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Abstract
Development of nasal immunization for human use is hindered by the lack of acceptable
adjuvants. Although CT is an effective adjuvant, its toxicity will likely prevent its use in nasal
vaccines. This study compared non-toxin adjuvants to CT for their ability to induce protective
antibody responses with nasal immunization. C3H/HeN and C57BL/6 mice were immunized with
rPA formulated with the following adjuvants: CT, IL-1α, LPS, CpG, Pam3CSK4, 3M-019,
resiquimod/R848 or c48/80. Serum and nasal wash cytokine concentrations were monitored 6
hours post-vaccination as biomarkers for acute activation of the innate immune system. Not all of
the adjuvants induced significant changes in innate serum or nasal wash cytokines, but when
changes were observed, the cytokine signatures were unique for each adjuvant. All adjuvants
except Pam3CSK4 induced significantly increased anti-rPA serum IgG titers in both strains of
mice, while only IL-1α, c48/80 and CpG enhanced mucosal anti-rPA IgA. Pam3CSK4 was the
only adjuvant unable to enhance the induction of serum LeTx-neutralizing antibodies in C3H/HeN
mice while c48/80 was the only adjuvant to induce increased serum LeTx-neutralizing antibodies
in C57BL/6 mice. Only CT enhanced total serum IgE in C3H/HeN mice while IL-1α enhanced
total serum IgE in C57BL/6 mice. The adjuvant influenced antigen-specific serum IgG subclass
and T cell cytokine profiles, but these responses did not correlate with the induction of LeTx-
neutralizing activity. Our results demonstrate the induction of diverse innate and adaptive immune
responses by non-toxin nasal vaccine adjuvants that lead to protective humoral immunity
comparable to CT and that these responses may be influenced by the host strain.
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Introduction
Mucosal immunization requires the use of adjuvants for the induction of protective antigen-
specific immune responses and to prevent the induction of tolerance [1]. Cholera toxin (CT)
and labile toxin are known to be potent mucosal adjuvants for nasal immunization [2] but,
their associated adverse effects [3-6] will likely prevent their use in humans. Safe, non-toxin
adjuvants that induce protective immunity are needed for nasal immunization in humans.

Cytokines [7, 8] and toll-like receptor (TLR) ligands are potential non-toxin adjuvants that
can be combined with antigens to enhance immune responses when administered
intranasally [9-12]. Synthetic TLR4 ligands [9] and immunostimulatory DNA TLR9 ligands
[10] have been used as adjuvants in mouse nasal immunization studies. Recently, nasal
immunization was shown to be a safe and effective route of immunization in humans
through use of the MPL-adjuvanted intranasal Norwalk (virus-like particle) vaccine [13].
The mast cell activator compound 48/80 (c48/80) is another potential non-toxin candidate
that has demonstrated effective adjuvant activity in intranasally immunized mice [14, 15]
and rabbits [16, 17].

In this study, we compared the non-toxin adjuvants IL-1α [7, 18], TLR ligands (LPS, CpG,
Pam3CSK4, 3M-019 and resiquimod/R848 [8-12, 19-22]) and c48/80 [14, 15, 23] to CT for
their ability to induce antigen-specific serum IgG, mucosal IgA and serum lethal toxin
(LeTx)-neutralizing antibody responses in two strains of mice using nasal immunization
with anthrax recombinant protective antigen (rPA) as a model system. We hypothesized that
different nasal vaccine adjuvants provide unique activation of the innate and adaptive
immune systems which correlate with the induction of LeTx-neutralizing antibodies.
Additionally, we expected that the relative adjuvant activity would be dependent on the
mouse strain used to perform the immunization studies.

Materials and Methods
Animals

Female C3H/HeN mice were purchased from the National Cancer Institute (Frederick, MD).
Female C57BL/6J mice were purchased from Jackson Laboratory (stock # 000664, Bar
Harbor, Maine). C57BL/6J mice were used as a research mouse strain that is commonly
used to develop genetically-altered mice that may be used in future mechanistic studies.
C3H/HeN mice were used as a TLR4+/+ mouse strain that will allow comparison to previous
studies performed in both C3H/HeN and the C3H/HeJ TLR4−/− mouse strain used to rule
out contaminating LPS influencing adjuvant activity (supplemental Figure 5 in [14]). All
animal procedures were approved by Duke University’s Institutional Animal Care and Use
Committee.

Antigens/adjuvants
All reagents were purchased from the following vendors: rPA, recombinant lethal factor
(rLF) and CT (List Biologicals, Campbell, CA); recombinant mouse IL-1α (R&D Systems,
Minneapolis, MN); c48/80 (Sigma, St. Louis, MO); LPS (from E.coli), Pam3CSK4, CpG
(ODN 1826) and R848 (InVivogen, San Diego, CA). 3M-019 and resiquimod were obtained
from 3M Pharmaceuticals (St. Paul, MN). All adjuvants were reconstituted in sterile water
except for 3M-019 and resiquimod (DMSO stocks) before dilution in PBS in the vaccine
formulation.
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Nasal immunization and sample collection
Mice (5 - 10 per group per experiment; n = 5 - 15 per adjuvant) were intranasally immunized
on days 0, 7 and 21 with rPA (2.5 μg) alone [14] or rPA formulated with 5 μg IL-1α [18], 1
μg CT [18], 15 μg c48/80 [14], 1 μg LPS (TLR4) [24], 10 μg CpG (TLR9) [19], 25 μg
Pam3CSK4 (TLR1/2) [20], 10 μg 3M-019 (TLR7) or 10 μg resiquimod/R848 (TLR7/8)
[21, 22]. All vaccine formulations were delivered in a 15 μl volume under isoflurane
anesthesia (IsoFlo, USP; SOLVAY Animal Health, Mendota Heights, MN). Serum was
collected 6 hours after the first immunization (day 0) as well as on days 14 and 42 as
previously described [25]. Spleens, fecal material and vaginal lavage were collected on day
42 and processed as previously described [8]. Nasal wash was collected at 6 hours and on
day 42 as described in [25].

ELISA
ELISA was used to determine the presence of rPA-specific IgG and IgA antibodies in serum
and mucosal samples as previously described [26].

LeTx neutralization assay
A cytotoxicity assay using J774A.1 mouse macrophages (ATCC #TIB-67; Manassas, VA)
was performed as previously described [26] except that the final concentration for both rPA
and rLF was 187.5 ng/ml.

Splenocyte cultures
Splenocytes were collected on day 42 and re-stimulated as previously described [23].
Briefly, spleens cells were cultured in 48-well culture plates (Costar; Lowell, MA) at 1.25 ×
106 cells per well (in 1 mL) for 5 days with T cell media ± rPA (5 μg/ml) to induce recall
cytokine secretion by antigen-specific T cells. Supernatants were collected and stored at −8°
C until tested for cytokine content by multiplex bead assay.

Cytokine/chemokine and total serum IgE
Cytokine/chemokine levels were measured in 6 hour serum and nasal wash samples using a
mouse multi-plex kit (Bio-Rad; Hercules, CA). T cell cytokine levels were measured in
splenocyte culture supernatants using a flourokine MAP mouse (C3H/HeN mice, R&D
Systems; Minneapolis, MN) or a mouse multi-plex kit (C57BL/6 mice, Bio-Rad; Hercules,
CA). Total IgE was measured in day 42 serum using a mouse IgE single plex kit (C3H/HeN
mice; Millipore; Billerica, MA) or an IgE ELISA (C57BL/6 mice; Biolegend, Mouse IgE
ELISA MAX™, San Diego, CA).

Statistics
One-way ANOVA/Tukey’s multiple comparisons and paired Student’s T-test were
performed using GraphPad PRISM 5 software (LaJolla, CA). Cytokine concentrations
(innate, T cell cytokines) were log10 transformed prior to statistical analysis. Data values are
reported as mean ± standard deviation for all figures while mean, lower and upper
confidence intervals are presented for innate cytokine responses described in Table 1. A p
value < 0.05 was considered statistically significant.

Results
Non-toxin nasal adjuvants differentially activate the innate immune system in vivo

Adjuvants are known to activate the innate immune system to produce elevated serum
cytokines rapidly after vaccination [25, 27-29]. Nasal immunization studies were performed
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to compare non-toxin adjuvants to CT for their ability to activate the innate immune system
in vivo and to determine if effective nasal adjuvants exhibit a common cytokine signature
that correlated with adjuvant activity. LPS was used as a positive control due to its ability to
rapidly induce cytokine production after nasal delivery[30]. Mice were nasally immunized
with rPA alone or formulated with CT, IL-1α, c48/80, LPS, CpG, Pam3CSK4, 3M-019
(C3H/HeN mice only), resiquimod(C3H/HeN mice) or R848 (C57BL/6 mice). The dose of
each adjuvant used was chosen based on previously-described mouse immunization studies
[14, 18-22, 24]. Serum (C3H/HeN and C57BL/6) and nasal wash (C57BL/6 only) were
collected 6 hours post-immunization and assayed for cytokine/chemokine levels (Table 1).
Although CT is a classic nasal vaccine adjuvant, it did not induce changes in serum
cytokines after nasal delivery to C3H/HeN mice. However, nasal delivery of CT to C57BL/6
mice induced elevated serum IL-5, IL-6 and KC 6 hours after nasal delivery. In C3H/HeN
mice, IL-1α significantly increased G-CSF, KC, IL-6 and MCP-1 when compared to mice
immunized with rPA alone. Similar results were observed with C57BL/6 mice except that
serum MIP-1β levels were also elevated after nasal delivery of IL-1α and the magnitude of
the cytokine elevations were influenced by the mouse strain. An increase in IL-5 was
observed with c48/80 in both strains of mice while c48/80 also induced increased IL-6
production in C57BL/6 mice. Although LPS did not induce elevated serum cytokines in
C3H/HeN mice, LPS induced significant elevations of IL-6 and G-CSF after nasal delivery
in C57BL/6 mice. Pam3CSK4 induced elevated serum IL-5, IL-6 and G-CSF in both strains
of mice and also induced elevated serum KC, MCP-1 and MIP-1β in C57BL/6 mice.
3M-019 and resiquimod both induced significantly increased serum levels of G-CSF,
MCP-1, MIP-1β and RANTES in C3H/HeN mice. Nasal delivery of R848 induced serum
cytokines in C57BL/6 mice similar to resiquimod but also induced increased serum IL-6.
Nasal delivery of CpG as a vaccine adjuvant did not induce increases in any cytokine/
chemokine tested in either strain of mice. These results demonstrate that nasal vaccine
adjuvants provide unique activation of the innate immune system, based on serum cytokine
and chemokine production, and that the adjuvant activity is significantly influenced by the
host strain.

Nasal wash cytokine and chemokine concentrations were monitored in C57BL/6 mice to
determine if local activation of the innate immune system could be observed after nasal
immunization and to determine if nasal cytokine/chemokine profiles mirrored serum
profiles. Cytokines and chemokines that were elevated in the serum after nasal
immunization (IL-5, IL-6, G-CSF, KC, MCP-1, MIP-1β and RANTES) were monitored in
nasal wash samples. However, only IL-6, G-CSF and KC were significantly elevated in
nasal wash samples. IL-1α, LPS, and Pam3CK4 induced elevated IL-6, G-CSF and KC in
nasal wash 6 hours after nasal immunization. R848 induced elevated IL-6 and G-CSF while
CT and c48/80 induced elevated IL-6 in nasal wash after vaccination. As observed in the
serum, CpG used as a nasal vaccine adjuvant did not increase any cytokine/chemokine
tested. These results demonstrate that nasal vaccine adjuvants may induce local cytokine/
chemokine production after nasal delivery but the profile and magnitude of cytokine/
chemokine production is dependent upon the adjuvant used.

Nasal immunization with rPA formulated with non-toxin adjuvants induces antigen-specific
serum IgG comparable to CT

Serum was collected from nasally-immunized mice on days 14 and 42 to determine the
influence of the adjuvants on the kinetics of serum anti-rPA IgG antibody responses (Figure
1A and B). On day 14 in C3H/HeN mice, CT (7.8 ± 2.1) did not significantly enhance anti-
rPA IgG compared to immunization with rPA alone (4.5 ± 1.2). However, serum anti-rPA
IgG log2 endpoint titers induced by IL-1α (13.5 ± 3.5) and c48/80 (13.1 ± 3.8) were
significantly greater than the titers induced by all other adjuvants with the exception of CpG
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(9.8 ± 2.5). LPS, CpG and 3M-019 were the only TLR ligands which enhanced anti-rPA IgG
(8.2 ± 4.0, 9.8 ± 2.5 and 8.7 ± 2.9, respectively) on day 14 compared to rPA alone. In
C57BL/6 mice, CT (10.4 ± 1.5), c48/80 (17.2 ± 1.8) and CpG (9.4 ± 4.8) induced serum
anti-rPA IgG titers greater than those induced by rPA alone (4.2 ± 0.6). c48/80 induced the
highest anti-rPA IgG titers in C57BL/6 mice which were significantly higher than anti-rPA
IgG titers induced by any other adjuvant.

Three weeks after the final immunization (day 42) in C3H/HeN mice, serum anti-rPA IgG
titers in all adjuvanted groups were significantly increased compared to mice immunized
with rPA alone (11.1 ± 2.8). CT induced anti-rPA IgG titers (21.3 ± 1.8) significantly
greater than those induced by Pam3CSK4 (18.6 ± 2.4) while titers induced by IL-1α (22.9 ±
1.8) were enhanced compared to LPS (19.5 ± 1.8), Pam3CKS4 (18.6 ± 2.4) and 3M-019
(19.3 ± 1.2). Day 42 serum anti-rPA IgG titers were not significantly different between
c48/80 (20.7 ± 1.2) and the TLR ligands (LPS, CpG; 20.5 ± 2.1, Pam3CSK4, 3M-019, and
resiquimod; 20.1 ± 2.1). At day 42 in C57BL/6 mice, all adjuvants except Pam3CSK4
provided significant adjuvant activity and induced the production of elevated serum anti-rPA
IgG titers compared to immunization with antigen alone. IL-1α (17.6 ± 4.0), c48/80 (23.4 ±
0.9) and CpG (20.4 ± 3.7) induced anti-rPA IgG responses that were significantly greater
than anti-rPA IgG titers induced by rPA alone (7.0 ± 4) and rPA plus Pam3CSK4 (11.2 ±
2.8).

IgG anti-rPA subclasses at day 42 were monitored to determine the influence of adjuvant on
IgG subclass responses (Figure 1C). In C3H/HeN mice, CT and the non-toxin adjuvants
IL-1α, c48/80, LPS and Pam3CSK4 induced significantly higher serum anti-rPA IgG1 titers
than IgG2a; whereas CpG was the only adjuvant to induce significantly higher IgG2a titers
than IgG1. 3M-019 and resiquimod induced a balanced anti-rPA IgG1/IgG2a response. In
C57BL/6 mice, CT, IL-1α, c48/80 and LPS induced significantly higher serum anti-rPA
IgG1 titers than IgG2c. As with C3H/HeN mice, CpG was the only adjuvant to induce
significantly higher IgG2c titers than IgG1 while R848 induced a balanced anti-rPA IgG1/
IgG2c response.

None of the non-toxin adjuvants induced elevated total serum IgE in C3H/HeN mice at day
42, in contrast to CT (Figure 2). In C57BL/6 mice, only IL-1α induced significantly
elevated total serum IgE at day 42. Collectively, these results demonstrate that non-toxin
adjuvants may be selected that have the capacity to induce significantly elevated antigen-
specific serum IgG, preferentially induce antigen-specific IgG1, IgG2a/c or a balanced IgG
subclass response while not influencing serum IgE levels, which is a potential adverse
effect.

Non-toxin nasal adjuvants differentially induce serum LeTx-neutralizing activity
A LeTx neutralization assay was used to determine if adjuvant-induced anti-rPA serum
antibodies also possessed protective LeTx-neutralizing activity (Figure 3) since binding
antibodies measured by ELISA may not predict the protective capacity of vaccine-induced
antibodies. At day 42 in C3H/HeN mice, all adjuvants except Pam3CSK4 (7.3 ± 1.9)
exhibited LeTx-neutralizing activity (CT; 8.3 ± 1.9, IL-1α; 11.1 ± 2.2, c48/80; 10.3 ± 1.3,
LPS; 8.2 ± 1.5, CpG; 9.0 ± 1.7, 3M-019; 10.2 ± 2.3 and resiquimod; 9.8 ± 1.4) significantly
greater than immunization with rPA alone (undetectable). In C57BL/6 mice, only c48/80
induced significantly elevated serum LeTx-neutralizing antibodies (12.2 ± 1.9) that were
significantly greater than mice immunized with rPA alone (6.2 ± 0.6), or rPA combined with
CT (7.2 ± 1.3), LPS (7.7 ± 2.4) or Pam3CSK4 (undetectable). Our results indicate that nasal
immunization with rPA formulated with non-toxin adjuvants has the potential to induce high
serum titers of anti-rPA antibodies with LeTx-neutralizing activity comparable or superior to
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CT and that the ability of an adjuvant to induce a protective immune response is influenced
by the host strain.

Non-toxin nasal adjuvants differentially induce antigen-specific mucosal IgA
IgA is the principal antibody isotype found in mucosal secretions and nasal immunization is
capable of inducing humoral immunity at mucosal tissues such as the gastrointestinal and
genitourinary tracts [8]. To evaluate the ability of the non-toxin adjuvants to enhance the
induction of antigen-specific IgG and IgA in mucosal compartments, fecal (C3H/HeN and
C57BL/6; Figure 4A) vaginal (C3H/HeN and C57BL/6; Figure 4B) and nasal wash (C57BL/
6; Figure 4C) samples were collected on day 42 and assayed for anti-rPA IgA and IgG
(Figure 4). Day 42 rPA-specific fecal IgA titers were significantly increased in the IL-1α
group (5.2 ± 1.3) compared to all other groups in C3H/HeN mice. In C57BL/6 mice, fecal
anti-rPA fecal IgA titers were significantly elevated in the c48/80 (6.4 ± 0.5) and CpG (5.2 ±
2.8) adjuvant groups.

In C3H/HeN mice, vaginal anti-rPA IgA titers were significantly increased in the IL-1α (6.8
± 3.5) and CpG (6.4 ± 1.5) adjuvant groups compared to rPA alone (undetectable) or rPA
plus c48/80, Pam3CKS4 and 3M-019. With C57BL/6 mice, CpG was the only adjuvant to
induce elevated vaginal anti-rPA IgA titers (4.5 ± 2.0).

Nasal wash samples were only collected in C57BL/6 mice and IL-1α was the only adjuvant
to induce significantly elevated nasal wash anti-rPA IgA responses (4.0 ± 1.6). Although
many adjuvants provided effective nasal adjuvant activity as demonstrated by elevated
antigen-specific serum IgG, the ability of an adjuvant to induce antigen-specific mucosal
IgA did not correlate with its ability to induce antigen-specific serum IgG ELISA or LeTx-
neutralizing antibody responses.

Non-toxin nasal adjuvants differentially induce antigen-specific cytokine responses
Antigen-specific cytokine responses were monitored to determine if nasal adjuvants induced
unique adaptive cellular responses (Figure 5). For example, CT and CpG are known to
induce Th2 and Th1-biased immune responses, respectively [31-33]. In C3H/HeN mice,
antigen-stimulated cells isolated from mice immunized with rPA + c48/80 had the highest
IL-4 (Figure 5A) production (69.2 ± 27.8 pg/ml) while CT (17.3 ± 7.4) and Pam3CSK4
(20.0 ± 12.1) also induced antigen-stimulated IL-4 production that was significantly elevated
when compared to rPA-stimulated IL-4 production in cells isolated from mice immunized
with rPA alone. In C57BL/6 mice, all adjuvants except CpG induced significantly elevated
IL-4 levels when compared to mice immunized with rPA alone. LPS induced the highest
antigen-stimulated IL-4 production (89.32 ± 50.8) in C57BL/6 mice.

Antigen-stimulated IL-5 (Figure 5B) production was significantly increased in C3H/HeN
mice with the use of CT (1,636 ± 903), IL-1α (807 ± 485) and c48/80 (4046 ± 1877) as
nasal vaccine adjuvants with c48/80 inducing the greatest IL-5 production. rPA-induced
IL-5 production in C57BL/6 mice was significantly elevated by the use of CT (198 ± 191),
IL-1α (558 ± 556), c48/80 (477 ± 191), LPS (110 ± 63) and R848 (191 ± 282) with IL-1α
inducing the greatest IL-5 production.

In both strains of mice, antigen-stimulated IL-17 (Figure 5C) production was significantly
elevated by all adjuvants when compared to IL-17 production in cells isolated from mice
immunized with rPA alone. In C3H/HeN mice, CT (20885 ± 1479), IL-1α (25520 ± 2278),
LPS (20570 ± 2373) and Pam3CSK4 (19362 ± 3944) induced statistically similar antigen-
stimulated IL-17 responses. In C57BL/6 mice, CT (5437 ± 2733), IL-1α (5704 ± 2436) and
LPS (3709 ± 2653) induced statistically similar antigen-stimulated IL-17 responses.
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Antigen-stimulated IFNγ (Figure 5D) production was the greatest for CpG in both C3H/
HeN (3265 ± 341) and C57BL/6 (1059 ± 1365) mice. However, resiquimod also induced
significantly elevated antigen-stimulated IFNγ production in C3H/HeN mice (2883 ± 575)
and all adjuvants induced significantly increased antigen-stimulated IFNγ production in
C57BL/6 mice. These results demonstrate that non-toxin nasal adjuvants induce diverse
antigen-specific cytokine profiles and that the host utilized may influence the magnitude and
profile of antigen-stimulated T cell cytokine production observed.

Discussion
In this study we have demonstrated that non-toxin adjuvants (IL-1α, c48/80 and TLR
ligands) coadministered with anthrax rPA have the ability to provide adjuvant activity
comparable or superior to the classic mucosal adjuvant CT for the induction of antigen-
specific serum IgG, mucosal IgA and serum LeTx-neutralizing antibody responses after
nasal immunization. Adjuvant-induced innate and adaptive immune signatures were unique
to each adjuvant, were influenced by the mouse strain used as the host and did not predict in
vivo adjuvant performance. This study provides useful data to allow comparison of the
adjuvant activity of select non-toxin adjuvants for nasal delivery. Additional studies are
needed to determine mechanistic differences between these nasal vaccine adjuvants.

It is important to emphasize that our nasal immunization studies utilized a very low dose of
recombinant protective antigen (rPA) as the vaccine antigen. In our studies, we utilized 2.5
μg of rPA in each vaccine dose. This is in contrast to doses of 10, 25 and 40 μg utilized by
others [31]. As others have reported[32], induction of LeTx neutralizing antibodies after
nasal immunization is dose dependent with higher antigen doses inducing higher LeTx
neutralizing antibody responses. We intentionally selected a low dose of antigen to provide a
more sensitive assay to compare the efficacy of the test adjuvants using the induction of
LeTx neutralizing antibodies as the indicator of effective adjuvant activity. We expected that
the use of a low dose of rPA would provide an experimental system where some adjuvants
would induce LeTx neutralizing antibody responses statistically different than other
adjuvants within or between strains of mice and allow for a more robust comparison of
adjuvant activity.

Although the adjuvant doses chosen were based on previously-published studies [18] [24]
[14, 19-22], the adjuvant dose used may influence the induction of antigen-specific
responses. Adjuvant dose-response studies are thus needed to determine the potential of the
adjuvants to maximize induction of LeTx-neutralizing antibodies. Furthermore, the nasal
vaccines were in an aqueous formulation and other formulations (e.g., dry powder [17, 34,
35]) may alter adjuvant activity and vaccine immunogenicity.

C3H/HeN mice have been shown to be less responsive to the adjuvant effect of orally-
delivered CT compared to other strains of mice [36] suggesting that the nasal adjuvant
activity of CT may also be impaired in C3H/HeN mice used in the present study. However,
we observed that CT was statistically-equivalent to the most potent non-toxin adjuvant
(IL-1α) on day 42 for the induction of antigen-specific serum IgG in C3H/HeN mice. While
CT failed to provide significant adjuvant activity based on day 14 serum IgG titers in C3H/
HeN mice, CT provided effective adjuvant activity in C57BL/6 mice at day 14 suggesting
that the adjuvant activity of CT was influenced by the mouse strain. In contrast, although CT
induced significantly elevated LeTx neutralizing antibodies in C3H/HeN mice at day 42, CT
did not induce significantly elevated LeTx neutralizing antibodies in C57BL/6 mice under
the conditions tested. Despite the differences observed with the use of CT in the two mouse
strains, some consistencies were also observed between the mouse strains. Pam3CSK4 failed
to induce serum LeTx-neutralizing activity after three immunizations in both strains of mice
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while c48/80 was the only adjuvant to induce LeTx-neutralizing activity in both C3H/HeN
and C57BL/6 mice. Our results highlight the importance of testing adjuvants and vaccine
regimens in different host strains to determine if the adjuvants provide reproducible adjuvant
activity in hosts with different genetic backgrounds.

Serum anti-rPA IgG ELISA titers at day 42 did not correlate with day 42 serum LeTx
neutralizing antibody responses. For example, in C3H/HeN mice, Pam3CSK4 induced
significantly elevated rPA-specific IgG ELISA responses but did not induce LeTx-
neutralizing antibody responses. In C57BL/6 mice, IL-1α, c48/80 and CpG induced
statistically similar serum anti-rPA IgG ELISA responses while c48/80 was the only
adjuvant that induced LeTx-neutralizing antibody responses at day 42. Potential
explanations for the discrepancy between day 42 serum rPA-specific IgG ELISA titers and
LeTx-neutralizing activity may include adjuvant-induced early effects on innate cytokine
signaling. Our results confirm the ability of vaccine adjuvants to rapidly induce cytokine
production by activation of the innate immune system as reported by others for parenteral
[28, 29] and nasal immunization [25]. However, there were no obvious correlations between
any individual cytokine/chemokine measured in 6 hour serum or nasal wash samples and
day 42 serum LeTx-neutralizing activity (data not shown). Despite exhibiting significant
nasal adjuvant activity for the induction of serum anti-rPA IgG responses, CpG did not
induce significant changes in 6 hour serum or nasal wash cytokines in either strain of mice
suggesting that the timing of sample collection may not have been optimal for this adjuvant.
Alternatively, adjuvant-induced serum and/or nasal wash cytokine changes at 6 hours post-
immunization as biomarkers of activation of the innate immune system are simply not
reliable indicators of adjuvant effectiveness. Indeed, we have recently reported that IL-1α
adjuvant-induced secretion of similar innate cytokines (including IL-6, G-CSF and KC) after
nasal immunization was not required for the induction of maximal LeTx-neutralizing
activity [25].

The differential induction of antigen-specific adaptive immune responses may also explain
the discrepancy between day 42 serum rPA-specific IgG ELISA titers and LeTx-neutralizing
activity. However, serum IgG subclass data suggested that LeTx-neutralizing activity did not
favor anti-rPA IgG1 or IgG2a in C3H/HeN mice since adjuvants that induced greater IgG1
responses (CT, IL-1α, c48/80, and LPS), greater IgG2a responses (CpG) or balanced IgG1/
IgG2a responses (3M-019 and resiquimod) were all able to induce significantly elevated
LeTx-neutralizing antibody responses. In C57BL/6 mice, c48/80 was the only adjuvant to
induce significantly elevated serum LeTx-neutralizing antibodies. However, IL-1α induced
similar antigen-specific IgG subclass responses and T cell cytokine profiles to c48/80 but
did not induce elevated serum LeTx neutralizing antibody responses. Our findings are
consistent with previous reports showing that CpG, 3M-019 and resiquimod/R848 adjuvants
favor the induction of Th1 cytokine-biased immune responses and IgG2a/c production (a
Th1-dependent IgG subclass) [22, 32, 33, 37, 38] in contrast to Th2-skewing adjuvants like
CT [31]. Our results indicate that antigen-specific serum IgG subclass and T cell cytokine
responses are influenced by the adjuvant utilized, but diverse adaptive responses are equally
capable of supporting the induction of effective LeTx-neutralizing activity.

Mucosal rPA-specific IgA and IgG were significantly increased on day 42 within the CT,
IL-1α and CpG adjuvant groups in C3H/HeN mice and in the IL-1α, c48/80, and CpG
groups in C57BL/6 mice. Our expectation was that mucosal IgA and IgG titers would be
low relative to serum IgG due to the low dose of rPA used and that the mucosal responses
induced in the current study would lack LeTx-neutralizing activity. Future studies are
needed to determine if increasing the dose of rPA and/or adjuvant in the vaccine formulation
improves mucosal antigen-specific IgA responses as described by Boyaka et al. [31].
Although the induction of serum LeTx-neutralizing anti-rPA IgG is relevant to protection
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against inhalation anthrax [35, 39], additional studies are needed using other model antigen
systems to determine the efficacy of these adjuvants in the induction of protective mucosal
immunity.

In addition to being highly efficacious, any vaccine adjuvant candidate must also be
evaluated for safety. The use of CT as a vaccine adjuvant is associated with the induction of
allergic sensitization that includes elevated antigen-specific and total IgE production,
anaphylactic reactions and local inflammation in mouse models of mucosal immunization
[3, 6, 40-42]. While the non-toxin adjuvants did not induce elevated IgE responses in C3H/
HeN mice, IL-1α induced significantly elevated serum IgE responses in C57BL/6 mice.
However, the significance of the elevated IgE responses after immunization with IL-1α is
not clear since the total IgE concentrations induced by IL-1α were not significantly different
than the total IgE concentrations induced by CpG, an adjuvant associated with Th1-type
immune responses and acceptable safety in humans[43]. CT induced elevated total serum
IgE responses in C3H/HeN mice but not in C57BL/6 mice, again demonstrating the
influence of the host strain on the responses observed. Regardless of the total serum IgE
responses measured, immediate hypersensitivity responses were absent in all mice in this
study (data not shown). Previous studies in humans using some of these non-toxin
compounds suggest that they may be suitable for human use. For example, c48/80 has been
safely used in humans for dermal applications [44]. Also, the TLR agonists MPL [45, 46],
CpG [47], LPS [48] have been safely administered in humans nasally or by lung instillation.
Furthermore, resiquimod [49] has been well-tolerated as vaccine and therapeutic adjuvants,
respectively, in cancer patients.

In conclusion, this study highlights the potential of non-toxin nasal vaccine adjuvants to
induce serum LeTx-neutralizing antibody responses comparable or superior to CT without
the adverse effects associated with CT. Although one goal of this study was to identify
adjuvant-induced innate and adaptive factors that could serve as a biomarkers for effective
adjuvant activity, our results suggest that the adjuvants tested induced unique innate
cytokine profiles and Th1/Th2/Th17 responses which did not predict the ability of the
adjuvants to induce high serum antibody titers with LeTx-neutralizing activity. Future
studies are required to identify the mechanisms of action of non-toxin nasal vaccine
adjuvants.
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Highlights

• Non-toxin adjuvants were compared to cholera toxin for nasal adjuvant activity

• Adjuvant-dependent innate and adaptive cytokine responses were monitored as
biomarkers of adjuvant activity

• Non-toxin adjuvants were as effective as cholera toxin when used as nasal
adjuvants

• Each adjuvant exhibited a unique biomarker signature
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Figure 1. Nasal immunization with rPA formulated with non-toxin adjuvants induces antigen-
specific serum IgG comparable to CT
C3H/HeN or C57BL/6 mice were nasally immunized with rPA (2.5 μg) alone or rPA plus
CT (1 μg), IL-1α (5 μg), c48/80 (15 μg), LPS (1 μg), CpG (10 μg), Pam3CSK4 (25 μg),
3M-019 (10 μg; C3H/HeN mice only) or resiquimod/R848 (10 μg) on days 0, 7 and 21.
Serum was collected on days 14 (A) and 42 (B) and assayed by ELISA to determine anti-
rPA IgG log2 endpoint titers. The data represents 2-3 combined experiments for C3H/HeN
mice (n = 15 per group, except for the 3M-019 and resiquimod groups in which n = 10) and
one experiment for C57BL/6 mice (10 mice in the antigen alone group, 5 mice in each
adjuvant group). Bars represent mean ± standard deviation. For day 14 and 42 IgG titers,
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statistical analysis was performed using one-way ANOVA and Tukey’s multiple comparison
test. The numbers above the error bars indicate which groups (1-9) are significantly different
from the indicated group. Day 42 samples were also tested for anti-rPA IgG1 and IgG2a/c
responses (C). For day 42 IgG1 and IgG2a/c titers, paired Student’s T-test was used to
compare IgG1 and IgG2a/c titers within each adjuvant group. D=IgG1 titer significantly
greater than IgG2a/c titer within the same adjuvant group. E=IgG2a/c titer significantly
greater than IgG1 titer within the same adjuvant group. Samples that had no detectable anti-
rPA antibody were assigned a log2 value of one less than the starting log2 dilution for
statistical analysis.
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Figure 2. Total serum IgE after nasal immunization with rPA formulated with non-toxin
adjuvants
Mice were immunized as described in Figure 1. Total IgE was measured in day 42 serum.
Bars represent mean ± standard deviation Statistical analysis was performed using one-way
ANOVA and Tukey’s multiple comparison test. The numbers above the error bars indicate
which groups (1-9) are significantly different from the indicated group.
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Figure 3. Non-toxin adjuvants differentially influence the induction of serum LeTx-neutralizing
activity after nasal immunization with rPA
Mice were immunized as described in Figure 1. A lethal toxin (LeTx) neutralization assay
with J774A.1 macrophages was used to measure functional anti-rPA antibody responses in
serum collected on days 42 of the nasal immunization regimen. The percent neutralization
was plotted versus serum log2 dilutions and the linear range was used to calculate the serum
log2 endpoint titer required for a 50% inhibition of LeTx-induced J774A.1 cell death (LeTx
NT50). Data is expressed as mean ± standard deviation LeTx NT50. Statistical analysis was
performed using one-way ANOVA and Tukey’s multiple comparison test. The numbers
above the error bars indicate which groups (1-9) are significantly different from the
indicated group. Samples that had no detectable LeTx-neutralizing activity were assigned a
value of one less than the starting serum log2 dilution for statistical analysis.
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Figure 4. Nasal immunization with rPA formulated with non-toxin adjuvants induces antigen-
specific mucosal IgA and IgG
Mice were immunized as described in Figure 1. The data represents one experiment in C3H/
HeN mice and one experiment in C57BL/6 mice (4 – 5 mice per group). Day 42 fecal (A),
vaginal (B) and nasal wash (C) samples were collected and tested for the presence of anti-
rPA IgG and IgA by ELISA to determine anti-rPA IgA and IgG log2 endpoint titers. Bars
represent mean ± standard deviation. Statistical analysis was performed using one-way
ANOVA and Tukey’s multiple comparison test. The numbers above the error bars indicate
which groups (1-9) are significantly different from the indicated group. Samples that had no
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detectable anti-rPA IgG or IgA titers were assigned a log2 value of one less than the starting
log2 dilution for statistical analysis.
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Figure 5. Non-toxin adjuvants differentially influence the induction of antigen-specific
lymphocyte cytokine responses after nasal immunization with rPA
Mice were immunized as described in Figure 1. Splenocytes were harvested on day 42 and
re-stimulated in culture at 1.25 × 106 cells per well (48 well plate) with or without rPA (5
μg/ml) to induce recall cytokine secretion by antigen-specific T cells. Supernatants were
collected after 5 days of re-stimulation and assayed using Bio-Plex to identify protein levels
of (A) IL-4, (B) IL-5, (C) IL-17 and (D) IFNγ. This data represents one experiment for each
mouse strain (n = 5 per group). Each bar represents mean pg/ml ± standard deviation.
Statistical analysis was performed using log10 transformed cytokine concentrations in the
rPA stimulated cultures followed by ANOVA and Tukey’s multiple comparison test. The
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numbers above the error bars indicate which groups (1-9) are significantly different from the
indicated group.
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