the anterior stroma.(Tao A, 2011)

4. Conclusions
We have determined the mechanical properties for several corneal layers and found that the
mechanical properties vary between the layers. Knowledge of the mechanical properties of
each layer is a crucial step in the design of improved prosthetics.
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Highlights

• We have completed the compliance profile of the stromal elements of the human
cornea by obtaining elastic modulus values for Bowman’s layer and the anterior
stroma

• Atomic force microscopy (AFM) was used to determine the elastic modulus

• The elastic modulus values for each layer of the cornea are: 7.5 ± 4.2 kPa
(anterior basement membrane), 109.8 ± 13.2 kPa (Bowman’s layer), 33.1 ± 6.1
kPa (anterior stroma), and 50 ± 17.8 kPa (Descemet’s membrane)
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Fig. 1.
A schematic depicting the layers of the human cornea and the corresponding elastic modulus
values obtained from atomic force microscopy: the epithelium, the anterior basement
membrane (7.5 kPa), Bowman’s layer (110 kPa), the stroma (33 kPa), Descemet’s
membrane (50 kPa) and the endothelium. Illustration (without elastic modulus values)
reprinted with permission from (Last et al., 2009).
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Fig. 2.
Typical force curves obtained from (A) Bowman’s layer and (B) the anterior stroma. The
solid line represents the cantilever deflection as the cantilever approaches the surface. The
dashed line represents the cantilever deflection upon retraction from the surface. The
approach and retract curves overlap, indicating elastic behavior at the indentation rate used
(2 μm/sec). Values for the initial contact point of the tip with the sample and the cantilever
deflection and z piezo position are obtained from the force curve and used in the Hertz
analysis to determine the elastic modulus. Insets: Curve fit of the experimental data (dotted
lines) with the Hertz equation (solid line) to determine the elastic modulus.
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Fig. 3.
(A) Elastic modulus results for Bowman’s layer obtained from 6 human donor corneas. A
minimum of 10 measurements is included in the calculation of the mean elastic modulus and
standard deviation for each donor. The average of the means is E = 109.8 ± 13.2 with a
range of 84–123 kPa. (B) Elastic modulus results for the anterior stroma from 5 human
donor corneas. A minimum of 10 measurements is included in the calculation of the mean
elastic modulus and standard deviation for each donor. The average of the means is E = 33.1
± 6.1 kPa, with a range of 24–39 kPa.
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Fig. 4.
(A) Elastic modulus results for the anterior basement membrane from 6 human donor
corneas. A minimum of 10 measurements is included in the calculation of the mean elastic
modulus and standard deviation for each donor. The average of the means is E = 7.5 ± 4.2
kPa with a range of 2 kPa – 15 kPa. (B) Elastic modulus results for Descemet’s membrane
of 5 human donor corneas. A minimum of 10 measurements is included in the calculation of
the mean elastic modulus and standard deviation for each donor. The average of the means
is E = 50 ± 17.8 kPa with a range of 20 kPa – 80 kPa. Reprinted with permission from (Last
et al., 2009).
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