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Abstract
Histone lysine demethylases (KDMs) have been recently discovered in mammals and have been
nicknamed “erasers” for their ability to remove methyl groups from histone substrates. In cancer
cells, KDMs can activate or repress gene transcription, behaving as oncogenes or tumor
suppressors depending upon the cellular context. In order to investigate the potential role of
KDMs in Breast Cancer (BC), we queried the Oncomine database and determined that the
expression of KDMs correlates with BC prognosis. High expression of KDM3B and KDM5A is
associated with a better prognosis (no recurrence after mastectomy p=0.005 and response to
docetaxel p=0.005); conversely, KDM6A is overexpressed in BC patients with an unfavorable
prognosis (mortality at 1 year, p=8.65E-7). Our findings suggest that KDMs could be potential
targets for BC therapy. Further, altering the interactions between KDMs and Polycomb Group
genes (PcG) may provide novel avenues for therapy that specifically targets these genes in BC.
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1. INTRODUCTION
Breast cancer (BC) is a major cause of morbidity and mortality worldwide. BC accounts for
23% of all cancer cases in the United States and continues to be the main cause of cancer-
related deaths among females [1]. Many studies have demonstrated that breast
carcinogenesis is driven by genetic and epigenetic alterations. Recent studies have shown
that epigenetic regulation could have a potential therapeutic and prognostic role in BC. In
particular, emerging evidence suggests that expression of histone lysine demethylases
(KDMs) is elevated in BC. Moreover, through the action of lysine demethylation, KDMs
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play a functional role in cellular proliferation [2]. Recently, amplification/mutations of
KDMs have been linked to histone methyl modifications and to many types of cancer.
Mutations and amplification of KDMs were detected in both hematological and solid
neoplasms, including prostate cancer, esophageal squamous cell carcinoma, desmoplastic
medulloblastoma, metastatic lung sarcomatoid carcinoma, mucosa-associated lymphoid
tissue (MALT) lymphoma, and breast cancer. How KDMs work in cancer biology remains
to be explored.

KDMs are composed by two families, the FAD-dependent KDMs and the Jumonji C KDMs
(JHDMs). KDMs are a novel family of histone modifiers that specifically remove mono-, di-
or tri- methyl groups from lysines on histones (H3K4me3/2/1, H3K9me3/2/1,
H3K36me3/2/1 and H3K27me3/2) [3]. The first KDM protein discovered in mammals was
lysine-specific demethylase 1 (KDM1A). In BC, KDM1A (aliases: LSD1, BHC110, AOF2)
is overexpressed and involved in many biological processes. In particular, it is strongly up-
regulated in estrogen receptor negative (ER−) BC and could be a predictive biomarker for
aggressive tumor biology in BC [4]. KDM1A activates gene transcription through H3K9
demethylation, while it is able to repress gene transcription through H3K4 demethylation.
Therefore, KDM1A may display either an oncogenic or oncosuppressive role. The second
KDM1 to be identified is the lysine-specific demethylase 2 (KDM1B). KDM1B (also known
as LSD2, AOF1) specifically demethylates H3K4me2/1, resulting in repression of gene
transcription [5].

KDM1, through the demethylation of H3K4, may influence the expression of multiple genes
critical in early-stage breast carcinogenesis. Pargyline (KDM1 inhibitor) cooperates with
vorinostat (HDAC inhibitor) to increase histone methylation and acetylation in BC [2, 6]. In
BC, KDM1 is involved in many biological processes and is strongly up-regulated in ER−
BC. It contributes to cell proliferation through the inhibition of p21 and the induction of
cyclin A2 (CCNA2) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
(ERBB2) [4].

KDM1 belongs to the family of flavin adenine dinucleotide (FAD)-dependent KDMs. They
can demethylate histones in a FAD-dependent oxidative reaction. In this reaction, FAD
oxidizes the methyl-lysine to lysine and formaldehyde [7]. Compared to FAD-dependent
KDMs, the JHDMs family is larger. Indeed, these members are able to tri-demethylate
lysines, because they have enough space in their active sites for three methyl groups [8],
which is not the case for KDM1. The demethylase reaction of JHDMs family requires Fe2+
and α-ketoglutarate as cofactors in the presence of oxygen, resulting in the conversion of
methyl groups to hydroxymethyl groups releasing formaldehyde [7].

The first JHDM identified was KDM2A (alias: JHDM1A, FBXL10) with H3K36
demethylation activity [9]. This discovery was followed by the identification of a long series
of other KDM members (KDM3, KDM4, KDM5 and KDM6), their homologues (KDM3A,
3B, 3C; KDM4A, 4B, 4C; KDM5A, 5B, 5C, 5D and KDM6A, 6B) with specific
demethylation activities and different roles in BC. Of these genes, KDM3C expression is
reduced in BC tumors, indicating a putative tumor suppressor role [10]. Li et al. showed that
silencing KDM4A results in inhibition of proliferation in several human BC cell lines [11].
KDM4B and KDM5B are highly expressed in human ER+ BC [12, 13].

Despite this seminal evidence, no study has systematically investigated the role of KDMs in
BC. Due to their role in cancer biology, we decided to query the Oncomine database to
identify correlations between KDMs expression and clinical outcome in BC patients. In
order to further confirm the association between KDM expression and prognosis, we
analyzed this relationship using the GOBO database [14].
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2. METHODS
2.1 Oncomine Database

The Oncomine database (http://www.oncomine.com) was queried to assess the expression of
all known KDMs in BC. We investigated the gene expression of 16 KDM genes: KDM1A,
KDM1B, KDM2A, KDM2B, KDM3A, KDM3B, KDM3C, KDM4A, KDM4B, KDM4C,
KDM5A, KDM5B, KDM5C, KDM5D, KDM6A and KDM6B. These genes were selected
based on previously reported members of the KDM family [2]. After selecting a gene
through the “Disease summary table” we searched for associations between the expression
of KDMs and BC characteristics. We compared gene expression differences between normal
breast tissue vs. BC or invasive BC, based on cancer histology (lobular vs. ductal, luminal
like vs. basal like and ductal or lobular vs. medullary), clinical outcome (no recurrence vs.
recurrence, metastatic event vs. no metastatic event and dead vs. alive), molecular subtypes
(ER+ vs. ER−, PR+ vs. PR−, H3K27me3+ vs. H3K27me3−, ERBB2− vs. ERBB2+ and
BRCA1 wild type vs. BRCA1 mutation), pathology subtypes (N1+ vs. N0, M1+ vs. M0 and
grade 2 vs. grade 3) and treatment response in patients (docetaxel responder vs. docetaxel
non-responder). We only included associations that were consistent and specific for
particular tumor types or normal mammary gland. We applied the method of false discovery
rates (FDR) available on Oncomine database to correct P value for multiple comparisons.
Corrected P values are designated as Q values, where Q = P*n/i (n = total number of genes; i
= sorted rank of P value) [14]. A Q=0.05 was considered significant.

2.2 GOBO Database
GOBO (Gene Expression-Based Outcome for Breast Cancer Online) database (http://
co.bmc.lu.se/gobo) [15] was used to validate the results obtained with the Oncomine
database. We queried the Gene Set Analysis-outcome analysis in the breast tumors (GSA-
Tumors) application. After selecting the gene of interest, we selected all tumors, 3 groups
(quintiles) and full years censoring. On the basis of previous results we selected different
end-points. We investigated correlations between KDM3B, KDM5A and KDM6A with
relapse-free survival (RFS) and overall survival (OS).

3. RESULTS
3.1 Oncomine database results

Table 1 summarizes the major findings related to the expression of KDMs in BC as analyzed
in the Oncomine database. KDM3B has a higher expression level in normal breast tissue vs.
BC (p=1.66E-7) and in BC patients without recurrence at 5 years (p=0.005) following
mastectomy (Fig. 1a, 1b). KDM5A has a higher expression level in BC patients with a
higher pathologic complete response rate to neoadjuvant docetaxel treatment (four cycles,
100 mg/m2 daily for 3 weeks) (p=0.005) (Fig. 1c) and in primary tumors compared to
metastasis (p= 2.38E-4). KDM6A expression is significantly higher in BC patients who
succumb by 1 year (p= 8.65E-7) after mastectomy (Fig. 1d).

3.2 GOBO database results
KDM3B low expression is correlated to shorter relapse free survival (RFS) in the lymph
node negative (LNneg) tumor subset (p=0.00228) (Fig. 2a). We found several correlations
for KDM5A expression in breast cancer. KDM5A low and intermediate expression is
significantly correlated with shorter RFS in all tumor subsets (p=0.00373), in ER+ tumors
subset (p=0.00808), in lymph node positive (LNpos, p=0.01897) and in grade 2 tumors
(p=0.00091; Fig. 2b). Moreover low expression of KDM5A is correlated with shorter RFS
in ER− (p=0.00632) and in the grade 3 tumors (p=0.04372; Fig. 2c). For KDM6A we
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obtained conflicting results. Only one correlation showed high expression of KDM6A
associated with shorter overall survival (OS) in the luminal A tumors (p=0.04716; Fig. 2d).

4. DISCUSSION
Our analysis suggests that KDMs, particularly KDM3B, KDM5A and KDM6A, could play a
pivotal role in BC (Fig. 3).

KDM3B has been identified as a putative tumor suppressor gene in myeloid leukemia.
However, target genes of KDM3B are still unknown. It remains to be determined whether
this gene is really a tumor suppressor or if it is a partner of a known tumor suppressor.
Through the H3K9 mono- or di-demethylation (H3K9me2/1), KDM3B is responsible for
transcriptional activation [16]. We identified two independent studies showing a highly
significant KDM3B over-expression in normal breast tissue vs. BC, and in patients without
recurrence, 5 years after mastectomy. This result is consistent with the tumor suppressor role
of KDM3B in myeloid leukemia [16] and it has been validated using the GOBO database.

KDM5A binds the retinoblastoma tumor suppressor (pRB) and it is usually considered a
tumor suppressor gene in cancer. pRB is involved in the inhibition of cell cycle progression
and in the promotion of differentiation in cancer [17]. Our analysis showed that KDM5A is
overexpressed in tumors with a higher pathologic complete response rate in BC patients
treated with docetaxel. In addition, many studies confirm its role in cancer. The knockdown
of KDM5A leads to the up-regulation and high expression of the p16, p21 and p27 cell cycle
regulators [17].

KDM5A is an interesting target for cancer therapy because it is involved in numerous
mechanisms in cancer. In particular, KDM5A cooperates with PcG [18] and Myc oncogenes
[19] and interacts directly with recombination signal binding protein-J (RBP-J) [20]. PcG
proteins are organized in Polycomb repressive complexes (PRC1, PRC2, PRC3 and PRC4).
PRC2 mediates gene silencing in cancer stem cells (CSCs), through H3K27me3 [21]. The
KDM5/PRC2 complex can cooperate in gene silencing through removal of H3K4me3
activation mark and addition of H3K27me3 repressive mark at Notch target genes [20, 22].
When deregulated, Myc family proteins can function as potent oncogenes resulting in
uncontrollable cell proliferation and tumor formation [23]. KDM5A is able to modulate c-
Myc biological functions, thereby reducing the frequency of Myc-induced tumors. The Myc-
KDM5A interaction could be a potential therapeutic target for Myc-induced malignancies
[19].

RBP-J has a double characteristic activating the expression of Notch target genes and
silencing non Notch target genes [24]. KDM5A is an integral part of the Notch/RBP-J gene
repression mechanism, interacting directly with RBP-J.

Using the GOBO database, we identified several datasets showing a significant correlation
between KDM5A expression and prognosis. KDM5A expression is low in different types of
BC and correlates to a worse clinical outcome.

Unlike KDM5A, KDM6A could be an antagonist of PcG, through its H3K27 demethylating
activity, which results in gene activation [25]. KDM6A has been shown to have tumor
suppressor activity in different types of cancer, but there is no evidence that this is the case
for BC. We found that KDM6A mRNA expression is correlated with mortality by 1 year
following mastectomy in BC patients [25]. This evidence is potentially relevant for a small
subset of patients with particularly poor prognosis. KDM6A expression analyzed in the
GOBO database is more equivical than KDM3B and KDM6A. We found only one dataset
that demonstrated borderline statistical significance, showing high expression of KDM6A

Paolicchi et al. Page 4

Crit Rev Oncol Hematol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



associated with shorter OS. Nonetheless, a better understanding of KDM6A and PcG
interactions in BC cells needs to be elucidated.

In conclusion, many previous studies have suggested an oncogenic or tumor suppressor role
of KDMs in cancer [26]. Our study was aimed at defining the role of selected KDMs in BC
and found three potentially novel prognostic factors. However, the mechanisms of action of
many KDMs are not understood in BC, and further studies will deepen our knowledge of
their role in BC.
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Fig. 1. Oncomine database: KDM expression related to prognosis in breast cancer patients
a, b. KDM3B is overexpressed in normal breast tissue and in BC patients with no recurrence
after mastectomy
c. KDM5A is overexpressed in BC patients with response to docetaxel
d. KDM6A is overexpressed in BC patients with an unfavorable prognosis
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Fig. 2. GOBO database: KDM3B, KDM5A and KDM6A expression related to prognosis in
breast tumors
a. Low KDM3B expression is correlated with shorter RFS in LNneg tumors
b. Low and Intermediate KDM5A expression is correlated with shorter RFS in all tumors
c. Low KDM5A expression is correlated with shorter RFS in ER− tumors
d. High KDM6A expression is correlated with shorter OS in luminal A tumors
(RFS, Relapse free survival; LNneg, lymph node negative; ER−, estrogen receptor negative;
OS, overall survival)
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Fig. 3. Representation of biologic activity of KDM3B, KDM5A and KDM6A
KDM3B is responsible for transcriptional activation of tumor suppressor genes through the
H3K9me2/1 demethylation. KDM5A/PcG complex can cooperate to induce the silencing of
oncogenes. KDM5A interacts directly with RBP-J and modulates Myc activity resulting in a
tumor suppressor effect. PcG genes through the H3K27 trimethylation lead to oncogene
silencing. KDM6A acts antagonistically to PcG, promoting oncogene activation.
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