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The interactions between fundamental life molecules, people and social organisations build complex
architectures that often result in undesired behaviours. Despite all of the advances made in our
understanding of network structures over the past decade, similar progress has not been achieved in the
controllability of real-world networks. In particular, an analytical framework to address the controllability
of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite
network controllability that identifies the topologies that are relatively easy to control with the minimum
number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of
real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis
should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at
will.

N
etworks represent the backbones of technological, societal and natural systems. In recent years, statistical
physics has provided the tools to understand the universal principles that govern the structure of net-
works1,2. However, the network knowledge of real systems as well as the proposed mean-field theories

and approaches are still far from being complete. Detailed knowledge of the structure has not yet led to control
networks with fewer input signals. For example, we still do not have a theoretical framework that allows us to
reprogram the entire gene regulatory network in a living cell to transition from a disease state to a normal state
using a small set of drugs. The efforts in this direction are recent and have permeated different fields, with a
combination of tools from control theory and statistical physics3–11. A dynamical system can be controlled if the
system can be driven from any initial state to any final state by an external set of signals within a finite amount of
time. Although the processes that occur in real-world networks are mostly non-linear, canonical linear, time-
invariant nodal dynamics8 has been proposed for studying the controllability of networks (see the Supplementary
Information (SI) for details) in which a vector of input signals u(t) is coupled to a set of nodes (drivers) that
control the interactions between the entire system’s nodes defined by the transpose of the weighted adjacency
matrix A. The state of a system x(t) of N nodes at time t, can indicate the positive/negative opinions or high/low
expression levels that change with time. This simplification is applied to the modelling of non-linear systems
because the structural controllability12 of a given system is equivalent to the controllability of a continuum of
linearised systems; therefore, the analytical results could provide sufficient controllability conditions for most
nonlinear systems8,13.

To address structural controllability, models based on nodal8 and edge dynamics10 were recently proposed. In
nodal dynamics, the minimum number of input signals necessary to control the whole network is determined by
finding the maximum matching in a bipartite graph obtained from the original network. The number of
unmatched nodes is the number of driver nodes. In this approach, the input signals (or driver nodes) tend to
avoid the high-degree nodes8. As a result, the random networks in which hubs are absent are easier to control. An
alternative view tackles the problem by evaluating a dynamical process that is defined on the edges of a network
rather than in the nodes10. In the edge dynamics approach, each node i acts as a simple switchboard-like device,
mathematically represented as a mixing matrix Mi with rows (columns) equal to the out-degree (in-degree), that
receives information through its inbound edge and transmits the outcome or decisions to its neighbouring nodes
by means of the outbound edges. In sharp contrast to the nodal dynamics8, this approach concludes that the scale-
free degree distributions, where hubs are present, are easier to control. However, despite the fact that bipartite
networks represent a network type that is often used to represent the interactions of distinct units in real-world
systems, both the nodal and edge dynamics frameworks only address simple (unipartite) graphs.

Here we address the controllability of unidirectional bipartite networks, but instead of using nodal dynamics
we attempt the problem from a different angle by, considering a modified version of the minimum dominating set
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(MDS)11. A set S(V of nodes in a graph G 5 (V, E) is a dominating
set if every node v [ V is either an element of S or is adjacent to an
element of S14. This dominant set (DS) of nodes plays the role of the
set of driver nodes in the sense of Ref. 8,10. In our companion work,
the MDS was suggested as a method to investigate the controllability
of complex networks under the assumption that each node can
control its outgoing edges separately11. The presented conceptual
approach, based on edges rather than nodes, was similar to the edge
dynamics that was independently proposed in Ref. 10. Our findings
showed that as the network degree distribution becomes increasingly
heterogeneous, the entire system also becomes easier to control.

Here, we exploit the powerful framework of the MDS, which in
bipartite graphs is known as the Set Covering Problem, to tackle the
controllability of unidirectional bipartite networks. This combin-
atorial optimisation problem has found many applications in dispar-
ate areas that are not related to dynamics or control, such as
transportation systems and airline crew scheduling, vehicle routing
(e.g., Vehicle Routing Problem with Time Windows (VRPTW) is one
of the important problems in distribution and transportation), facil-
ity location (e.g., how to optimise the location of a terrestrial cellular
network of base stations (cell sites) to cover all the mobile phones),
and even probe selection in hybridisation experiments in DNA
sequencing15–19. More recently, hitting set formulation, which is equi-
valent to set cover, has been used to uncover 14 anticancer drug
combinations using data from 60 tumour derived cell lines20.

Several novel and promising methods aimed to control networks,
such as node8 and edge dynamics10, were recently proposed. Our
theoretical analysis and simulations suggest that the edge dynamics
based on the MDS approach provides an alternative viewpoint to
investigate the controllability of complex networks, a goal that is still
far from real-world applications. Our study agrees with that
developed in the field of edge dynamics10 in that the shift in perspec-
tive from nodes to edges may offer new ways to tackle complex
system problems; hence, this approach is worth exploring further.
Note that the shift in perspective from nodes to edges has been
explored in other areas of network science, with community detec-
tion being one of the most recent examples in which the shift is
showing promising results21.

Our model assumes that more powerful control is possible
(because each driver node can control its outgoing links indepen-
dently), which has the possible drawback of requiring higher costs
and may not be possible in some kinds of networks (e.g., metabolic
networks, PPI networks).

The developed analytical tools, combined with the evaluation of
real-world networks from socio-technical and biological systems,
offer a promising framework to control unidirectional bipartite net-
works with the minimum number of driver nodes. Our analysis
unveils the role of the maximum degree H in addressing the network
controllability, and how this dependence significantly changes when
the power-law degree exponent (c1) of the set of nodes that exert the
control is above or below the value 2. The theoretical analysis shows
that the maximum degree has a significant influence on the size of the
DS. Additionally, the analysis also derives the order of nodes (upper
bound) necessary to control the network. Among all of the topolo-
gies, unidirectional bipartite networks with scale-free degree distri-
bution with c151.5 lead to a smaller upper bound of the number of
nodes to be controlled. The dynamics model corresponding to the
MDS approach for unidirectional bipartite networks is shown in SI
Section IV-A.

To illustrate the MDS approach, consider as an example the
human drug-target protein network. Figure 1 shows a small sub-
network with five target proteins (disease-gene products) related to
cardiovascular disorders. Although up to eleven drugs can interact
with these targets, only three drugs, the so-called cover set or dom-
inating set for the bipartite network, can potentially control and
regulate all of the protein targets simultaneously.

Results
The dominating set and structural controllability in bipartite
networks. We consider a bipartite graph G(V>, V\; E) in which
V> is a set of top nodes, V\ is a set of bottom nodes, and E is a set
of edges (E(V>|V\). Note that all of the edge directions are from
V> to V\ in this definition. As discussed later in more detail when
analysing real-world networks, this assumption is reasonable in
certain cases, such networks as drug-target protein networks
because the activities of the nodes in then V> (drugs) are usually
not affected by those in the V\ (target proteins). However, this
assumption is not reasonable for bipartite networks such as meta-
bolic networks in which nodes in V> and nodes in V\ appear
alternately in each path. (See the SI Section IV for details and
Fig. S19).

In this work, we use a modified version of the dominating set, in
which a set must be selected from V>; the set also is sufficient to
dominate all of the nodes in V\ (i.e., for all nodes w [ V\, there exists
a node v [ V> such that v,wð Þ [ E). This version corresponds to a set
cover problem by associating a set Sv~ w v,wð Þ [ Ejf g for each
v [ V>. We use MDS to denote the minimum dominating set
(i.e., the dominating set with the minimum number of nodes)
in the above sense. Additionally, our theoretical analysis for bipartite
networks also includes the cut-off as observed in real-world networks
to address network controllability, a feature that was absent in
Ref. 8,10,11.

As proven in Ref. 11 , a unipartite network is structurally control-
lable if a dominating set is selected as a set of control nodes under the
assumption that each control node can control its outgoing edges
separately. Then, we can consider the structural controllability under
the assumption given in Ref. 8, i.e., that each driver node can control
only its own value. In such a case, the number of driver nodes is
determined by the number of nodes in VR not appearing in a max-
imum matching of the adjunct bipartite graph G9(VL, VR; E9)8.
However, in this case, all of the nodes in VR corresponding to V>
remain unmatched because there is no edge connection to any of
these nodes (see Figure 2 and SI Section IV-B for details on the
construction of this graph). Figure 2 shows that in contrast with
the predictions from nodal dynamics8, the MDS approach requires
fewer nodes to control the network. Because jV>j is usually a very
large number, in this work, we focus on the structural controllability
in terms of the MDS. (See the SI Section IV for a Proposition.)
However, it is to be noted that the MDS model assumes that more
powerful control is possible (because each driver node can control its
outgoing links independently), which has the disadvantage that the
cost for control is higher.

Additionally, it is worth mentioning that structural controllability
only guarantees that there exists some set of weights rendering the
system controllable. The studied real and artificial networks may not
correspond to one of these weights. This is particularly true for
homogenous networks with many common edge weights. However,
our results hold even if the same weights are assigned to all edges. In
particular, the control aspect of the problem follows directly from the
fact that an edge applying a unique signal to a single integrator node
makes the node controllable. Consequently, structural controllability
is not even needed. This is one of the merits of our model because it
suggests that our model can be applied to a certain kind of nonlinear
and/or discrete models. However, as mentioned in SI Section IV-A,
our model still has a link with a linear control model.

Theoretical analysis of the MDS size in bipartite networks. We
assume that the degree distributions of V> and V\ follow P> kð Þ!
k{c1 and P\ kð Þ!k{c2 , respectively. We let n1 5 jV>j and n2 5 jV\j.
We also assume that all of the nodes in a dominating set DS must be
selected from V>, and that it is necessary to dominate all of the nodes
in V\ (it is not necessary to dominate the nodes in V>), which means
that DS is a set cover for V\. We divide our analysis into two parts
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based on the value of the exponent c1. First, for the case of c1 . 2, we
assume P> kð Þ follows a1k{c1 with a cut-off at k 5 n1. Let S be the set
of nodes with a degree greater than or equal to K. Note that S is
chosen so that the total degree (i.e., the number of edges incident
to S) is maximised among the sets with the same cardinality. We first
estimate the size of C(S), which will allow us to find an upper bound
for the minimum degree K (see the SI for the exact derivation). Then,
the size of S is estimated as

Sj jw c1{1
c1{2

� �� �{
c1{1
c1{2

: n2

n1

� �c1{1
c1{2

:n1: ð1Þ

This expression gives us a lower bound of the size of S. From this
inequality and the fact that V> is a trivial dominating set, we can see
that the size of the minimum dominating set is H(n1) (for a fixed c1 if
n2 is the same order as n1).

Next, we consider the case of 1 , c1 , 2. Here we focus on the
degree distribution for V>, and thus, we let n 5 n1, and m 5 n2. We

assume that the maximum degree (i.e., cut-off) is H. After some
calculations (see the SI for the analytic derivation), the upper bound
of the size of the dominating set is estimated as

O
n2{c1 :mc1{1

H 2{c1ð Þ c1{1ð Þ

� �
: ð2Þ

If H 5 n, m 5 cn and c is a constant, the upper bound takes the
minimum order (O(n0.75)) when c1 5 1.5. This result gives insights
into which bipartite scale-free network is easier to control with the
minimum number of driver nodes. Moreover, this result also iden-
tifies the role of the maximum degree for network controllability, a
feature that has not been explored in the previous approaches8,10,11.

Computer simulation analysis of MDS in artificial bipartite
networks. To verify the analytical calculations presented above, we
examine the size of the MDS using artificially generated bipar-
tite networks. For given values of n 5 n1, c1, c2 and H, we gene-
rate random bipartite networks with different sizes, ranging up to
100,000 nodes. The algorithm developed to build bipartite networks
with scale-free distributions for both the top and bottom nodes, with
specific values of the degree exponents c1 and, c2 and a specific cut-off
value, is described in the Methods section. As mentioned above when
defining the structural controllability of bipartite networks, the MDS
computation of a bipartite network is equivalent to the computation
of a minimum set cover. Although the minimum set cover problem is
known for NP-hard and, thus, greedy-type approximation algorithms
have been proposed22–24, we could obtain optimal solutions for all of
the networks examined in this work using integer linear program-
ming (see Methods section). We have verified that the optimal
solution is efficiently obtained in scale-free bipartite networks of up
to approximately 110,000 nodes.

First, we consider the case in which c1 , 2, and we evaluate the
relationship between H and the cover size under the conditions that
c1 5 c2 and V>j j~ V\j j<20,000. The simulation results shown in
Figure. 3 suggest that the maximum degree of the nodes in the

Figure 2 | Comparison of the model in Ref. 8 (i) with the MDS model (ii)
for bipartite networks. In this example, {b} is the dominating set (i.e., set

cover) of G(V>, V\; E), whereas {aR, bR, cR} cannot appear in the maximum

matching of G9(VL, VR; E9) and thus {a, b, c} must be the set of driver nodes

in the sense of Ref. 8. We see that the MDS approach requires fewer driver

nodes (only b) than Ref. 8 to structurally control the network.

Figure 1 | A small component of the drug-target protein network consisting of 11 drugs (hexagons) interacting with five disease-gene products
corresponding to cardivascular disorder class. Although 11 drugs interact with these proteins, only three drugs (red hexagons) are required to control the

system simultaneously. Drugs belonging to the DS are indicated in red. These three drugs are called the cover set (or dominating set DS) of the network.

Interactions between the drugs from the DS and the disease-gene products are represented as wavy red arrows.
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network has a significant impact on the cover size. By increasing the
maximum degree, the network can be easily controlled. It is worth
mentioning that the effect of the cut-off on networks had not been
highlighted previously. For different values of c1, the results are in
agreement with the behaviour expected by the theoretical analysis.

In particular, the exponent takes the minimum value at c1 5 1.5,
which is in good agreement with our theoretical findings (see SI
Section IV-C for details). Note that some deviations for large values
of H can be observed for higher values of the degree exponent, such as
c1 5 1.8. Because we are assuming m 5 n here, B~H2{c1 holds (see
SI), where we are assume in the theoretical analysis (see SI for the
details) that a dominating set consists of the nodes of a degree
between B and H. If c1 is close to 2, the value of B becomes a small
number (close to 1). Because B is assumed to be the node degree (i.e.,
an integer), such a small B might lead to an inaccurate estimate.
Additionally, because we approximate B2{c1{1 by B2{c1 (see SI
for details), c1 < 2 also would lead to an inaccurate estimate. A
comparison of the analytically predicted H exponent and that calcu-
lated with computer simulations is shown in Figure S16. Because
Figure 3 only considers the case in which c1 , 2, we also have
performed computations of the case in which c1 . 2, as shown in
Figure S17. In this case, dependence does not exist with respect to the
maximum degree H. This different behaviour contrasts with the
scaling-law observed in Figure 3 for c1 , 2. Our analytical results,
as shown in SI, indicate that the dependence with H is H2{c1 for
c1 . 2, which vanishes for large H, in agreement with results of the
computer simulations.

In Figure S18, the relationship between the cover size and n2 under
the condition that H 5 100 also shows the log-log scaling for a variety
of degree exponents from c1 5 1.1 to c1 5 1.9 that is in fair agreement
with the theoretical predictions, except for the case in which c151.1,
where the observed exponent 0.45 is significantly larger than the
theoretically estimated exponent (0.1). However, we observe that,
for a very large m, the exponent is smaller than 0.45 and is closer
to 0.10. If c1 is close to 1 and m is small, B~

n
m
:H2{c1 might be larger

than H. Because we assumed in our theoretical analysis that B is no
larger than H, such a large value of B might lead to a non-accurate
estimate.

Next, we evaluate our theoretical results by considering the case in
which c1 . 2 in larger networks. We constructed two sets of bipartite
networks with c1 5 3 and c251.5, 2.5 and 3. In the first set,
V>j j<50,000 nodes and in the second set, V>j j<100,000 nodes.

The results are shown in Table 1. When Eq. 1 is computed, it can
be seen that in all cases, the lower bound gives a smaller value than
the size of the cover computed using the optimal algorithm. Note that
when only the giant connected component is considered (see
Table 1) the cover set is smaller because isolated components are
absent in the network.

We have compared the cover set computed in scale-free networks
with that from random networks that obey the Poisson distribution.
We generated sale-free networks with a variety of degree exponents
as shown in Table S1. Because the optimal solution is hard to find in
random networks with very large number of nodes, we performed
computer simulations using 100 nodes for n1 and n2 respectively. The
random networks were constructed with the same average degree as
that of the corresponding scale-free networks. The results show that
in the vicinity of c151.5, the cover set is significantly smaller than
that from the random networks. A detailed mathematical analysis of
the random bipartite networks following the Poisson distribution for
both the top and the bottom set of nodes is presented in SI Section
IV-D. We also computed the analytically derived equations that give
an upper bound (Eq. 27 in SI) and lower bound (Eqs. 30 and 33 in SI)
for the cover set in random networks. Hence, we verified that the
upper bounds predicted for the cover set in random networks are
larger than those of the observed cover size, and that the lower
bounds predicted are lower in all cases, except the first case which
is 26 (observed) vs. 26.5 (predicted), in simulated networks (See
Table S1). Although the difference of the MDS size between bipartite
scalefree and random networks is not large (due to small n1 and n2), it
would be much larger for large n1 and n2.

Controllability analysis of the real-world bipartite networks. We
have analysed ten real-world bipartite networks from social and
biological systems as shown in Table 2. Here, we briefly describe
the results for the Facebook-like forum25, the firms-world city
network26, the cond-mat scientific collaboration27 and the human
drug-target protein network28. For the data sources, the details of
the statistics, and the analysis of all of the networks, see the SI
Sections II and III. As stated above, a network is structurally
controllable if a dominating set is selected as a set of the control
nodes under the assumption that each driver node can control its
outgoing edges separately. In the Facebook network, V> is the users
set, and each user can decide the topic on which a new message is
posted. The cover size for this network represents 10% of all of the
users (see Table 2). This small set of nodes could influence the
opinions circulating in the forums and with the possibility to
induce rapid changes.

Next, we focus on the firms-world cities network. These data
reflect the services of 100 global firms distributed across 315 cities
worldwide. The computation of the cover set in this bipartite net-
work, in which V> represents the firms, shows that a very small set of
the firms (8%) offers services in all cities. This result suggests that
these firms play a prominent role in controlling the socio-economic
developments in the world. Again, each firm is able to establish its
offered services separately and satisfies the structural controllability
assumption for the DS.

The cond-mat scientific collaboration consists of a network of
scientists and research papers. Here, we have again satisfied the
structural controllability condition because each scientist can choose
to investigate each research subject independently. Therefore, the
scientists are the V> set in this network. The results show that 25%
of the scientists may induce research opinions and new scientific
routes by leading and participating in all of the research performed
within the field. However, this cover set size is the largest among the
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Figure 3 | The dependence between the cover size and H under the
condition that c1 5 c2 and V>j j~ V\j j<20,000 nodes. The fitted

functions for each degree exponent c are from top to bottom as follows:

H(–0.097 6 0.022) (r 5 0.9266), H(20.137 6 0.021) (r 5 0.9652), H(20.181 6 0.017)

(r 5 0.9870), H(20.206 6 0.003) (r 5 0.9996), H(20.195 6 0.004) (r 5 0.9991) and

H(20.180 6 0.006) (r 5 0.9984). The results are averaged over ten realizations.

Statistical errors of the exponents are shown together with the correlation

coefficients r in parentheses. In most cases error bars are smaller than the

symbols in the figure.
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three analysed networks. Note that, in this case, the V\ set of nodes
does not follow a sufficiently clear power-law and instead exhibits
exponential decay (see Figs. S1 for the degree distributions).

The network features of the relationships between all of the drugs
and drug targets are important to organise the current knowledge of
the relationships between drug targets and disease-gene products, as
well as even human therapies28–31. This kind of network represen-
tation could aid drug discovery because newly developed drugs could
target the disease-gene product that molecularly links the roots
of the distinct disorders32. Here, we raise questions on the controll-
ability of the human drug-target protein (DT) network, the system’s
minimum number of driver drugs and their topological role in the
network.

In this bipartite network of drug-protein interactions, a drug and a
protein are connected to each other if the protein is a known target of
the drug. Here, the V> set of nodes is represented by the drugs that
can alter the activity of the targeted protein. The numbers of
approved drugs with known human protein targets and drug targets
are 888 and 394, respectively. A small fraction of validated disease
genes encodes drug-target proteins. The drug targets were assigned a
human disorder class if the protein was a disease-gene product. Each
gene was assigned to a disorder class as shown in SI, Table S3 in Ref.
32. This information is available in the OMIM database, which
reports on the topics of human disorders and disease-related genes.
The target proteins encoded by disease genes are colored based on the
disorder class to which they belong.

A complete map of the giant component of the bipartite network
with a mapping of the identified dominating set of drugs is shown in
Figure 4. Figure S5 shows the isolated components of the network. To
satisfy the controllability assumption for DS, we have assumed that
each drug is designed to interact with specific targets and that these
interactions are independently to some extent. The computation of
the cover size shows that only 21% of the approved drugs could
control the entire known druggable proteome.

Based on the linkage of the genes to disparate disease pathophe-
notypes32 and the reduced size of the driver drugs identified, we
suggest that a relatively small number of drugs could address the
common genetic origin of these diseases. Moreover, if we consider
only the giant connected component, the fraction of the drugs
required to control the network is significantly reduced to 8%.
Although the average degree of the drugs is 1.81, nonetheless,

the drug cover set shows , k . 5 2.2, indicating that the DS consists,
on average, of high-degree drugs (see also Fig. S6). Furthermore,
this value increases to 3.59 when only the giant component is
considered.

A classification of disorders based on the fraction of the disease-
gene products targeted by the cover set is shown in Figure S7. A large
fraction of disease-gene products belonging to specific disorder
classes are covered by the 12 most highly connected drugs in the
DS. These disorder classes include, among others, dermatological,
neurological and psychiatric disorders. In contrast, the proteins that
belong to a different group of complex disorders such as cancer,
immunology and renal disorders tend to be targeted by low-degree
drugs in the DS.

To shed light on the topological role of the cover set in the drug-
target network, we projected the giant component of the network
onto the drug space and computed several network metrics (see Figs.
S8–S14). The results reveal that the cover set tends to select the nodes
with a high betweenness centrality. This finding suggests that the
topological roles played by the cover set and the so-called influential
spreaders are somewhat similar33. The computation of a k-shell
decomposition34 (Fig. S15) shows that an important fraction of the
most highly connected drugs in the DS occupy the core (or higher
shells) of the network. In contrast, fewer drugs are allocated in the
periphery of the network.

Even when the cover set is calculated optimally, as in our case,
more than one optimal covering can result with the same number
of driver nodes. This issue is related to the nature of the optimi-
sation problem in networks rather than to the selected algorithm.
The maximum matching used in8 does not identify a unique set
of driver nodes either. However, it was applied to real networks
to understand that the maximum matching identifies the driver
nodes whose mean degree is smaller than the mean degree of all
of the nodes in real and model networks, showing that in real systems
the hubs are avoided by the driver nodes in their model. Here, we
also have characterised the role of the driver nodes identified
by the optimal dominating set algorithm and we have evaluated
their topological properties in a similar manner. Even though a
different optimal covering is selected, the topological properties
of the nodes in each set do not change significantly because all of
the nodes in each optimal set must satisfy the same connectivity
conditions.

Table 1 | Computational results of cover set size for computer generated bipartite networks with H 5 200. The results for the giant
connected component (GCC) of each complete network (CN) are also shown. The results were averaged over ten realizations. The
standard error of the mean (s.e.m.) is shown in parentheses. The analytical predictions are displayed for c1 . 2 (see Eq. 1). Note that the
observed cover size is always larger than the lower bound prediction

Type c1 V>j j Cover size (s.e.m.) Lower bound c2 V\j j

CN 3.0 49,997 4,265(12) 190 1.5 6,171
GCC 46,939 2,128(7) 85 4,006
CN 3.0 49,997 27,774(22) 7,305 2.5 38,222
GCC 20,102 4,554(11) 1,716 11,747
CN 3.0 49,997 36,437(18) 12,499 3.0 49,997
GCC 7,319 2,245(6) 1,820 7,300
CN 3.0 100,013 8,454(33) 383 1.5 12,385
GCC 93,886 4,230(14) 175 8,119
CN 3.0 100,013 54,735(82) 14,338 2.5 75,737
GCC 41,856 9,380(33) 3,488 24,167
CN 3.0 100,013 72,674(93) 25,003 3.0 100,013
GCC 15,597 4,651(18) 3,777 15,351
CN 1.5 49,940 10,674(76) — 1.5 49,940
GCC 49,153 9,949(28) — 49,147
CN 1.5 9,903 7,138(20) — 2.5 59,841
GCC 7,570 4,825(18) — 56,940
CN 1.5 9,903 7,134(8) — 3.0 75,069
GCC 6,221 4,644(10) — 69,626
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Discussion
We have presented a methodology to address the previously unex-
plored structural controllability in bipartite networks. The developed
theoretical tools, assisted by computer simulations and the analysis
of real-world networks from social and biological systems, allow for a
deeper understanding of bipartite networks and shows how to struc-
turally control the complex systems represented by this ubiquitous
type of networks.

Our results demonstrate that to control the network, the MDS
tends to select the high degree nodes in the bipartite network. The
theoretical results together with the analysis of several configurations
in model networks shows that a V> with c1 5 1.5 and a maximum
degree of the network H taking a high value, minimise the order of
the required number of driver nodes.

These results are very relevant in two respects. First, the finding
that a minimum dominating set significantly depends on the max-
imum degree H unveils a new tool for the control of networks.
Second, for c1 , 2, the value of c1 5 1.5 was computed using an
upper bound; therefore, the exact value could differ slightly and
might be in the vicinity of 1.5, which shows the non-trivial nature
of this result. It also is interesting to see how the behaviour of the
MDS significantly changes as c1 increases above 2 (see Fig. 3 and
Fig. S17).

Our theoretical results suggest that the use of edge dynamics,
based on the MDS approach, is able to control large scale-free bipart-
ite networks with exponents in the vicinity of c1 5 1.5 using a rela-
tively small set of driver nodes. Whereas previously the genes that are
linked to two distant diseases were thought to be important to under-
stand the deep roots of complex disorders32, we found that the min-
imum set of the approved drugs acting on the target proteins share
unique properties, which could be used to develop future drugs. For
example, the drugs that belong to the DS occupy core locations in the
network so that these drugs bridge multiple disease-gene products,
with many of the shortest paths crossing through these drugs. This
shows that these drugs have specific chemical features for treating
distant disorders.

Our analysis of drug-target interactions illustrates how small the
number of drugs can be to address the entire known human drug-
gable proteome. Multi-target and optimal combinations of drugs in
cancer and HIV have been suggested as new approaches to deal with
such complex disease modularity and aid in drug design20,35,36. The
drawbacks could exist in the possible antagonistic drug combinations
in which the strength of two drugs in the same treatment is weaker
than that of either drug alone as well as in the unwanted side effects37.

Although we have assumed that no interactions exist between the
drugs used in the drug-target network, it might be possible to adapt
the MDS algorithm to include constraints such that certain drugs
cannot appear in the MDS simultaneously, which is left as future
work. Although edge dynamics10, as well as our MDS-based edge
dynamics, which requires the control of individual edges, are still
far from real-world applications, the set cover algorithmic frame-
work has already found many applications15–19, some of which are
related to clinical analysis. A recent work has already explored
optimal drug combination using a minimal hitting set algorithm,
which is equivalent to cover set, that successfully targets the whole
population of 60 tumour derived cell lines, uncovering 14 anticancer
drug combinations20.

With respect to cellular networks, although both transcriptional
and metabolic networks can be represented by bipartite networks,
only the former allows the direct application of our methodology
because the bidirectional nature of the latter prevents the direct usage
of our approach to metabolic pathways (see SI Section V). Although
the problem of controllability in unidirectional and bidirectional
bipartite networks present several technical differences and chal-
lenges, it might be possible to extend our MDS approach to tackle
this type of network and contribute to future work in this key issue.Ta
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Methods
Algorithm for generating artificial bipartite network. For given n 5 n1, c 5 c1, c2

and H, we generate a random bipartite network in the following way.

(1) For each node v [ V>, generate half edges ei 5 (v, ui) (ui is a virtual node)

according to the degree distribution a1k{c1 and the degree cutoff H where a1 is

selected so that the number of nodes in V> is almost n1.
(2) For each node w [ V\, generate half edges e’j~ u’j,w

� �
(u’j is a virtual node)

according to the degree distribution a2k{c2 and the degree cutoff H where a2 is

selected so that the number of e’js is equal to the number of ejs.
(3) Randomly connect eis and e’js in a one-to-one manner.

It is to be noted that n2 (the number of nodes of V\) is determined automatically in
step 2 to satisfy the condition on edge numbers. Although multiple edges between the
same node pair may appear, the number of such edges is small and thus these edges
should have almost no influence on the results of computer simulation.

Analytical solutions for the size of DS in scale-free bipartite networks. We consider a
bipartite graph G(V> , V\ ; E), where V> is a set of top nodes, V\ is a set of bottom
nodes, and E is a set of edges (E(V>|V\). The directions of the edges are considered
from V> to V\ . Therefore, the set of driver nodes will be a subset of V> . We then
consider the case of having scale-free degree distributions for both the top and bottom
nodes. That is, the degree distribution of V> and V\ follow P> kð Þ!k{c1 and
P\ kð Þ!k{c2 , respectively. A similar analysis could be conducted for the asymmetric
case, where one of the distribution shows an exponentially decay. Furthermore, a cut-
off is assumed for the degree distributions as observed in real-world networks. Then,
the analytic derivations for the expected fraction of the minimum driver nodes that
control bipartite networks are presented in the SI Section IV.

Computation of the MDS in bipartite networks. We have introduced the structural
controllability of bipartite networks and showed that the computation of a MDS of a
bipartite network is equivalent to the computation of a minimum set cover. Although
it is an NP-hard problem, we have verified that the optimal solution is obtained in
networks with power-law distributions of up to approximately 110,000 nodes within a
few seconds. The computation was formalized as the following Integer Linear
Programming (ILP) problem

minimize
X
v[V>

xv

subject to
X
v,uf g[E

xv§1 for all u [ V\

xv [ 0,1 for all v [ V>

ð3Þ

where the optimal solution was calculated using ’glpsol’ solver (http://www.gnu.org/
software/glpk).

By using artificially generated bipartite networks and the optimal cover algorithm,
we examined the following properties: (1) the relationship between H and the cover
size under the conditions that c1 5 c2 and V>j j~ V\j j<20,000 and (2) the rela-
tionship between n2 and the cover size under the condition that H 5 100, where n2 is
controlled by varying c2.
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