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Abstract
Rationale—During the transition from compensated hypertrophy to heart failure, the signaling
between L-type Ca2+ channels (LCCs) in the cell membrane/T-tubules (TTs) and ryanodine
receptors (RyRs) in the sarcoplasmic reticulum (SR) becomes defective, partially due to the
decreased expression of a TT-SR anchoring protein, junctophilin-2 (JP2). MiR-24, a JP2
suppressing microRNA, is up-regulated in hypertrophied and failing cardiomyocytes.

Objective—To test whether miR-24 suppression can protect the structural and functional
integrity of LCC-RyR signaling in hypertrophied cardiomyocytes.

Methods and Results—In vivo silencing of miR-24 by a specific antagomir in an aorta-
constricted mouse model effectively prevented the degradation of heart contraction but not
ventricular hypertrophy. Electrophysiology and confocal imaging studies showed that antagomir
treatment prevented the decreases in LCC-RyR signaling fidelity/efficiency and whole-cell Ca2+

transients. Further studies showed that antagomir treatment stabilized JP2 expression and
protected the ultrastructure of TT-SR junctions from disruption.

Conclusions—MiR-24 suppression prevented the transition from compensated hypertrophy to
decompensated hypertrophy, providing a potential strategy for early treatment against heart
failure.
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INTRODUCTION
Transition from compensated hypertrophy to decompensated hypertrophy represents a key
step in the development of heart failure.1,2 One of the hallmarks of this transition is the
decreased strength of cardiac contraction.1,3 In heart cells, the contraction is initiated by
periodic transient increases in intracellular Ca2+. During each Ca2+ transient, the Ca2+ influx
through L-type Ca2+ channels (LCCs) in the cell membrane and transverse tubules (TTs)
triggers Ca2+ release from ryanodine receptors (RyRs) in the sarcoplasmic reticulum
(SR).4–7 The structural integrity of the LCC-RyR signaling apparatus relies on a TT-SR
linker protein, known as junctophilin-2 (JP2),8–10 which is down-regulated in all tested
animal models and human specimens of decompensated hypertrophy and heart failure.10–14

Recently, we found that miR-24, a microRNA that suppresses JP2 expression, is up-
regulated in hypertrophy/heart failure.15 Since over-expression of miR-24 suppresses both
JP2 expression and E-C coupling efficiency,15 we hypothesized that miR-24 up-regulation is
a key factor in the transition from compensated hypertrophy to heart failure.

In the present study, we tested this hypothesis by treating aorta-constricted mouse models of
hypertrophy with a specific antagomir16 against miR-24. We found that in vivo silencing of
miR-24 indeed protected the E-C coupling from structural and functional remodeling,
preventing the transition from compensated hypertrophy to decompensated hypertrophy.

METHODS
We created a chronic mouse model of pressure-overload hypertrophy by transverse aortic
constriction (TAC) surgery as described.17 In one of the TAC groups, we suppressed the
expression of miR-24 by periodic injection (Online Figure I) of a chemically modified
antisense oligonucleotide antagomir16 specific for miR-24. An oligonucleotide with
mismatches to miR-24 was injected into another TAC group for negative control (NC).
Single cardiomyocytes were isolated around 30 weeks after surgery for structural and
functional analysis using electron microscopy,10 electrophysiology12 and confocal Ca2+

imaging12 as described. The methods are detailed in the online supplemental materials.

RESULTS
MiR-24 suppression prevented decompensation but not hypertrophy

Compared with that in the sham-operated group, the miR-24 level in isolated ventricular
myocytes exhibited a ~2.5-fold increase in the NC group, but not in the antagomir group
(Fig. 1A), indicating that the up-regulation of miR-24 associated with TAC-induced
hypertrophy was successfully suppressed by the antagomir treatment.

Echocardiographic measurements (Fig. 1B) showed that left ventricle hypertrophy
developed 4 weeks after TAC surgery in our models (Fig. 1C). Around 15 weeks later, the
fractional shortening became decreased (Fig. 1D), indicating a transition from compensated
to decompensated hypertrophy. Notably, although in vivo antagomir treatment did not
interfere with the development of hypertrophy (Fig. 1C), it did prevent the reduction of
fractional shortening (Fig. 1D), indicating that the transition toward decompensated
hypertrophy was effectively prevented by miR-24 suppression.

In vivo miR-24 suppression protected E-C coupling in cardiomyocytes
To examine whether miR-24 suppression protected E-C coupling at the cellular level, we
recorded the Ca2+ transient evoked by whole-cell LCC Ca2+ current (ICa) (Fig. 2A) under a
condition (resting cardiomyocytes equilibrated in 2 mM extracellular Ca2+) where the SR
Ca2+ load was comparable among all groups (Online Figure II). In the NC group, TAC
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induced a significant reduction in Ca2+ transient amplitude without altering ICa density (Fig.
2B), leading to a decreased gain of E-C coupling (Fig. 2C) and reduced fraction of cell
contraction (Fig. 2D). In contrast, the Ca2+ transient amplitude (Fig. 2B), the E-C coupling
gain (Fig. 2C) and the fractional shortening (Fig. 2D) were well maintained after TAC in the
antagomir group, indicating that miR-24 suppression protected the integrity of E-C coupling
in hypertrophied cardiomyocytes.

Ca2+ transients are composed of numerous Ca2+ sparks evoked by LCC openings. Using
unique loose-patch confocal imaging technology,7,12 we investigated the effect of the
antagomir on LCC-RyR intermolecular Ca2+ signaling. To visualize single LCC activity, in
the form of Ca2+ sparklets,7 we included in the pipette solution 20 mM Ca2+ and 10 µM
FPL64176, an LCC agonist. Depolarization of on-cell patches evoked two distinct
populations of local Ca2+ events (Fig. 3A): steep, ryanodine-sensitive Ca2+ sparks from
RyRs; and flat, ryanodine-resistant but nifedipine-sensitive Ca2+ sparklets from individual
LCCs.7 With comparable Ca2+ release duration (time-to-peak), the amplitude of Ca2+ sparks
was significantly lower in the NC group but not in the TAC antagomir group (Fig. 3B),
indicating that the TAC-induced decrease of local Ca2+ release flux was prevented by
antagomir treatment. To quantify the fidelity of LCC-RyR coupling, we measured the
percentage of the first detectable Ca2+ sparklets that successfully triggered Ca2+ sparks
during the depolarization. The fidelity was decreased significantly in the NC group but
unchanged in the antagomir group (Fig. 3C, upper). Also, the percentage of depolarization
pulses that failed to trigger a Ca2+ spark (“miss index”) was increased in the NC group but
not in the antagomir group (Fig. 3C, lower). We also quantified LCC-RyR coupling kinetics
by the latency from the onset of a Ca2+ sparklet to the takeoff of a triggered Ca2+ spark (Fig.
3D). Exponential fitting of the coupling latency (Fig. 3E) showed that the time constant for
LCC-RyR coupling was prolonged in the NC group but unchanged in the antagomir group
(Fig. 3F). These results indicated that miR-24 suppression effectively prevented the
decreased efficiency and slowed kinetics of LCC-RyR signaling in failing heart cells12,18.

MiR-24 suppression prevented structural remodeling of E-C coupling apparatus
Next, we checked the ultrastructural basis of LCC-RyR communication using transmission
electron microscopy. Stereological analysis (Online Figure III) showed that the volume
density and the surface area of TTs apparently coupled to SRs were dramatically decreased
in the NC group but not in the antagomir group (Fig. 4A). The increase of bald TTs and
decrease of junctional SRs were also suppressed by the antagomir. In failing heart cells, TT-
SR junctions were displaced from the Z-line area, exhibiting increased junction-Z distance
(Fig. 4B and C).10 The increased junction-Z distance was not observed in the antagomir
group (Fig. 4C). The spatial span of individual TT-SR junctions is one of the determinants
of LCC-RyR signaling efficiency.10 We found that the antagomir prevented the shrinkage of
individual junction size (Fig. 4D). These data indicated that the defects of TT-SR junctions
in failing cardiomyocytes were prevented by miR-24 suppression.

JP2 is a structural protein maintaining the morphology of TT-SR junctions and efficiency of
LCC-RyR signaling.8–10 We found that the levels of both JP2 mRNA and protein, which
were significantly decreased in the NC group, were unchanged in the antagomir group (Fig.
4E).

DISCUSSION
E-C coupling becomes defective during the chronic transition from compensated
hypertrophy to heart failure.12,20 In the present study, we show that in vivo silencing of
miR-24 in an aortic-constricted mouse model effectively protects cardiomyocytes from
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structural/functional disruption of E-C coupling and prevents the transition toward
decompensated hypertrophy.

MiR-24 is expressed in cardiomyocytes and many other cell types and regulates multiple
target proteins.19–22 We have recently shown that over-expression of miR-24, as observed in
heart failure/hypertrophy models, suppresses JP2 expression and leads to defective E-C
coupling in carrdiomyocytes.15 In the present study, we show that the JP2 down-regulation
is prevented by the miR-24 antagomir in TAC mice. As our bioinformatic analysis was not
able to identify other miR-24 targets with known function related to E-C coupling, the
stabilization of JP2 at least partially explains the protective effects of miR-24 suppression on
TT-SR junctions and E-C coupling. Besides E-C coupling, whether other histological/
molecular hallmarks of decompensation, such as fibrosis, are altered by miR-24 modulation
still needs further in-depth studies.

The pathogenesis of hypertrophy and heart failure involves a variety of intracellular
signaling cascades, including the calcineurin-nuclear factor of activated T-cells (NFAT)
pathway, the calmodulin-dependent protein kinase pathway, and pathways involving other
protein kinases.23,24 The calcineurin-NFATc3 pathway controls the microRNA cluster
miR-23a~27a~24-2, which is up-regulated in hypertrophy.21,22,25 In this cluster, miR-23,
but not miR-24 and miR-27, is found essential in the isoproterenol/aldosterone-induced
cardiomyocyte hypertrophy.25 Agreeing with this report, our present study shows that
miR-24 suppression in vivo does not prevent TAC-induced hypertrophy. Excitingly, miR-24
suppression does prevent the structural and functional degradation of E-C coupling,
indicating that miR-24 up-regulation is important in the transition from compensated
hypertrophy to heart failure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Non-standard Abbreviations

E-C excitation-contraction

ICa whole-cell Ca2+ current through L-type Ca2+ channels

JP2 junctophilin-2

LCC L-type Ca2+ channel

NC negative control

NFAT nuclear factor of activated T-cells

RyR ryanodine receptor

SR sarcoplasmic reticulum.
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TAC transverse aortic constriction

TT transverse tubule
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Novelty and Significance

What Is Known?

• Cardiac excitation-contraction (E-C) coupling becomes defective during the
transition from compensated hypertrophy to heart failure.

• The defective E-C coupling in cardiac myocytes of failing hearts could be
partially attributed to the physical uncoupling between T-tubules and
sarcoplasmic reticulum (SR) associated with the down-regulation of
junctophilin-2 (JP2).

• MiR-24, a microRNA that suppresses JP2 expression, is up-regulated in
hypertrophied/failing cardiomyocytes.

What New Information Does This Article Contribute?

• In vivo suppression of miR-24 does not interfere with transverse aortic
constriction (TAC)-induced hypertrophy, but prevents the progressive decrease
in the contraction of the left ventricule.

• MiR-24 suppression protects cardiomyocytes from TAC-induced defects in L-
type calcium channel- ryanodine receptor Ca2+ signaling.

• Suppression of miR-24 prevents TAC-induced de-stabilization of TT-SR
junctions in cardiac myocytes, presumably by maintaining JP2 levels.

During the transition from compensated hypertrophy to heart failure, cardiac E-C
coupling becomes defective, partially due to the down-regulation of T-tubule SR
anchoring protein - JP2. Because miR-24, which suppresses JP2, is up-regulated in
failing cardiomyocytes, we tested whether suppression of miR-24 protects the integrity of
E-C coupling. We found that in vivo silencing of miR-24 blocks the transition to
decompensate hypertrophy while allowing compensated hypertrophy to persist in mice
subjected to TAC. Cellular studies showed that miR-24 antagomir treatment protects
cardiac myocytes from structural and functional remodeling of E-C coupling apparatus.
These findings suggest that miR-24 may be a potential target in the treatment of heart
failure.
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Figure 1. In vivo miR-24 silencing in mouse hypertrophy models
A, Real-time PCR assay of miR-24 expression in sham (n = 4), NC (n = 3) and antagomir (n
= 3) groups. B, Representative echocardiograms before and 25 weeks after TAC surgery in
NC and antagomir groups. C, Left ventricle wall thickness (PWD, upper) and, D, fractional
shortening (FS, lower) measured by echocardiography. *P <0.05 and **P <0.01 vs. sham;
#P <0.05 and ##P <0.01 vs. NC.
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Figure 2. The effect of miR-24 silencing on E-C coupling
A, Whole-cell patch-clamp and confocal imaging were used to measure ICa density (upper),
Ca2+ transients (middle) and cell shortening (lower). B, ICa density and amplitude of Ca2+

transients were compared among sham (14 cells), NC (19 cells) and antagomir (18 cells)
groups. C, Gain of E-C coupling calculated as the amplitude of Ca2+ transient per unit ICa
density. D, Fractional shortening of cardiomyocytes measured by cell edge-detection of
Ca2+ transients at 0 mV. *P <0.05 and **P <0.01 vs. sham; #P <0.05 vs. NC.
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Figure 3. The effect of miR-24 silencing on LCC-RyR communications
A, Representative loose-patch confocal images (middle) and their time profiles (lower) in
NC and antagomir groups, showing that LCC Ca2+ sparklets (blue arrows) triggered RyR
Ca2+ sparks (red arrows) in a probabilistic manner during 70-mV depolarizations from
resting potential (RP+70, upper). B, Amplitude (upper) and time-to-peak (lower) of
triggered Ca2+ sparks in sham (187 events), NC (150 events) and antagomir (185 events)
groups. C, LCC-RyR coupling fidelity (upper) was indexed by the percentage of the first
apparent Ca2+ sparklet that successfully activated a Ca2+ spark during a patch
depolarization. The miss index (lower) was defined as the percentage of depolarizing pulses
that failed to trigger any Ca2+ spark. The percentages were first determined for each cell,
and then averaged in the sham (59 cells), NC (52 cells) and antagomir (62 cells) groups. D,
Example of a confocal image (upper) and its time profile (lower) from the antagomir group,
illustrating the measurement of LCC-RyR coupling latency from the onset of a Ca2+ sparklet
(blue arrow) to the takeoff of the triggered Ca2+ spark (red arrow). E, The distributions
(bars) and their exponential fits (curves) of coupling latency in sham (109 events), NC (105
events) and antagomir (123 events) groups. F, Comparison of time constants (τL) of the
LCC-RyR coupling latency among groups. *P <0.05 and **P <0.01 vs. sham; ##P <0.01 vs.
NC.
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Figure 4. Effect of miR-24 silencing on the structure of TT-SR junctions
A, Results of stereological analysis of volume density (upper) and surface area per unit
volume (lower) of TTs coupled with SRs, bald TTs and junctional SRs (JSRs) in sham (183
images), NC (154 images) and antagomir (169 images) groups. B, Typical images showing
the measurement of junction-Z distance (red double arrow) between the center of a junction
cleft (red line) and its adjacent Z-line (blue line). C, Comparison of junction-Z distance
(left) and its distribution (right) among sham (183 images), NC (154 images) and antagomir
(169 images) groups. D, TT-SR junction length was measured as the curvilinear length of
the junctional cleft (marked in yellow in B). E,Comparison of JP2 mRNA (left) and protein
(right) expression levels among sham (n = 4), NC (n = 3) and antagomir (n = 3) groups. *P <
0.05 and ** P < 0.01 vs. sham; #P <0.05 and ##P <0.01 vs. NC.
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