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Abstract
The mammalian immune system has evolved in the presence of microbes, both pathogenic and
commensal. The consequences of microbial recognition by the host has led to the development of
compensatory mechanisms by both the host and microbe to either resist or tolerate the existence of
the other. In this review we discuss examples of this co-evolutionary relationship. Due to space
considerations and for conceptual clarity, we have focused on detection of bacteria by the Toll-like
receptor (TLR) family and highlight examples of bacterial strategies to evade, subvert and in some
cases even utilize these receptors.

Introduction
TLRs are a family of membrane-spanning innate immune receptors that recognize ligands
derived from bacteria, fungi, viruses, and parasites. Recognition of conserved microbial
features by TLRs leads to a variety of downstream signals in immune cells, including pro-
inflammatory cytokine production, costimulatory molecule upregulation, anti-microbial
peptide secretion, and phagosomal maturation (1, 2). While individual TLRs typically
recognize a specific class of microbial ligands, collectively this family of receptors can
detect a broad range of microbes. Of the thirteen TLRs present in mammals, ligands have
been identified for twelve: lipopolysaccharide (LPS) for TLR4, lipopeptides for TLR2/1 and
TLR2/6 heterodimers, flagellin for TLR5, unmethylated CpG motifs in DNA for TLR9,
profilin and Salmonella flagellin for TLR11 (3), and various forms of RNA for TLRs 3, 7, 8
and 13, with no known ligand currently identified for TLR 12 (4). Thus, multiple TLRs can
potentially recognize bacteria, although individual TLRs will play a more dominant role for
certain bacterial species or in certain contexts (e.g., recognition of nucleic acids released
from degraded bacteria).

Signaling
All TLRs share a common modular structure: a leucine rich repeat (LRR)-containing
ectodomain responsible for ligand-binding, a membrane spanning region, and a cytosolic
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signaling domain called the Toll-interleukin 1 receptor homology domain (TIR). Ligand
binding induces recruitment of TIR domain-containing signaling adaptors that associate with
the TLR via homotypic TIR:TIR interactions. All TLRs, with the exception of TLR3, recruit
MyD88 at this initial step. MyD88 can associate with IL-1R-associated kinase (IRAK)
members. Upon dissociation from the TIR complex, IRAK proteins interact with tumor
necrosis factor receptor-associated factor 6 (TRAF6)to propagate TLR activation signals
that include the activation of transcription factors NF-κB, AP-1 (mediated by JNK, p38 and
ERK), and IRF5 (5). TLR3 and TLR4 can recruit a different adaptor, TIR-domain-
containing adapter-inducing interferon-β (TRIF), that leads to the dimerization and
activation of inhibitor of NF-κB kinase (IKKi) and TANK (TRAF–family member
associated NF-κB activator)-binding kinase 1 (TBK1). Activated TBK1/IKKi
phosphorylates the transcription factor, IRF3, inducing its nuclear translocation and
subsequent transcription of interferon-related genes (6).

Function
TLR activation leads to production of pro-inflammatory cytokines, including TNFα, IL-12,
and IL-6. These cytokines induce local inflammation, support the survival and expansion of
B and T cells and activate natural killer (NK) cells. A subset of TLRs can also induce type I
interferon production (IFNα/β) (4, 6). This family of cytokines can inhibit translation and/or
induce apoptosis in host cells, thereby exposing intracellular bacteria to the extracellular
environment and killing by other infiltrating immune cells. TLR signaling also leads to the
upregulation of costimulatory molecules and MHC molecules presenting bacterial antigens.
Costimulatory molecules include CD80, CD86 and CD40 and have the overall outcome of
generating protective adaptive immune responses by the activation of antigen-specific T
cells (7).

TLR activation can also induce cell-intrinsic antimicrobial activity. For example, TLR2 and
TLR4 activation can recruit NADPH oxidase assembly as well as mitochondria
relocalization to the bacteria-containing phagosome, leading to a burst of reactive oxygen
and nitrogen species within this compartment (8–10). Evidence also suggests that TLR
signaling can lead to a rapid acidification of the phagosome in which TLR signaling has
occurred, likely through recruitment of vacuolar-ATPase subunits to the phagosomal
membrane (11–14). Both of these activities increase the antimicrobial capacity of the
phagosome, although some bacteria have actually co-opted these signals to regulate their
virulence programs (discussed in greater detail below). Detection of microbial ligands by
TLRs can also induce the expression and secretion of antimicrobial peptides (AMPs), such
as beta-defensins, and cathelicidin, further supporting the role of TLR-mediated detection in
cell-intrinsic antimicrobial activity (15–17).

Evasion and Subversion of Immunity by Bacteria
Because the specificity of TLRs are fixed in the germline and activation initiates the earliest
aspects of the immune response to infection, these receptors have applied tremendous
selective pressure on the virulence mechanisms of potential pathogens. Not surprisingly,
pathogens have evolved a variety of strategies to survive despite recognition by the innate
immune system. Here we identify and focus on three general themes, each representing
disruption or interference at distinct stages of the host response (Figure 1): 1) evasion of host
detection by shielding ligands, 2) interference with TLR signaling pathways, and 3)
inhibiting, escaping, or subverting phagocytosis (18–20) (21). Our discussion of these
strategies cannot be exhaustive; instead, we highlight key examples.
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Surface structure modification
The outer-membranes of gram-negative bacteria (including Salmonella and Yersinia species,
for example) contain LPS, a potent activator of TLR4 (22–27). Activation of this TLR can
lead to the production of pro-inflammatory cytokines, co-stimulatory molecule upregulation
and secretion of type I IFN (1, 2, 5). These signals depend on the activation of NF-κB and
MAP kinase pathways (1). Other surface proteins such as flagellin, a potent TLR5 ligand,
can also lead to immune activation, albeit without the production of IFN, via similar
pathways(28–30). It is therefore not surprising that bacteria have evolved mechanisms to
make these surface structures less detectable by their corresponding TLRs.

LPS, crucial to the growth and survival of gram-negative bacteria, consists of a lipid A
moiety conjugated to an O-linked polysaccharide. Lipid A is typically hexa-acylated, yet
changes in the LPS structure (importantly the level of acylation) correlate with the ability for
LPS-isolates from different bacteria to activate TLR4(31–34). For example, isolates of
Helicobacter pylori, a human pathogen, have been shown to express penta-acylated LPS,
making them less immunostimulatory (35). Further, some bacteria are capable of actively
altering their LPS composition in order to make them less stimulatory during infection(31,
32, 36). For example, Salmonella is able to decrease the stimulatory capabilities of its LPS
by expressing a lipid A deacetylase, PagL, that is specifically expressed during infection (via
control of the PhoP/PhoQ two-component system) (37). A similar mechanism is used by the
causative agent of bubonic plague, Yersinia pestis, which expresses a TLR4-stimulatory
hexa-acylated lipid A component of its LPS during growth at 21–27 °C, but upon entry into
humans or rodents (and an increase in temperature to 37 °C) expresses a non-stimulatory
tetra-acylated form (36). Flagellin, much like the LPS of certain pathogenic bacteria
(including isolates of Bartonella, Helicobacter, and Campylobacter), has also been shown to
be less capable of stimulating TLR5. In these scenarios it was found that these pathogenic
bacteria have acquired mutations within the N-terminal domain of their flagellin,
specifically within regions responsible for activating TLR5 (28, 38). In turn, these mutations
make bacteria less immunostimulatory and able to evade detection by the immune system
during infection.

In his landmark paper, Janeway proposed that the targets of innate receptors must be highly
conserved and difficult for pathogens to alter; otherwise, pathogens will quickly evolve to
avoid detection (39). Based on the examples discussed above (as well as many others),
pathogens are clearly capable of modifying TLR ligands to avoid detection. What prevents
all pathogens from rapidly evolving away from the specificity of innate receptors? Certainly
there are multiple answers to this intriguing question, but one explanation is that
modification of the features targeted by TLRs reduces the overall fitness of the pathogen.
For example, in the case of Yersinia, tetra-acylated lipid A may affect the integrity of the
outer membrane or reduce the fitness of bacteria in non-human hosts (otherwise bacteria
would only express the tetra-acylated form). Perhaps in rodents and humans this loss of
fitness is countered by the avoidance of TLR4 recognition. A similar case is true for
flagellin mutations. These mutations lead to reduced bacterial motility, unless coupled with
secondary compensatory mutations that can rescue the motility defect in certain bacteria.
Hence, the cost of reduced motility is overcome by the benefit afforded by survival via
TLR5 evasion (28, 38).

Modulation of Intracellular Signaling Pathways
Instead of avoiding detection altogether, some bacteria have evolved to inhibit the signaling
pathways downstream of TLR signaling. These mechanisms lead to the same overall
outcome; inhibiting production of inflammatory cytokines as well as other anti-microbial
activities that are initiated downstream of TLR activation (40–49). To do so, many different
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pathogens encode secretion systems that puncture host cell membranes and inject
bacterially-encoded effector proteins that mimic or degrade members of TLR signaling
pathways or directly interfere with normal signaling by covalently modifying signaling
intermediates. For example, the Yersinia effector protein YopJ is an acetyltransferase that
modifies key residues within MAP kinases and IKKβ, preventing their phosphorylation and
inhibiting activation of the MAPK cascade and NF-κB(40–42). In another set of examples,
enteropathogenic E. coli (EPEC) type 3 secretion system (T3SS) effector NleC cleaves RelA
(p65), a subunit of NF-κB, and another EPEC effector, NleD, cleaves JNK to inhibit
activation of AP-1(43–46). A similar bacterial strategy for targeting TLR signaling
molecules can be found in an E3 ubiquitin ligase T3SS effector protein, IpaH9.8, encoded
by the gastrointestinal pathogen Shigella flexenri. Upon injection into the cytosol, IpaH9.8 is
able to bind to the IKK regulator, NEMO, and the ubiquitin adaptor protein ABIN-1, leading
to ubiquitination and destruction of NEMO and inhibition of the NF-κB signaling pathway
after TLR activation(47). Other forms of TLR signaling inhibition take place more
proximally to the receptor. For example, Salmonella, Brucella, E. coli and certain Yersinia
species encode different TIR-domain containing proteins that interfere with the homotypic
TIR:TIR interactions between TLRs and their signaling adaptors (50, 51).

Inhibiting, Escaping or Subverting Phagocytosis
The nucleic acid sensing TLRs (TLR3, TLR7/8, and TLR9) are localized intracellulary and
are recruited to phagosomes (4, 52), and surface localized TLRs, such as TLR4 and TLR2,
can be internalized and sense bacterial products within the phagosome (53). Certain
pathogens try to avoid phagocytosis by immune cells as a means to avoid this detection and
the induction of antimicrobial mechanisms. Numerous virulence mechanisms resulting in
inhibition of phagocytosis have been described, including inhibition of complement
deposition on the bacterial cell surface, as is the case for Streptococcus pyogenes M protein,
and shielding of the bacterium in fibrin clots via coagulase expression by Staphylococcus
aureus (54, 55). Other classes of pathogens escape phagosomes and replicate within the
cytosol. This strategy avoids detection by TLRs, but renders bacteria susceptible to cytosolic
innate immune sensors. Both Shigella and Listeria monocytogenes utilize this virulence
strategy (21, 56)—mutants that are unable to escape have a heightened production of pro-
inflammatory cytokines, presumably due to increased activation of phagosomal TLRs.

Some bacteria survive within the phagosome despite its antimicrobial nature. This virulence
strategy has several implications for the coevolutionary relationship with TLRs—those that
survive within the phagosome must have a means of inhibiting the antimicrobial
mechanisms induced by engaging these innate receptors. Salmonella, M. tuberculosis,
Legionella, and Chlamydia are among those pathogens capable of surviving within
phagosomes by preventing fusion with lysosomes (57–59). The process by which this occurs
is different for each bacterial species, and in some cases greatly depends on recognizing
features of the phagosome in order to induce virulence genes required for inhibiting the
phagosomal maturation process or protecting the bacterium from antimicrobial onslaught.
For example, in order to neutralize radicals that are produced via TLR-induced recruitment
of NADPH oxidase to the phagosomal membrane, Brucella abortus and Staphylococcus
aureus express superoxide dismutase and catalase (60, 61). Salmonella inhibits recruitment
of NADPH oxidase via injection of effectors into the host cell (62). Several bacteria also
alter their cell wall structure in order to make them less susceptible to antimicrobial peptides
and other intra-phagosomal antimicrobial mechanisms induced by TLR activation (17, 32,
63–66). These critical virulence mechanisms rely on timely induction upon entry into host
cells. The process by which this regulated expression occurs is a common theme for many
intracellular bacteria and relies on the use of cues provided, in many cases, by the innate
immune system. In the next section we focus on examples of bacteria coopting innate
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signals to coordinate expression of virulence genes for survival in diverse host
environments.

Coopting Innate Immune Signals
Various phagosomal parameters induced upon TLR activation can be used by bacteria to
identify their presence within host cells. A number of bacteria utilize phagosomal
acidification for this purpose. For example, Salmonella requires TLR-dependent phagosomal
acidification to coordinate expression of the SPI-2 T3SS, which is required for intracellular
replication (12). Brucella suis also relies on acidification to induce virulence genes (67).
Several cytosolic pathogens, including Listeria and Shigella, require phagosomal
acidification to activate lysins and escape into the cytosol (56). M. tuberculosis utilizes
signals associated with phagosomal maturation to regulate expression of efflux pumps that
increase resistance to certain antibiotics (68). Also, the Salmonella two-component sensor
PhoP/PhoQ, responsible for mediating anti-microbial-resistant LPS modifications, is
induced by cationic antimicrobial peptides present in the phagosome upon activation (64).

These examples suggest that innate immune signals may represent common phagosomal
features used by bacteria to coordinate virulence gene expression and raise an interesting
point of discussion regarding why bacteria would become dependent on immunity-driven
phagosomal signals to induce virulence mechanisms. While we can only speculate about
“why” questions relating to host-pathogen interactions, an emerging theme of these
relationships is that many of the cues leading to virulence gene induction are linked to innate
immune signaling. Certainly all pathogens must regulate expression of their virulence genes,
and a defining feature of a given pathogen may be which cues it uses to induce the genes
required to transition between distinct niches. For example, to cause systemic infection after
oral ingestion Salmonella must traverse the intestinal epithelium, encounter phagocytic
immune cells (mainly macrophages and dendritic cells), survive and replicate within these
cells, and eventually disseminate to systemic sites. This process relies on the expression of
adhesion molecules, two different T3SSs, and a multitude of additional evasion
mechanisms. Moreover, inappropriate induction of virulence genes can negatively impact
each of these steps, and detection of the virulence factors themselves or the consequences of
their action can activate additional innate immune pathways (69, 70). For these reasons,
pathogens must quickly identify signals associated with these transitions between niches.
Thus, while the consequences of innate immune activation may select the emergence of
virulence strategies, these same features of the host response may best define the context in
which these strategies are required.

Conclusion
Throughout this review we have focused on the interaction between pathogenic bacteria and
TLRs, highlighting examples in which bacteria have attempted to evade TLR signaling by
altering their surface structures, interfering with TLR signaling pathways, or escaping,
inhibiting, or subverting phagocytosis. We have focused on examples of bacteria using
innate immune signaling to regulate induction of virulence strategies. The examples and
discussion presented herein speak to the evolution of pathogens with and in response to the
innate immune system and highlight the ability of pathogens to evade or exploit host
responses to enhance their virulence
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Highlights

Pathogens have evolved multiple mechanisms to evade TLR recognition and
signaling

Alterations in bacterial surface structures make pathogens less immunostimulatory

Pathogens encode virulence factors that directly inhibit TLR signaling pathways

Inhibition, escape, or subversion of phagocytosis is a method to avoid TLR detection

Some pathogens coopt innate immune signals to initiate virulence

Arpaia and Barton Page 10

Curr Opin Microbiol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Strategies used by pathogens to evade TLR signaling
Three common evasion strategies utilized by different pathogens are illustrated. Bacteria
that employ these mechanisms (and relevant citations) are indicated beneath each strategy.
See text for discussion.
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