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Summary
False-positive test results are among the most common harms of screening tests and may lead to
more invasive and expensive diagnostic testing procedures. Estimating the cumulative risk of a
false-positive screening test result after repeat screening rounds is therefore important for
evaluating potential screening regimens. Existing estimators of the cumulative false-positive risk
are limited by strong assumptions about censoring mechanisms and parametric assumptions about
variation in risk across screening rounds. To address these limitations, we propose a semi-
parametric censoring bias model for cumulative false-positive risk that allows for dependent
censoring without specifying a fixed functional form for variation in risk across screening rounds.
Simulation studies demonstrated that the censoring bias model performs similarly to existing
models under independent censoring and can largely eliminate bias under dependent censoring.
We used the existing and newly proposed models to estimate the cumulative false-positive risk
and variation in risk as a function of baseline age and family history of breast cancer after 10 years
of annual screening mammography using data from the Breast Cancer Surveillance Consortium.
Ignoring potential dependent censoring in this context leads to underestimation of the cumulative
risk of false-positive results. Models that provide accurate estimates under dependent censoring
are critical for providing appropriate information for evaluating screening tests.
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1. Introduction
Screening a healthy population confers benefits and harms. In the case of screening tests
with little inherent risk, such as screening mammography, one of the most common harms is
that of false-positive test results, which lead to additional and possibly more invasive
diagnostic testing. However, differing approaches to estimating the cumulative false-positive
risk produce widely varying estimates. For instance, false-positive mammography results
affect an estimated 14% of women at their first screening examination and 8% at subsequent
examinations (Yankaskas et al., 2005). Estimates of the cumulative risk after 10 rounds of
repeat screening vary from 58% to 77% based on the choice of statistical methodology
(Hubbard et al., 2010). A flexible approach that provides unbiased estimates is needed to
inform evaluation of guidelines calling for repeat screening.
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Guidelines typically recommend repeat screening beginning at a target initiation age and
continuing at some specified frequency until a stopping age. For instance, the U.S.
Preventive Services Task Force (USPSTF) recommends biennial screening mammography
for women age 50–74 years with screening from 40–49 based on personal choice (USPSTF,
2009). Estimating the cumulative false-positive risk for such a regimen requires data from
multiple rounds of screening or assumptions about how screening test performance changes
across rounds. Typically, observational data are available for a heterogeneous group of
patients, some who comply with screening guidelines and others who deviate from them.
Statistical methods are needed that allow us to use these data to make inference on the harms
associated with repeat screening.

Several approaches have been used to estimate the cumulative false-positive risk associated
with repeat screening tests. The cumulative probability of a false-positive test result can be
considered the cumulative incidence function in a discrete survival model. The event time is
the screening round at which the first false-positive test result occurs and the censoring time
is the number of screening rounds observed for a participant. This approach has been used to
estimate the cumulative false-positive risk of screening mammography (Elmore et al., 1998;
Gelfand and Wang, 2000; Christiansen et al., 2000). It is limited by an assumption of
independence of event and censoring times, which may be violated in the case of screening
mammography (Xu et al., 2004; Hubbard et al., 2010). Alternative methods that relax this
assumption have been proposed (Xu et al., 2004; Hubbard et al., 2010), but these rely on
untestable assumptions about false-positive risk following censoring.

The objective of this paper is to develop a flexible, semi-parametric approach to estimating
the cumulative false-positive risk of repeat screening that can be employed broadly across
different screening modalities and observation schemes. We propose a semi-parametric
censoring bias model to account for dependent censoring while relaxing parametric
assumptions required by previous models. Our semi-parametric approach consists of a non-
parametric discrete survival model augmented by a censoring bias model. This work was
motivated by the censoring bias approach of Scharfstein et al. (2001). In Section 2 we
describe existing models and propose our new semi-parametric model. We then describe
estimation methods and discuss methods for incorporating covariate effects to allow for
estimation of personalized risks. In Section 3 we compare the small sample properties of
alternative estimators via a simulation study. Finally, we illustrate the use of these models
using data on screening mammography from the Breast Cancer Surveillance Consortium
(BCSC). We conclude with a summary and discussion of results in Section 4.

2. Methods
2.1 Definitions and Notation

Let Yi be a binary indicator of the outcome of the ith screening exam, which takes the value
1 if the test result is a false-positive and 0 otherwise. Further, let Yi = (Y1, …, Yi) represent
the vector of all screening test outcomes up to time i. Let W represent the screening round at
which the first false-positive test result is received and S represent the total number of
screening rounds a subject is observed to participate in. We assume subjects are observed for
a maximum of M screening rounds. Note that if S < W then W is unknown. However, if W
≤ S we still observe the subject subsequent to the false-positive result and hence both S and
W are known. We assume that Yi is available for a subject up to the end of study follow-up
or the time at which he or she discontinues screening or is lost to follow-up.

Our objective is to estimate the cumulative probability of having received a false-positive
test result after adhering to a screening program for k rounds, P(W ≤ k). Estimation may
focus on the impact of screening at the population-level or may condition on patient or
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screening program characteristics, in which case the estimand takes the form P(W ≤ k|·). We

define , where P(Y0 =
0, Y1 = 1) and P(Y1 = 1|Y0 = 0) are defined to be P(Y1 = 1) and an empty product is taken to
be 1.

Let the probability of a false-positive result at the kth round among subjects attending a total
of j screening rounds and with no prior false-positive results be denoted θjk ≐ P(Yk = 1|Yk−1
= 0, S = j). The cumulative false-positive probability can then be defined as

(1)

2.2 Review of Existing Models
2.2.1 Discrete Time Survival Model—A discrete time survival model can be used to
estimate the cumulative false-positive risk. This model assumes that censoring and event
times are independent, that is, false-positive risk does not depend on the number of observed
screening rounds. If this holds then the cumulative false-positive risk can be written as

(2)

where θi = P(Yi = 1|Yi−1 = 0). A formal test of the independence assumption was proposed
by Xu et al. (2004). Estimation can be carried out using maximum likelihood (ML) or
Bayesian methods (Gelfand and Wang, 2000).

2.2.2 Population Average Model—Recognizing that the independence assumption is
often violated in the case of medical screening tests, Xu et al. (2004) proposed an alternative
approach, herein referred to as the population average model. This model explicitly takes
into account the possibility that false-positive risk may be related to the number of screening
rounds a subject is observed to participate in by estimating the cumulative false-positive risk
via equation (1). From a medical decision making and policy perspective, this approach
estimates the total false-positive burden associated with the screening program if all eligible
individuals were to participate in all recommended rounds of screening rather than the false-
positive risk only among those who were observed to participate in all rounds of screening.
However, additional assumptions are required because Yi is unobserved for i > S. The
specific assumption proposed by Xu et al. (2004) is that P(W = j|S = i) = μi(1 − μi)j−1.

This model assumes constant risk across screening rounds, an assumption that is
fundamentally unverifiable. This is unrealistic in some screening contexts. For instance, risk
is substantially higher at the first screening mammogram compared to subsequent
mammograms (Yankaskas et al., 2005; Hubbard et al., 2010). This is likely due to the
availability of comparison images at subsequent mammograms, which allow the radiologist
to focus on changes in the image (Hubbard et al., 2011). In general, a more flexible
approach is required.
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2.2.3 Adjusted Population Average Model—Hubbard et al. (2010) proposed an
extension to equation (1) using an alternate set of assumptions about false-positive risk
following censoring. Specifically, we model θjk as

(3)

Under this model, the log odds of a false-positive result at the first exam, βj1, varies as a
function of censoring time. However, changes in false-positive risk across screening rounds
are assumed independent of censoring time. Assuming β2 and α are independent of S
identifies θjk for j < k. Like the population average model, this model relies on parametric
assumptions about false-positive risk following censoring. For instance, this model will not
be adequate if the rate of change of false-positive risk across screening rounds depends on S.
This specific model was motivated by the case of screening mammography because in that
context risk is expected to differ across screening rounds. However, it may not be
appropriate in other screening contexts.

2.3 A Semi-parametric Censoring Bias Model
2.3.1 Model Specification—To accommodate estimation of the cumulative false-positive
risk under dependent censoring without requiring specific parametric assumptions about risk
following censoring, we propose a censoring bias model. This approach uses equation (1) to
estimate the cumulative false-positive risk but identifies P(W = k|S = j) for j < k by using
information from all subjects with more than j screening rounds, assuming that

(4)

where P(W = M + 1|S = j) is defined to be P(W > M|S = j) and qjk(α) is a censoring bias
function governing the relationship between the false-positive risk among subjects with S = j
and those with S > j. The censoring bias function can be any positive valued function. In
numerical examples below we use qjk(α) = exp(α(k − (j + 1))).

In typical survival contexts, α is non-identifiable because we never observe both S and W.
However, in the special case of screening test results, α is estimable. Specifically, if we
assume the functional form of qjk(α) is known, then letting j = M, we can solve equation (4)
for α for any value of k. Depending on the specific functional form chosen for qjk(α) a
closed form solution may not be available for α. However, numerical techniques can easily
be applied to obtain the solution.

The advantage of the censoring bias model over existing models is that it allows for both
dependent censoring and changes in false-positive risk across screening rounds without
requiring parametric assumptions about variation in risk across screening rounds following
censoring. In this model false-positive risk is inherently assumed to vary across screening
rounds in the same way for subjects with S = j rounds as for subjects with S > j rounds of
screening. However, variation in risk is not constrained to follow a specific functional form.

2.3.2 Estimation—The censoring bias parameter, α, can be directly estimated from the
available data using equation (4). This approach assumes that a single value of α holds for
all j and k and that the relationship between censoring time and false-positive risk is the
same when the first false-positive precedes censoring as it would be if censoring precedes
the first false-positive. Because these assumptions are strong and untestable, a sensitivity
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analysis may be preferred to investigate the sensitivity of results to various degrees of
dependent censoring, following the approach of Scharfstein et al. (1999). We recommend
estimating the cumulative false-positive risk conditional on α estimated using equation (4)
as well as a variety of larger and smaller values for α.

ML or Bayesian estimates for θjk for all k ≤ j are directly available. For k > j, estimates of
θjk can be obtained by substituting values for α̂ and θ̂jk into equation (4). Substitution
proceeds in an iterative fashion with estimates first obtained for j = M − 1. Using these
estimates it is then possible to estimate θ̂jk for j = M − 2 and so on until θ̂jk has been
estimated for all j and k.

Under the Bayesian paradigm and assuming estimation is carried out using a Markov Chain
Monte Carlo approach, variance estimates for θ̂jk are readily available based on their
simulated posterior distribution. Under ML estimation, variance estimates for θ̂jk for k ≤ j
are directly available because these model parameters are estimated directly from the data.
Below we obtain expressions for the approximate variance of ML estimates of θjk when k >
j.

Let Nj+k represent the number of events at the kth round among subjects with S > j and Nj+
represent the total number of subjects with S > j. The MLE for P(W = k|S > j) is Nj+k/Nj+.
By the invariance property of MLEs and assuming α fixed and known,

The numerator is the expected number of events that would have been observed at round k
for subjects with S = j after rescaling by qjk(α) and the denominator is the total number of
events that would have been observed across all screening rounds for subjects with S = j.
Considering qjk(α)Nj+k a count of “pseudo-events” that would have been observed at time k

if data were not censored and  as a pseudo-count of the total population of
events that would have been observed if not for censoring suggests that the variance of θ̂jk
can be approximated by using the standard variance estimator for the MLE of the mean of a

binomial distribution, .

We evaluate the performance of the approximate variance estimator in Section 3.

2.4 Regression Models for Cumulative False-positive Risk
False-positive risk may vary as a function of patient, provider, or screening program
characteristics. For an individual evaluating screening regimens, a personalized estimate of
the cumulative false-positive risk conditional on patient characteristics and characteristics of
the regimens under consideration can aid decision making. Characteristics may be non-time-
varying, such as patient sex or race/ethnicity, or may vary over time, such as interval
between screening exams. For time-varying characteristics, it may be of interest to estimate
a predicted cumulative false-positive risk for a hypothesized sequence of values. For
instance, interest may focus on the cumulative false-positive risk associated with a regimen
of exams separated by a recommended interval. However, it is important to note that such
estimates are associational and not causal in nature. That is, they provide information on the
estimated false-positive risk based on patients who were observed to follow a particular
screening pattern. These estimates could be confounded by covariates associated with
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screening interval and screening test results. Comparisons of false-positive risks across
screening programs may also be of interest. If patient characteristics are associated with
false-positive risk and differ across programs then adjusted estimates can be obtained by
estimating false-positive risks conditional on patient characteristics and then using marginal
standardization to obtain estimates adjusted to a common distribution of patient
characteristics.

In the case of a screening test subject to physician interpretation, variability between
providers may also be important to consider. Between-provider variation may be attributable
to observed provider characteristics such as years of experience, which can be included in
models as fixed effects, or unobserved characteristics, in which case we can estimate
provider-specific random effects. We can use these models to provide predicted cumulative
false-positive risks for a set of provider characteristics or levels of provider performance.
Such estimates aid in understanding provider characteristics associated with better
performance and quantify the extent of between-provider variation, which is often of interest
as a measure of clinical quality.

We extend our model for cumulative false-positive risk to allow for estimation of predicted
cumulative false-positive probabilities individualized for a given set of screening-program,
patient, and provider characteristics. To do so we propose a regression model for θjk,

, where Xk is a vector of exam-specific covariates
and γ is a provider-specific random effect assumed to arise from a known distribution with
unknown parameters. Although this model is flexible enough to handle variation in covariate
effects across screening rounds and censoring times, in general we will assume that
covariate effects are constant, βjk = β for all j, k.

This regression formulation for θjk can be directly incorporated into any of the four models
in Sections 2.2 and 2.3. In the case of the discrete survival model θi is replaced by θi(Xk; γ)
in equation (2). In the population average and censoring bias models, a similar substitution
is made in equation (1). Terms for fixed and random effects can be added directly to
equation (3) for the adjusted population average model.

An alternative method for incorporating covariate effects into the population average model
was proposed by Xu et al. (2004). In their formulation a regression model is constructed for
the multivariate outcome, W = {I(W = 1), I(W = 2), …, I(W = j), I(W > j)}, given S = j.
Covariate effects are estimated using a multinomial logistic regression of the form

, where (W = k) = (Y1 = 0, …, Yk = 1). This
formulation models the association between the time of the first false-positive and
covariates. By comparison, our approach estimates the association between the odds of a
false-positive at each individual screening round and covariates. The advantage of the latter
formulation is that the specific effect of covariates on individual screening rounds can be
estimated and variations in covariate effects across screening rounds can be identified.

Estimation can be carried out using ML or Bayesian estimation methods for βjk and γ.
Using the invariance property of the MLE, β̂jk can then be substituted into equation (1) to
obtain MLEs for P̂(W ≤ k|Xk). Variance estimates can be obtained either via the delta
method or bootstrapping. In our application to the BCSC presented below, bootstrap
standard errors were used for the censoring bias model and the delta method was used for
other models. These cumulative probabilities can be interpreted as predicted cumulative
false-positive risks associated with a specific set of characteristics.
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2.5 Disease diagnosis and death as competing risks
Observations may be censored for a number of reasons including loss to follow-up, lack of
participation in future screening, and the end of the study. Subjects may also experience
events that make future screening tests impossible, such as death. Often diagnosis with the
disease of interest also makes future screening impossible because either no future testing is
carried out or subsequent examinations are considered diagnostic or surveillance rather than
screening. If subjects are censored at the time of death or disease diagnosis, the four
methods described above estimate the latent false-positive risk had the censoring event not
occurred. For subjects who have been censored due to loss to follow-up, this latent risk is
meaningful as it represents the risk they would have experienced had they continued to be
observed to screen. However, for subjects who have died or been diagnosed with the disease
of interest, this quantity is not meaningful. Death and disease diagnosis should be thought of
as competing events in this context.

The above approaches to estimating the false-positive risk can be modified to provide
cumulative false-positive estimates in the presence of competing risks. Let Dk = 1 be a
binary variable taking the value of 1 if disease diagnosis or death has occurred prior to the

kth screening round and 0 otherwise. We further define .
The cumulative false-positive risk accounting for competing risks is

(5)

We can use the four methods described above to estimate . Because  is conditional on
Dk = 0, estimates incorporate information from subjects who experience a competing event
only prior to the competing event. Estimates treating disease diagnosis and death as
competing events may not differ greatly from those ignoring the presence of competing risks
if these are rare events in the population of interest. However, for more common diseases the
difference may be substantial.

3. Applications
3.1 Simulation Study

We evaluated the small sample properties and performance under model misspecification of
the four models discussed in Section 2 using a simulation study. The target of inference in
our simulations was the cumulative probability of false-positive results after 10 rounds of
screening, P(W ≤ 10). The small sample properties of these models are important to
understand because, even in a large sample, the number of subjects observed for many
rounds may be small. For the censoring bias model, we estimated α using equation (4) and
the approximate variance estimator described in Section 2.3.

3.1.1 Simulation Study Design—We conducted simulations to compare bias and
efficiency of the models for cumulative false-positive risk under seven scenarios for
variation in risk as a function of censoring time and screening round. In Scenario 1, false-
positive risk is independent of censoring time and constant across screening rounds. This
scenario satisfies the assumptions of all four models. In Scenario 2, false-positive risk is
independent of censoring time but decreases across screening rounds. This violates the
assumptions of the population average model. In Scenario 3, false-positive risk is dependent
on censoring time and decreases across screening rounds. This violates the assumptions of
the discrete survival and population average models. The relationship between false-positive
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risk and censoring time is also misspecified in the censoring bias model. In Scenario 4,
censoring is dependent on time of the first false-positive result but false-positive risk is
constant across screening rounds. This violates the independence assumption of the discrete
survival model. Additionally, the relationship between false-positive risk and censoring time
is misspecified in the adjusted population average model. For scenarios 2, 3, and 4 we
investigated two sets of parameter values governing the strength of dependence of false-
positive risk and censoring time.

In scenarios 1, 2, and 3, we assumed that the relationship between the probability of a false-
positive at the kth screening round for a subject with no prior false-positives and who was
observed for j screening rounds was given by

Specific values for A, B, C, and D used in each simulation scenario are provided in Table 1
along with the associated cumulative probability of a false-positive after ten screening
rounds, P(W ≤ 10). In simulation 4, we assumed that false-positive risk followed the model
P(W = k) = 0.09 × (1−0.09)k. Conditional on simulated values for W, censoring times were
then simulated according to equation (4). We set α = −0.005 and −0.01.

For all simulation scenarios we generated a cohort of 100,000 subjects. In simulations 1, 2,
and 3, we assumed that censoring times were geometrically distributed with rate 0.3.
Estimates for our simulation study are based on 10,000 simulated data sets for each scenario.

3.1.2 Simulation Study Results—Under independent censoring with constant risk
across screening rounds (Scenario 1), all three models were unbiased (Table 2). Under
independent censoring with variable risk across screening rounds (Scenario 2), the discrete
survival model and censoring bias model demonstrated low bias. The adjusted population
average model was less biased then the population average model. However, under strong
variation in risk across screening rounds, both models exhibited substantial bias. Under
dependent censoring and variation in risk across screening rounds (Scenario 3), the discrete
survival and population average models exhibited more bias than the adjusted population
average and censoring bias models. Under moderate dependence and variation in risk, the
censoring bias model was approximately unbiased. When dependence and risk variation
were stronger, the adjusted population average and censoring bias models performed
similarly. Both of these models reduced bias relative to the discrete survival and population
average models by more than half. When risk of censoring was dependent on screening
round of the first false-positive and risk was constant across screening rounds (Scenario 4),
bias was reasonably low for all models. Only the discrete survival model exhibited notable
bias under stronger dependence.

Across all scenarios, model based standard errors tended to underestimate true standard
errors. The censoring bias model was also less efficient than other models, although our
proposed approximate standard errors tended to approximate empirical standard errors well.

3.2 Application to the BCSC
We illustrate the performance of the four models for false-positive risk using data collected
by seven mammography registries in the National Cancer Institute-funded BCSC (Ballard-
Barbash et al., 1997) (http://breastscreening.cancer.gov). These registries link information
on women who receive a mammogram at a participating facility to regional cancer registries
and pathology databases to determine breast cancer outcomes.
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We included women who had their first screening mammogram between the ages of 40 and
59 at a participating BCSC facility. We included this first screening mammogram along with
subsequent screening mammograms performed from 1994 to 2007. A screening
mammogram was defined as a bilateral mammogram that the interpreting radiologist
indicated was for routine screening. To avoid misclassifying diagnostic exams as screening
exams, we excluded mammograms performed within 9 months of a prior breast imaging
exam.

Mammograms were classified as positive or negative using standard BCSC definitions (see
BCSC Glossary of Terms accessed at http://breastscreening.cancer.gov/data/
bcsc_data_definitions.pdf) based on the initial Breast Imaging Reporting and Data Systems
(BI-RADS) assessment (American College of Radiology, 2003) and recommendations
assigned by the radiologist. A positive mammogram was considered to be a false-positive if
the woman was not diagnosed with invasive carcinoma or ductal carcinoma in situ within 1
year of the mammogram and prior to the next screening mammogram. We censored women
at their last screening mammogram captured by the BCSC or if their self-reported time since
last mammogram differed from that in the database by more than six months since women
could receive mammograms outside the BCSC. Breast cancer diagnoses, including true-
positive screening exam results, and deaths were treated as competing events.

We demonstrate the performance of the four models introduced in Section 2 when applied to
estimating the cumulative false-positive risk after 10 rounds of screening mammography. To
illustrate how covariates can be incorporated into each model to provide personalized risk
estimates, we modeled false-positive risk conditional on age at baseline, family history of
breast cancer at baseline, and interval between screening mammograms. We categorized age
in two year age groups from age 40 – 59. Interval was categorized as 9–18 months
(approximately annual), 19–30 months (approximately biennial), or no prior mammogram
within 30 months. We report example cumulative false-positive estimates after 10 years
associated with approximately annual screening beginning at age 40–41 or 50–51, with or
without a family history of breast cancer at baseline.

In the BCSC cohort, 276,159 mammograms from 143,025 women met inclusion criteria.
The majority of women were observed for one or two rounds of screening (69.8%). A
summary of the distribution of number of observed rounds of screening, baseline age, and
baseline family history is presented in Table 3. The probability of receiving a false-positive
mammogram at the first screening round was somewhat lower for women who were
observed for 5 or more rounds of screening compared to women who were observed for
fewer rounds. False-positive risk at the first screening mammogram also increased with
increasing baseline age up until age 52. False-positive risk then began to decrease with
increasing age. Risk was higher for women who had a family history of breast cancer at
baseline.

For each woman in the study we identified the reason study follow-up had ended. If the
mammogram occurred within 2 years of the end of the study we considered the woman
censored by the end of follow-up. If the mammogram was followed by a breast cancer
diagnosis or death within 2 years we considered this the reason for the end of follow-up. All
other women were considered censored by loss to follow-up. Loss to follow-up thus
includes women who received no further mammograms and those who continued
participating in screening but attended facilities outside the BCSC. Follow-up ended for
most women due to either loss to follow-up (61.7%) or the end of the study (36.9%) (Table
4).
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The relationship between false-positive risk, screening round, and censoring time is
illustrated in Figure 1. Risk decreases substantially between the first and second screening
rounds, regardless of the number of observations available per subject. At any individual
screening round, false-positive risk appears lower for women with more observations and
higher for women with fewer observations. While observable trends in false-positive risk
cannot validate assumptions about false-positive risk following censoring, these trends
suggest a decreasing trend in false-positive risk between the first and second rounds that
may be independent of censoring time. They are also suggestive of an association between
censoring time and false-positive risk.

We applied each of the four models for cumulative false-positive risk to this cohort to
estimate cumulative risk after 10 rounds of annual screening (Table 5) personalized based on
age at first examination and baseline family history of breast cancer. We present example
results for women who were 40–41 or 50–51 at baseline with or without a family history of
breast cancer. Cumulative false-positive estimates based on the discrete survival model were
lowest while those based on the population average model were highest. The adjusted
population average and censoring bias models which both allow for dependent censoring
and variation in the false-positive risk across screening rounds returned intermediate
cumulative false-positive risk estimates. These models were also similar in terms of
precision. For the censoring bias model, we estimated α to be -0.04. For the four example
covariate combinations presented, all four models estimated that risk is highest for women
who begin screening at age 50–51 with a family history of breast cancer and lowest for
women who begin screening at age 40–41 without a family history of breast cancer.

4. Discussion
We have proposed a semi-parametric censoring bias model for cumulative false-positive risk
of a screening test. This model performs similarly to other existing approaches when
censoring is independent of false-positive risk. When censoring is dependent on risk,
especially when risk varies across screening rounds, previously proposed models exhibit
substantial bias, which the censoring bias approach is largely able to eliminate. In cases such
as screening mammography, where variations in risk across screening rounds are well
understood, a parametric model that imposes a plausible functional form for variation in risk
across screening rounds can also successfully estimate cumulative risk. However, this model
would not be appropriate in settings where variation in risk across screening rounds is not
well understood. The semi-parametric censoring bias approach would likely provide the best
estimates in this setting.

We developed an approximate variance estimator for the censoring bias model. Simulation
studies demonstrated that this approximation led to nearly unbiased estimates for the
cumulative false-positive risk and variance estimates close to empirical variances. Like
asymptotic variance estimators for the discrete survival, population average, and adjusted
population average model, these estimates tended to underestimate empirical variance. This
is likely due to the fact that all estimates rely heavily on the false-positive risk among
subjects who are observed across all screening rounds. This group will be small if the
proportion censored at each screening round is large. Asymptotic variance estimates may not
be appropriate in this setting. By adopting a semi-parametric approach, the censoring bias
model tends to be less efficient than other models considered here. This loss of efficiency
may be preferable to the possible bias which will result from using misspecified parametric
models.

We proposed a straightforward method for incorporating covariates into cumulative false-
positive estimates using a regression framework. The ability to include covariates in models
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for false-positive risk is of particular importance for clinical decision making because it
allows for personalized risk prediction. We demonstrated this approach in the setting of
mammography by comparing estimates of cumulative false-positive risk after 10 years of
annual screening for women who begin screening at age 40–41 or 50–51, with or without a
family history of breast cancer at baseline. In the case of the specific example investigated,
cumulative false-positive probabilities varied only modestly with respect to baseline age and
family history. Clinical recommendations would likely not vary for these groups based on
these differences. All four models demonstrated the same pattern of association between
baseline age and family history and false-positive risk. However, point estimates for
cumulative risk varied substantially across models. The population average model likely
overestimated cumulative risk by assuming that risk does not vary across screening rounds
when, in the case of mammography, it is expected to decrease (Yankaskas et al., 2005).
Conversely, the discrete survival model likely underestimated risk by assuming that women
who were censored later are representative of those who were censored earlier. Past research
has shown that those who are observed for more rounds tend to have lower risk (Hubbard et
al., 2010). The adjusted population average and censoring bias models produced similar
estimates in this setting. Estimates from these two models also had similar precision.

The proposed models can be modified to incorporate competing events. Individuals
diagnosed with the disease of interest during the course of screening are no longer at risk for
a false-positive result. If disease diagnosis is treated as a censoring event then the resultant
cumulative risk estimates the latent probability of the outcome of interest, had the competing
event not occurred (Prentice et al., 1978). In the context of medical screening, diagnosis
with the disease of interest, death, or surgical removal of the screened organ makes
subsequent occurrence of screening logically impossible. Therefore, censoring at these
competing risks leads to estimation of risks that are not meaningful. In many cases the risk
of these competing outcomes will be small. In our study of breast cancer screening only
1.4% of women developed breast cancer or died during the study. However, depending upon
the risk of disease and mortality in the population under study, these competing risks could
be more substantial.

Understanding performance of screening tests after repeat screening is important for
individuals, medical providers, and policy makers when considering the harms and benefits
of repeat screening. The risk of a false-positive result at an individual screening round may
be low, but if repeat screening is recommended over a period of decades, it is important to
understand the risk of receiving false-positive results at some point over the course of
screening. In future research we plan to investigate methods for estimating the cumulative
probability of other repeat screening outcomes including cancer detection (true-positive
results) and missed cancers (false-negative results). All of these possible screening outcomes
must be considered jointly along with the possibility of dependent censoring when
evaluating a proposed course of screening.
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Figure 1.
False-positive risk at screening rounds 1 to 10 by censoring time. Solid line represents
subjects with 7 or more observations, dotted line represents subjects with 4 to 6
observations, and dashed line represents subjects with 1 to 3 observations.
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Table 3

The distribution of number of observed rounds of screening, age at first mammogram, and family history of
breast cancer at the time of the first mammogram for 143,025 women along with the proportion of women
within each category with a false-positive mammography result at their first mammogram.

N % % false-positive at first exam

Number of screening rounds observed

 1 71,440 49.9 17.2

 2 28,500 19.9 16.3

 3 16,584 11.6 16.8

 4 10,552 7.4 15.7

 5 6,889 4.8 16.1

 > 5 9,060 6.3 13.9

Age at first exam

 40–41 years 55,145 38.6 15.8

 42–43 years 24,005 16.8 16.3

 44–45 years 15,358 10.7 17.3

 46–47 years 11,406 8.0 17.4

 48–49 years 9,080 6.3 18.3

 50–51 years 9,184 6.4 18.4

 52–53 years 6,355 4.4 17.9

 54–55 years 4,893 3.4 17.8

 56–57 years 4,041 2.8 15.4

 58–59 years 3,558 2.5 15.5

Family history at first exam

 No 133,771 93.5 16.5

 Yes 9,254 6.5 18.6
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Table 4

Distribution of reasons for end of follow-up in the BCSC database.

N %

Loss to follow-up 88,291 61.7

End of study 52,719 36.9

Breast cancer diagnosis 1,251 0.9

Death 764 0.5
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Table 5

Estimated cumulative probability of a false-positive mammography result after 10 rounds of annual screening
by baseline age and family history based on four models.

Discrete survival Population average Adjusted population average Censoring bias

Age 40–41 years at first exam

 No family history 57.3 (55.4, 59.1) 65.2 (64.5, 65.9) 63.3 (61.6, 65.0) 61.3 (59.4, 63.1)

 Family history 60.4 (58.4, 62.5) 68.6 (68.0, 69.3) 66.6 (64.5, 68.6) 64.2 (62.0, 66.5)

Age 50–51 years at first exam

 No family history 59.1 (57.1, 61.2) 67.0 (66.4, 67.7) 65.3 (63.3, 67.3) 63.1 (60.9, 65.3)

 Family history 62.3 (60.1, 64.4) 70.4 (69.8, 71.1) 68.6 (66.3, 70.9) 66.0 (63.5, 68.6)
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