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Summary
Most current Bayesian SEIR models either use exponentially distributed latent and infectious
periods, allow for a single distribution on the latent and infectious period, or make strong
assumptions regarding the quantity of information available regarding time distributions,
particulary the time spent in the exposed compartment. Many infectious diseases require a more
realistic assumption on the latent and infectious periods. In this paper, we provide an alternative
model allowing general distributions to be utilized for both the exposed and infectious
compartments, while avoiding the need for full latent time data. The alternative formulation is a
path-specific SEIR (PS SEIR) model that follows individual paths through the exposed and
infectious compartments, thereby removing the need for an exponential assumption on the latent
and infectious time distributions. We show how the PS SEIR model is a stochastic analog to a
general class of deterministic SEIR models. We then demonstrate the improvement of this PS
SEIR model over more common population averaged models via simulation results and perform a
new analysis of the Iowa mumps epidemic from 2006.
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1. Introduction
SIR (Susceptible, Infectious, Removed (or Recovered)) and SEIR (Susceptible, Exposed,
Infectious, Removed (or Recovered)) models date back to Kermack and McKendrick
(1927). However, only recently have stochastic variants of SIR and SEIR models become a
mainstay in the statistical literature. One of the salient features of the original models was
that the latent and infectious times of the infectious disease under consideration are
exponentially distributed, known as the exponential assumption (Anderson and May, 1991).
The exponential assumption was one of many assumptions from the early deterministic
models that carried into the stochastic methodology.

The exponential assumption tends to be a convenient assumption in modeling, largely due to
the simple form of the models and simpler imputation in the stochastic framework.
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Unfortunately, this assumption is unrealistic for many infectious diseases. The memoryless
property of the exponential distribution requires a constant probability of moving to the
infectious compartment on day j + 1 after j days of a latent infection, regardless of j.

The idea of relaxing the exponential assumption is not new, with work done as early as 1948
(Kendall, 1948). Recently, a great body of work has been published to relax the exponential
assumption. However, one tends to see models which make very strong assumptions in the
exposure times (e.g. where it is assumed the initial exposure times are known (Streftaris and
Gibson, 2004), or where the latent period is assumed to be fixed (O’Neill and Becker,
2001)). A notable exception is Boys and Giles (2007), who provide a model which can use
gamma distributions for the latent and infectious classes and does not require initial
exposure times. While their method only handles gamma distributions, this approach may
work well for many infectious diseases. Lloyd (2001) and Wearing et al. (2005) suggest that
a gamma distribution may fit many infectious diseases well. Additionally, Jewell et al.
(2009) propose an SIR model allowing general infectious periods, but do not extend this
model to the SEIR structure and propose a very different method than we propose here.

Kenah and Miller (2011) showed that the infectious time distribution has a marked effect on
the probability of a major epidemic, and Wearing et al. (2005) demonstrated bias in the basic
reproductive number of the microorganism when the time to infection is incorrectly assumed
to be exponentially distributed. In fact, the paper by Kenah and Miller provides a method for
utilizing general latent and infectious time distributions. In their approach the latent time
distribution must be known a priori, and individual infectious contacts are sampled. This has
the disadvantage of requiring the latent and infectious distribution to be known before the
analysis has begun, but has the advantage of easily being utilized in a contact graph model.
Our work does not require the latent and infectious distribution to be known, however we do
require some prior information to be used in our model. In the proposed model mixing takes
place at the population level, and so population level interventions such as government
awareness campaigns are easily assessed and naturally modeled, an issue that we will
consider strongly throughout this paper. Our model does not easily adapt to the contact
graph scheme, however.

The work by Kenah and Miller has strong implications for the accuracy of predictions of
future epidemics in the stochastic framework. If parameters involved in the mixing process
are biased, it may result in inaccurate predictions of the final sizes of future epidemics, or in
the analysis of the efficacy of public health interventions, if such interventions are utilized in
the analysis. To our knowledge, no one has investigated the variance of the parameters when
the exponential distributions on the latent and infectious times are misspecified. Because the
parameter variances in SEIR models are already large (see, for example Elderd et al.
(2006)), we feel this is worth investigating.

At the individual level, work has been done to relax the exponential assumption (e.g., see
O’Neill and Becker (2001); Yang et al. (2006)). These models work quite well when
individual level information is available for small populations. However, they are limited in
the regard that many interventions will be applied at the population level, and the indices of
the individuals receiving the interventions may need to be imputed. Additionally, many
epidemics occur in large populations, and computation may be slow with individual level
models. A hybrid model would allow for the natural approach of population based
interventions and large sample sizes, while still allowing the flexibility of the individual
level approach in the generation times.

In this paper, we suggest a hybrid model called the path-specific Bayesian SEIR model,
abbreviated henceforth as PS SEIR model, that allows for the use of a general distribution
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for the time spent in the latent and infectious compartments. This will allow greater
flexibility in modeling infectious disease with non-exponential latent and/or infectious
periods. We then derive the model as a stochastic analog to a broad class of deterministic
models. Next, we propose a method for sampling from the posterior distributions. We give
simulation results to demonstrate the improvement over analyzing Weibull and gamma
distributed infectious diseases according to their true distribution, as opposed to naively
analyzing them as exponentially distributed. After the simulation results, we present an
analysis of the mumps epidemic that occurred in Iowa in 2006. Finally, we discuss
limitations and advantages of the formulation.

2. Methods
In this section, we first propose the PS SEIR model. We next state the assumptions made in
deriving it as the analog to a class of deterministic SEIR models.

2.1 Proposed Model
The main goal of this section is to demonstrate how the exponential assumption can be
relaxed, and how discretized distributions can be implemented for the latent and infectious
periods. We utilize the more realistic assumption that there is a maximum time that an
individual may sustain a latent infection before becoming actively infectious. We assume
that all individuals in the exposed category will eventually move to the infectious category,
as is done in Lekone and Finkenstädt (2006) and Anderson and May (1991), and do not
consider cases of exposure without latent infection at this juncture.

The population averaged SEIR model of interest is found in Lekone and Finkenstädt (2006),
which is itself the generalization from the SIR model found in Mode and Sleeman (2000):

Define i=1,…,T as a subscript for discrete time and Si, Ei, Ii, and Ri represent the counts of
individuals in the Susceptible, Exposed, Infectious, and Removed compartments at time i,
respectively. The notation Si → Ei+1 denotes a change of category. Let f(ψ̲, i) represent the
mixing and possible intervention functions controlling the number of new exposures at time
i + 1, and is constrained to be nonnegative, with ψ̲ representing the vector of parameters
controlling mixing and interventions. Let h represent the number of days between time
points in the data collection partition. The total number of individuals in the population is
denoted by N.

(1)

For models utilizing the exponential assumption, the exposure data are typically arranged as
a T-dimensional vector of counts, E = (E1, …, ET)′. Note that, in these models, the only
necessary information for the evaluation of the likelihood is the total count in the exposed
category at each time point, Ei. We relax this assumption by not only counting the number
of exposed individuals at each time point, but also by utilizing the length of time each
individual has been in the exposed compartment. Consider collecting the exposure counts in
a T×M1 matrix E, where M1 is the maximum amount of time the infectious agent can
remain latent. Cell (i,j) then contains a count of the number of individuals who are at time
point j of the latent infection process on time point i of the epidemic. In other words, i
represents objective time since the start of the epidemic, and j denotes the subjective,
individual time in the diseases process. In practice, i and j will typically be measured in
days, although this is certainly not required. The T×M2 infectious matrix I is defined
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analogously to E, with the rows representing the number of time points elapsed since the
start of the epidemic, and the columns representing the number of time points an individual
has remained in the infectious compartment.

When an individual is newly exposed and contracts a latent infection at time i, the individual
moves from the susceptible class into row i, column 1, of the exposed matrix E. For every
time unit in which the individual does not become infectious, the individual moves from row
i, column j in a diagonal path, moving one column to the right, j+1, and one row down, i+1.
When the individual becomes infectious at time i′, the individual moves to row i′, column
1, of I, and repeats the process until removed. This process allows the length of time each
individual is in the exposed category to be imputed, and allows for many latent time and
infectious time distributions to be discretized and utilized. Specifying a maximum length of
time which a individual can remain in the Exposed or Infectious classes allows the number
of columns of the matrix to be defined a priori, and removes the need to adaptively choose
the size of the matrix as the analysis is running. While an adaptive scheme may be possible,
it is not necessary to do so, since the maximum amount of time an infectious agent may
remain in a latent state is often known. Additionally, an adaptive scheme may not be
computationally efficient.

Because the exposure data and infectious data are being collected in matrices, the
probability of compartmental change can vary with the amount of time an individual has
stayed in the compartment. This allows the exponential assumption to be relaxed, and any
distribution can be discretized and used to approximate the true, underlying latent and
infectious time distributions. As noted in the introduction, this allows more realistic
distributions to be used for infectious diseases.

With this structure in place, the investigator is able to use strong prior knowledge of the
length of time that individuals spend in the exposed and infectious categories. Typically, this
information is available and multiple distributions may be fit and compared. It is unlikely
that there will be strong prior information for the mixing and intervention parameters, so
relatively weak priors can be used for these parameters.

The proposed PS SEIR model utilizes the following scheme: Let i denote discrete calendar
time since the beginning of the epidemic, and j denote discrete time that an individual has
spent in the latent or infectious state. Then,

(2)

These definitions follow from Equation 1, where Xij, Yij, Wi, and Eij are all unobserved,
while Σj Xij (the total new infections at time i), and Σj Yij (the total new recoveries at time i)
are known. Z1 is a random variable defined by the exposure distribution and Z2 is defined by
the infectious distribution. As before, f(ψ̲, i) represents the mixing and possible intervention
functions controlling the number of new exposures at time i + 1. Here ψ̲ ≥ 0 represents the
vector of parameters controlling mixing and interventions. Ii+ represents the total number of
infectious individuals at time i, h represents the number of days between data collection
times, and N represents the total number of individuals in the population.
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The compartments are the Susceptible, Exposed, Infectious, and Removed classes,
respectively. Define a bin as the amount of time between data collection times. In our
discretization scheme, a bin will be h time units (often measured in days). Bins are used
within the exposed and infectious compartments as the basic time unit for the
discretizations. Most data sets will use h = 1, but all that is required is 0 < h < ∞. This style
of discretization allows for the analysis of large data sets, while still providing the flexibility
to use a time-dependent conditional probability of changing compartments. By defining bins
within the Exposed and Infectious compartments, it is possible to vary the conditional
probability of a compartment change depending on the length of time an individual has
spent in the compartment, which, in turn, allows for distributions other than the exponential
distribution to be used for the latent and infectious times.

2.2 Derivation of the PS SEIR Model
The PS SEIR model can be derived as a stochastic analog to the following nonlinear
deterministic system of equations:

Several assumptions are made in this process, and we outline the core assumptions here.

1. Assume a homogeneous population with regards to susceptibility. This is
commonly assumed in population averaged models.

2. Assume independent Poisson contact distributions for infectious individuals, all of
which share a single parameter. This works well for diseases such as mumps or
measles, but works poorly in models for sexually transmitted diseases, such as
gonorrhea or chlamydia.

3. Define the Exposed compartment as only containing those who will eventually
become infectious, and do not consider the possibility of a return to the Susceptible
class.

4. Assume constant infectivity throughout the course of the infectious process.

5. Assume independent probabilities of moving from the Exposed Compartment to
the Infectious Compartment (as well as from the Infectious Compartment to the
Removed Compartment).

6. Individuals are treated as having identical latent and infectious time distributions.
There is no individual heterogeneity in these processes.
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The full derivation can be found in Web Appendix A.

3. Computing
3.1 MCMC Techniques

Sampling from the full posterior distributions is not feasible for this model. Therefore, we
rely on MCMC sampling techniques. Metropolis Hastings sampling is recommended for
sampling the parameters in the model. In all of our simulation work, using a normal proposal
distribution was adequate. However, it is necessary to find an efficient way to sample from
the Exposure matrix. Simply generating the entire matrix at every iteration is not practical,
as the MH algorithm will rarely accept a proposal. Our proposed sampling scheme can be
found in the Web Appendix B.

3.2 Simulation Results
Many simulations were run, and we report results from a typical set here. Consider the case
where the full removal times are available, and the parametric forms of the intervention are
known. This will demonstrate the improvement the PS SEIR model offers over population-
averaged approaches in an ideal scenario. Additional simulations can be found in the Web
Appendix C.

For each simulated data set, there were 20,000 total individuals, with one member in the
infectious category and all the other individuals susceptible at the start of the epidemic. The
mixing parameter chosen to simulate the data was 0.25, in order to give a large degree of
variability to the epidemic sizes. Let ψ1 be the mixing parameter and ψ2 be the intervention
parameter. The intervention we consider has the form f(ψ̲, i) = ψ1 exp(−ψ21(i≥i0)), where i0
is the time that the intervention began. This represents an exponential decay in the
probability of moving from the susceptible class to the exposed class. For this form, ψ2 was
selected to be 0.1, and i0 to be 100 days.

The parameterization selected for the exponential distributions was . For the

gamma distributions, the parameterization was . The parameter
values were chosen to approximate a disease such as mumps. Mumps has a very well known
latent period of 16–18 days, although this period can last as few as 12 or as many as 25 days
(CDC, 2009a).

The infectious period is less well known, but shedding typically lasts fewer than nine days
after the onset of symptoms, though this is often around five days (Polgreen et al., 2008). A
throat swab can isolate the viruses from 40% of individuals infected with mumps 2–3 days
prior to the onset of parotitis, and individuals are typically infectious prior to displaying
symptoms (CDC, 2009a,b).

For the simulations, the true value for λ in the exponential distribution was chosen to be
18.71 for the exposed mean time, and 8.62 for the infectious mean time. The true α and β
related to the gamma distributions, were chosen to be 30 and 1.603 for the exposure time
distribution, and 100 and 11.6 were chosen for the infectious time distribution.

The infectious time distributions were chosen to account for the typical amount of time
shedding as well as the possibility of an individual being infectious prior to displaying
symptoms. The gamma infectious time distribution gives typical infectious periods of seven
to ten days, which is in accordance with the typical length of shedding after the onset of
symptoms together with the typical infectious period prior to the onset of symptoms. The
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Exponential distribution was chosen to have the same mean infectious time as the gamma
distribution.

We simulated 3,000 possible epidemics, and chose four data sets corresponding to small,
medium, large, and very large epidemics from our final size distribution. These four data
sets had final epidemic sizes of 34, 62, 122, and 222 individuals infected.

Simulation results are presented in Table 1. In both the exponential and gamma analyses, the
priors used for the mixing and intervention parameters were Gamma(.1,.4), and Gamma(.
1,1), respectively. These represent the weak but informative information one might possess
for a common infectious disease such as Mumps. We note that these priors are weaker than
those used in the analysis by Lekone and Finkenstädt (2006). For the exponential analysis of
each data set, λ was assigned a Gamma(187.09,10) prior. For the gamma analyses, α was
assigned a prior of Gamma(300,10) and β was assigned a Gamma(16.03,10) prior. These
values represent the strong prior information that would typically be available for the
distribution of latent times. Additionally, we note that weak prior information allows the
mean of the latent time to be accurately estimated, but leads to over estimation of the
variance for large data sets. We will demonstrate that the most improvement from this
method comes from small data sets. Additionally, strong prior information is typically
readily available for the latent and infectious time distributions of known pathogens, such as
Mumps, and can legitimately be used in the analysis.

P-values greater than 0.05 for the Geweke diagnostic were used to indicate convergence for
all model parameters (Geweke, 1992). Note that the PS SEIR model typically offers some
improvement in the variances of the parameter estimates, with most improvement coming
when the epidemic sizes are small to moderately sized, due to the greater effect each
individual path has on the mixing and intervention parameters in these cases. Beyond just
the decrease in variance that one would expect from fitting the true model, we hypothesize
that the main reason for this phenomenon is that the gamma distribution model supplies
more information about the latent process, which allows for much more accurate parameter
realizations in situations with small epidemic sizes.

When looking at the final epidemic sizes, one notices much improved prediction with the PS
SEIR approach. In these predictions, we have used the true gamma infectious time
distribution when generating new epidemics from the gamma analyses, and an exponential
infectious time distribution when with the same mean (8.62 days) when generating new
epidemics from the infectious time distribution. Small differences in the mixing and
intervention parameters can have a marked effect on epidemic size prediction, particularly
when exponential infectious times are employed. The PS SEIR approach not only narrows
the credible intervals, but protects against this variability in epidemic size prediction by
allowing infectious times which are less variable. These predictions argue very strongly for
utilizing proper models when analyzing epidemic data and predicting new epidemics. It is
important to note that these reports do not distinguish between minor outbreaks and major
epidemics. However, one feature that is clear is that the PS SEIR predicted epidemics much
more closely approximate the true epidemic size.

4. Data Analysis
The motivating data set consisted of the onset times for the 214 cases of mumps confirmed
via swab culture during the 2006 Iowa mumps epidemic, which lasted from January 29,
2006 to June 25, 2006. We note that cases were less likely to be confirmed via swab culture
early in the epidemic, which may lead to longer estimates of the infectious time distribution
and lower estimates of the mixing parameter. In fact, all of the models we fit tended to
underestimate the final size of the epidemic, and the low values of the mixing parameters are
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likely part of the reason. However, it is quite common in epidemic research that not every
infectious individual is diagnosed, and we instead emphasize the improvement of the PS
SEIR structure over similar population averaged approaches.

There are two goals for the following analysis. The first is to obtain a more realistic analysis
of the Iowa mumps epidemic than can be obtained by utilizing the exponential distribution
alone, and to demonstrate the improvement of the PS SEIR formulation over the population
averaged formulation. The second is to decide on a reasonable parametric form for the
public’s awareness of the epidemic, which acts as an intervention in the data. This will
demonstrate the importance of recognizing changes in behavior resulting from public
awareness in modern epidemics, as well as the importance of quantifying these changes.

Polgreen et. al. analyzed the Iowa Mumps epidemic using a Generalized Linear Mixed
Model (GLMM) approach to map the data, and employed a test of proportions to analyze the
effect of spring break. They found there to be a spring break effect in the age composition of
Mumps cases after spring break Polgreen et al. (2010). We again note that their analysis
considered all probable cases, whereas our analysis considered only confirmed cases.
Considering a more granular treatment of time in a SEIR structure may allow us to expand
upon the results yielded by their research and identify more temporal structures in the data
set.

Simply modeling the data set with no intervention accounting for public awareness was not
successful. Epidemics rarely occurred based on the estimated parameter posterior values
obtained from models not accounting for public awareness, and epidemics that did occur
severely underestimated the final epidemic size, with almost no simulated epidemics
reaching half the true epidemic size. Previous literature has used public awareness as an
intervention successfully. Note that Lekone and Finkenstädt (2006) use an exponential
decay intervention to model public awareness due to a government awareness campaign
with promising results.

In modeling public awareness, we will use two parameterizations. The first will be the same
style of exponential decay intervention found in Section 3.2, which will begin on March 30,
the day that the CDC posted a dispatch to the MMWR website (CDC (2006)). The second

will be a logistic intervention, which will have the form , where ϕ1 > 0,

, and day is the number of days since the initial case. This function will be
able to reduce the mixing parameter from its initial value over the course the epidemic. In an
attempt to accommodate the effect of spring break on mixing, we use a three week constant
effect intervention, beginning on March 6, 2006. The parametric form of this intervention
can be found in the Web Appendix C.

One of the aspects that must be accounted for in working with mumps is the presence of the
MMR vaccine. The CDC states that the 2004–2005 MMR vaccination rate for
kindergartners in Iowa was 97% (CDC, 2009b). We therefore use that as our best estimate of
the vaccination rate in the state of Iowa. Farley-Kim et al. (1985) suggest that the efficacy of
the MMR vaccine in preventing mumps is 85%. One simplifying assumption in the model is
that the vaccine is an all or nothing vaccine yielding permanent immunity. According to our
vaccination estimates, this yields 523,000 individuals susceptible to mumps in Iowa.
2,570,000 individuals will start in the Removed category, accounting for their immune
status. This is an important consideration, as the high rate of immunity plays a role in the
magnitude of the mixing and intervention parameters.
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Because the prior information available for the infectious time of mumps is not as strong as
the prior information available for the latent time (see Section 3.2), we will use two lengths
for the infectious period for each distribution. The first set will be short infectious times.
These correspond to Exponential(8.6), Gamma(100,11.6), and Weibull(12,9). The second
set will be long infectious times. These correspond to Exponential(11), Gamma(25,2.27),
and Weibull(6,12).

Models were constructed, and their fit assessed using the posterior predictive p-value
approach as outlined in Gelman et al. (1996). At each iteration of the MCMC chain, a single
epidemic was generated. The model fit statistic used was an indicator that the final epidemic
size was between 107 and 428 (half to twice as large as the epidemic) and the day the
simulated epidemic ended was between 117 and 197 (within 40 days of the length of the
actual epidemic). These values were chosen based on the variability seen in simulated
epidemics.

Table 2 shows the posterior predictive p-values for all the models we ran. The path-specific
approach yields the highest posterior p-values for model fit. The best path-specific model
(Weibully distributed with an exponential form of the intervention and long infectious
times) generated over six times as many accepted epidemics as the best fitting population
averaged model (Exponentially distributed with the logisitic form of the intervention and
long infectious times). The path specific approach also yields some of the lowest p-values,
indicating that it is sensitive to the form of the public-health intervention chosen. Table 3
gives descriptive statistics for the best fitting PS SEIR model, as well as its corresponding
exponential model. We note that the credible intervals are quite a bit narrower for the PS
SEIR approach than for the population averaged approach. Additionally, it is known that
mumps is typically latent 16 to 18 days. The credible interval for the mean latent time in the
Weibull model fits this a priori known information better than the exponential model. The
better fit in terms of latent time as well as the narrower credible intervals may indicate
greater accuracy of model fit for the PS SEIR model as compared to the population averaged
model. The basic reproductive number, R0 has medians in an historically reasonable range
for both models (Anderson and May, 1991). However, the PS SEIR model provides a much
narrower 95% credible interval for this parameter. This is important, as this number is a
basic quantity of interest in these models.

The autocorrelations for the posterior draws are also of interest. Geweke’s criterion was
used to assess burn in, as was done in Section 3. After burn in, we see lower autocorrelation
in PS SEIR mixing parameters found in Table 3 as compared to their corresponding
population averaged parameters. The mixing parameter ϕ1 has a lag 10 autocorrelation of
0.10 for the PS approach, but is 0.65 in the population averaged approach. The spring break
intervention has a lag 10 autocorrelation of 0.12 for the PS approach versus 0.55 for the
population approach. The public health intervention has a lag 10 autocorrelation of 0.07
versus 0.81 for the PS approach versus the population averaged approach. However, the
mean of the latent distribution has an autocorrelation of 0.91 in the PS SEIR model versus
0.66 in the population averaged model. The cross correlations between the chains are similar
for both models.

Figure 1 graphs the epidemic curves that fell in the reasonable range for the best fitting PS
SEIR model as well as those for the corresponding population averaged model. One can see
that the PS SEIR model provides far more predicted epidemics in the reasonable range
(21.84% versus 2.84%). Additionally, the shape of the epidemic is fit more accurately with
the PS SEIR approach. Those epidemics that fall into the reasonable range in the population
approach tend to overestimate the epidemic size early on, whereas the PS SEIR approach
provides a more accurate envelope of the epidemic up until day 50. Around day 50, there is
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a sharp increase in the number of epidemics, a feature neither model captures well.
However, the PS SEIR model captures the shape of the remainder of the epidemic as well,
with many more curves above the epidemic. Recall that it was expected that the final
epidemic size would be underestimated because only the confirmed cases were used. For
this data set, the PS SEIR model captured the true form of the epidemic better than the
population averaged approach.

5. Discussion
The path-specific formulation typically offers improvement over the population averaged
approach to modeling epidemics. In simulation studies, where all the parametric forms of the
mixing and intervention processes were known, the path-specific approach typically
performed as well as the population averaged approach in terms of the median values for
these parameters and almost always gave narrower credible intervals for them. Very small
differences in parameter realizations can be important in SEIR modeling, especially in the
mixing parameter.

We also note that, in the real data analysis performed on the Iowa mumps epidemic, the PS
SEIR model yielded substantially more reasonably sized predicted epidemics than the
population-averaged approach. In fact, the best PS SEIR model yielded over seven times as
many reasonable epidemic size predictions as the best population averaged model, as based
on the statistic defined in Section 4. For this reason, we recommend the path-specific
approach be used when analyzing epidemics related to infectious diseases with latent and
infectious periods that are not exponentially distributed.

Additionally, there were two unrelated initial cases. The population averaged approach does
not handle such a structure well, while the PS SEIR model can handle it quite easily. For the
second initial case, which occurred in Dubuque County, we set the individual as having a
latent infection for fourteen days previous to the start of the epidemic, which yields a total
latent period of seventeen days for that individual. This minimizes the effect on the latent
distribution posterior, and is supported by prior knowledge regarding the length of the latent
period of mumps. The population averaged model will analyze this as a three day latent
period, which may have some effect on the posteriors of the parameters.

There are limitations for our Iowa mumps epidemic analysis. First, the infectiousness of
individuals is constant throughout their infectious periods. This is unrealistic, but required
by the current form of the PS SEIR model. Secondly, homogeneous mixing is violated in
this analysis. Thirdly, vaccinations were handled in a rather naive way, which may affect the
accuracy of the mixing and intervention parameters.

Despite these limitations, we have demonstrated that the path-specific approach can yield
much more accurate SEIR models for epidemics than the population averaged approach, and
avoids many of the weaknesses of the current SEIR and SIR models allowing for general
latent and infectious time distributions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Upper: Accepted epidemic curves for the PS SEIR model with Weibull latent and infectious
times, exponential public health intervention and long infectious distributions. Lower:
Accepted epidemic curves for the same population averaged model. Gray curves are model
predictions while the black curve is the actual epidemic.
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Table 2

Posterior predictive p-values for the models run for the real data analysis. Each posterior predictive p-value is
based on 7,000 realizations.

Distribution Intervention Infectious Period P-value

Exponential Exponential Short 0.0203

Exponential Exponential Long 0.0284

Exponential Logistic Short 0.0245

Exponential Logistic Long 0.0305

Gamma Exponential Short 0.0881

Gamma Exponential Long 0.1061

Gamma Logistic Short 0.0028

Gamma Logistic Long 0.0033

Weibull Exponential Short 0.1668

Weibull Exponential Long 0.2184

Weibull Logistic Short 0.0004

Weibull Logistic Long 0.0335
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Table 3

Descriptive statistics for the posteriors of key parameters or parametric forms for Model 1, which has
exponentially distributed exposure times, an exponential decay intervention, and long infectious times, as well
as for Model 2, which has Weibully distributed exposure times, an exponential decay intervention, and long
infectious times. Based on 7,000 realization each.

Model Parameter Median 95% Central Credible Interval

Model 1 Mixing 0.91 (0.43, 1.72)

Model 2 Mixing 1.23 (0.89, 1.66)

Model 1 Spring Break −0.59 (−2.21, 0.22)

Model 2 Spring Break −0.21 (−0.82, 0.21)

Model 1 Public Awareness 0.08 (0.03, 0.13)

Model 2 Public Awareness 0.04 (0.03, 0.06)

Model 1 Mean Exposure 18.88 (11.60, 25.23)

Model 2 Mean Exposure 17.25 (16.93, 18.07)

Model 1 R0 10.01 (4.73,18.92)

Model 2 R0 13.69 (9.91, 18.48)

Model 1 Predicted Epidemic Size 15 (5, 126)

Model 2 Predicted Epidemic Size 64 (37, 195)
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