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RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable
advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts.
Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically
rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological
systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss
several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI),
autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and
simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.

1. Introduction

RNA-sequencing (RNA-seq) has fundamentally become the
choice of studies of transcriptome [1–6]. From the conven-
tional technologies in microarray and beginning of digital
sequencing SAGE [7], a significant hurdle in the analysis of
the transcriptome arises from insufficient samples, specifi-
cally, in identification of the temporal patterns of gene expres-
sionmeasured at a series of discrete time points. Several data-
mining techniques and statistical methodologies have proven
to be useful to search temporal gene expression patterns
in microarrays [3, 8–34]. Some people have already started
to adapt the way we applied in microarrays for RNA-seq
data. The main drawback, however, is the loss of discreteness
property of read count on transcriptional level, albeit there
are no additional advantages in analytical aspects on counts.
Given experimental design with sufficient replicate, time
points, and sequencing depth [4, 5, 34], attempts to RNA-seq
specificmethodologies to preserve the elegant count property
in time coursewill contribute to development and application
in this area ahead.The last four years witnessed the astonish-
ing publication of statistical methodology studies to identify

differential expression between two or amongst multiple
groups. Nonethelessmost analysis tools remain tied to a static
model approach without respect to time, albeit the incisive
ultrahigh-throughput sequencing data now provides time
series gene expression profile. As the first step towards under-
standing temporal dynamics in RNA-seq data, temporal anal-
yses often rely on the simple pairwise comparisons [35–47] to
infer differentially expressed genes/isoforms at a specific time
point versus a reference time point. Differential expression
results are then combined to characterize the dynamics over
time. Commonly used microarray data analysis methods,
such as limma [40], log linear models [39], and ANOVA [26],
after variance-stabilizing transformation have also been used
for temporal data analysis in RNA-seq as another alternative.
However, the very few replications for such data limit the
power of these methods. Statistical inference from such
high dimensional data structure with the large number of
variables and very few observations has presented substantial
challenge. More importantly, the pairwise approaches fail
to account for the strong temporal dependencies; indeed,
higher correlation between neighboring time points is clearly
revealed in published gene expression profiles [48] and our
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real data applications (see Figure 2).Therefore, these pairwise
approaches are suboptimal without explicitly modeling the
expression dynamics over time nor can the time points that
contribute most to time evolution trajectory pattern of a
gene’s expression be identified. More descriptive methods,
such as clusteringmethods, have also been applied to identify
coexpressed gene sets using RNA-seq data [49–51]. Such
unsupervised clustering methods implicitly assume that data
collected at different time points are independent, ignoring
the sequential structure in time series data. It is apparent
that potentially useful information on gene regulation and
dynamics may be lost with these suboptimal methods, and
there is a need to develop statistical methods that can
appropriately model and analyze RNA-seq data. We discuss
several methods that explicitly model the time-dependent
nature of the time series data in this paper. We describe
the identification of temporal differential expression (TDE)
analyses as well as the ranking of genes to show temporal
trajectories with statistical significance. We also discuss the
application of time-lagged autoregressive AR(1) models to
identify TDE genes as well as hiddenMarkovmodels (HMM)
to classify different expression patterns by posterior probabil-
ities of latent states. These methods can be applied to study
complex factorial designs that interrogate multiple biological
conditions simultaneously where multiple time points are
studied under two or more biological conditions. Multivari-
ate approaches are presented to identify temporal patterns in
coexpressed gene groups and quantify coupled relationship of
two distinct trajectories. Here we report an in-depth analysis
of temporal patterns based on nonparametric and Bayesian
approaches that incorporate the context of inherent time
dependence of gene expression per se. When these methods
are applied for published real datasets, both static and
dynamic methods performed well for most temporal genes;
however, dynamic methods had particularly a slight edge at
low and moderate expression levels. That may be particularly
advantageous for years to come for application to data with
relatively low signals such as depression and aging data,
which on expression compared to tumors in disease tissues.

2. Statistical Methods

2.1. Time Series Data Structure. Suppose that a gene expres-
sion profile matrix contains 𝑖 = {1, . . . , 𝐺} genes and 𝑗 =

{1, . . . , 𝑚}, 𝑚 different time stages. The 𝑖th gene expression
profile vector, 𝑌

𝑖
= [𝑦

𝑖
(𝑡
1
), . . . , 𝑦

𝑖
(𝑡
𝑚
)]
𝑡,corresponds to a

sequential vector of time points and biological replicates
within a time point, namely, where 𝑦

𝑖
(𝑇 = 𝑡

𝑗
) =

[𝑦
𝑖𝑡𝑗𝐿=1

, . . . , 𝑦
𝑖𝑡𝑗𝐿=𝑙

] is a vector composed of intraexpression
measurements by 𝐿 = ℓ biological replicates at time point
𝑇 = 𝑡

𝑗
. We consider a sequence of observations on gene

expression profile dataset, made at 𝑚 different time points;
accordingly 𝑚 dimensional gene expression vector of gene 𝑖
with observed read counts over time is used hereafter. 𝑦

𝑖𝑗
=

[𝑦
𝑖𝑗1
, 𝑦
𝑖𝑗2
, . . . , 𝑦

𝑖𝑗𝑐
]
𝜏 is 𝐶 = 𝑐 dimensional gene expression

vector of gene 𝑖, time point 𝑗. The expression profile is a
factorial time course experiment and the vector 𝑦

𝑖𝑗
represents

the intraexpression profile of 𝑐 biological condition within a

time point. 𝑦
𝑖𝑗𝑐

= [𝑦
𝑖𝑗𝑐1

, 𝑦
𝑖𝑗𝑐2

, . . . , 𝑦
𝑖𝑗𝑐𝑙
]
𝜏 is an 𝑙 dimensional

gene expression vector of gene 𝑖, time point 𝑗, 𝑐 biological
condition, and 𝑙 different biological individual replicates. If
there are not any treated biological conditions, the gene
expression time series is simplified in 𝑦

𝑖𝑗𝑙
.

2.2. Statistical Evolutionary Trajectory Index (SETI). Existing
static methods for testing significance of TDE genes in time
series RNA-seq data do not consider temporal stochastic
ordering dependency property in time, which differs from a
typical gene expression profile data, and all static methods
assume samples that are distributed independently and are
not related to each other instead. However, it is well known
that the considerable genes in gene expression profiles related
to many developmental biological processes or disease pro-
gression are temporally differentially expressed and current
expression level is affected by previous one by inherent
Markovian property in time series. In the settings of large
numbers of variables and with few observation, distribution-
free or Bayesian approaches by using useful prior information
are more suitable in RNA-seq. To circumvent the limitations
and cope with a variety of particular patterns in time course,
we present a statistical framework that enables more precise
temporal expression profiling by incorporating autocorrela-
tion measurement to determine relationship between con-
secutive expression profiles. Residuals in one period (or time
point) are correlated with those in previous periods (or time
point) and ranking individual SETI based on nonparametric
regression fit as a gene-by-gene approach. As above, the gene
expression level 𝑦

𝑖𝑗
at 𝐼 = 𝑖th gene, 𝐽 = 𝑗th time, 𝐶 =

{1, . . . , 𝐶} biological condition, and 𝐿 = {1, . . . , 𝐿} replicates
is fitted by smooth spline regression. The autocorrelations
of the residuals are computed by the sliding of all possible
cases over the original time series, which are referred to as
a trajectory index for given gene. The unbiased estimate of
the autocorrelation for each gene is

∧

ACRres,𝑖 (𝑘) =
1

(𝑚 − 𝑘) 𝜎2

𝑚−𝑘

∑
𝑗=1

[𝑌
𝑖𝑗
−
∧

𝑦
𝑖
] [𝑌
𝑖𝑗+𝑘

−
∧

𝑦
𝑖
] (1)

for any positive integer 𝑘 < 𝐺. {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝐺
} is a vector

to be contained by 𝐺-length observations of expression
measurement. 𝑃 values for assessing statistical significance
are calculated using a permutation test (𝑁 = 10, 000),
assuming the absence of temporal differential expression.
The confidence interval and trimmed mean of trajectory
index are derived by bootstrapping analysis (𝐵 = 100).
The method is based on computing autocorrelations, that is,
cross-correlation of gene expression profile across time points
to represent temporal pattern. It is applied in a variety of
different types of RNA-seq time series data including factorial
time course experiments.

2.3. Autoregressive Time-Lagged AR(1) Model. We propose
to use an autoregressive time-lagged AR(1) model for the
identification of temporal and differential gene expression.
Hay and Pettitt [54] demonstrated first-order time lag for
an application to the control of an infectious disease with
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count data over time inwhich the time series observations are
examined to identify significant associations with explana-
tory variables and counts, the incidence of an infectious dis-
ease ESBL-producingKlebsiella pneumoniae in anAustralian
hospital, and the explanatory variable is the number of grams
of antibiotic third-generation cephalosporins used over that
time period. In order to essentially propose a universal
dynamicmethod with AR(1)model in RNA-seq, we consider
models to allow flexibility without covariates in lieu of taking
their initial approaches. The details of our AR(1) model for
read count gene expression profile over time as a gene-by-
gene TDE identification are discussed in the following with
mathematical notations. Bayesian framework is defined by
(𝑦
𝑖𝑗
| 𝜇
𝑖𝑗
, 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚) to be independently

distributed as Poisson model. We employ their model for
RNA-seq read count expression data.

2.3.1. Poisson Model in AR(1). From the time series data
structure (Section 2.1), we have 𝑚 time points, 𝑐 biological
conditions, and 𝑙 replications. Both maize and zebrafish data
with single measurements within a time point are applied in
this method.

Consider

𝑦
𝑖𝑗
∼ POI (𝜇

𝑖𝑗
) , where 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚,

log (𝜇
𝑖𝑗
) = 𝑤

𝑖𝑗
+ 𝛽
𝑖
,

𝑤
𝑖1
=

𝑢
𝑖1

√1 − 𝜑2
𝑖

,

𝑤
𝑖𝑗
= 𝜑
𝑖
𝑤
𝑖𝑗−1

+ 𝑢
𝑖𝑗
, 𝑗 > 2.

(2)

And equivalently,

log (𝜇
𝑖𝑗
) = 𝑤

𝑖𝑗
+ 𝛽
𝑖
,

𝑤
𝑖1
∼ Normal(0, 𝜎2

(1 − 𝜑2
𝑖
)
) ,

𝑤
𝑖𝑗
| 𝑤
𝑖,1...,𝑗−1

∼ Normal (𝜑
𝑖1
𝑤
𝑖𝑗−1

, 𝜎
2
) , 𝑗 > 2.

(3)

To identify altered gene expression across time series,
for each gene, the AR(1) model is applied and inference of
𝛽 is obtained from noninformative priors and time series
random effects for sequential expression profile are assumed.
This autoregressive model was originally carried out for lon-
gitudinal large-scale historical repeated-measurement data.
In our study, using the modified assumptions, RNA-seq time
series with short time period (4∼8 time points) and single
observations as gene-by-gene approach are applied to com-
pare the performance of AR(1) model to static methods in
identification of differential expression. The posterior prob-
abilities of parameters in the model are estimated through
MCMCsimulationswith𝑁 = 6,000 iteration and 1,000 burn-
in. We provide detailed notations and equations for three
dynamic approaches in Supplementary data available online
at http://dx.doi.org/10.1155/2013/203681. In the results, we are
most interested in autocoefficients to represent time series

sequential random effects in the model and we implemented
a classification between TDE (temporally differential expres-
sion over time) and EE (equally expression over time) set
of genes. Similar to statistical differential expression testing
for each gene in a classical approach, our implementation
of testing in AR(1) model is given by a Bayesian interval
estimate, 95% credible interval:

𝐻
0
: if𝜑
𝑖
= 0,EE, 𝐻

1
: otherwise,TDE, (4)

where we consider that gene 𝑖 is temporally differentially
expressed (TDE) if the 95% credible interval of 𝜑

𝑖
does not

include 0; otherwise it is considered to be equally expressed
(EE). Also we obtain the tail probability of (𝜑

𝑖
| 𝑦) of gene 𝑖,

that is, 𝑝(𝜑
𝑖
> 0 | 𝑦) or 𝑝(𝜑

𝑖
< 0 | 𝑦) for 𝑖 = 1, . . . , 𝑛 using

MCMC. It indicates the significance of differential expression
for each gene.

2.3.2. Negative Binomial in AR(1). A more compelling
methodological goal is to infer temporal dynamics when we
have replicates within a time point and it is straightforward
to establish a negative binomial model with AR(1):

𝑦
𝑖𝑗
∼ NBC (𝑘, 𝜇

𝑖𝑗
) , where 𝑖 = 1, . . . , 𝑛,

𝑗 = 1, . . . , 𝑚, log (𝜇
𝑖𝑗
) = 𝜔
𝑖𝑗
+ 𝛽
𝑗
.

(5)

Other parts of the model remain identical as in (3). Here,
y∼NBC(𝑘, 𝜇) means that 𝑦 has its probability function as
follows:

𝑝 (𝑦; 𝑘, 𝜇) =
Γ (𝑦 + 𝑘)

Γ (𝑘) Γ (𝑦 + 1)
(

𝑘

𝜇 + 𝑘
)

𝑘

× (1 −
𝑘

𝜇 + 𝑘
)

𝑦

, 𝑦 = 0, 1, 2, . . . .

(6)

This negative binomial distribution has its mean 𝐸(𝑦) = 𝜇

and its variance 𝜇 + 𝜇2/𝑘. The parameter 𝑘−1 is called the
dispersion parameter.

2.4. Hidden Markov Model (HMM). We consider a Bayesian
HMM to analyze factorial time course RNA-seq data. Our
model follows the seminal work of Yuan and Kendziorski
[48] that characterizes all possible temporally differential
expression patterns in time series microarray data with two
or more biological conditions. Although this early study
was encouraging, the HMM was restricted to represent
timing differences between biological conditions with binary
EE/DE or multiple cases of latent hidden states depending
on the number of given conditions at each time point. The
extent of temporal changes was not obvious in significantly
differentiating between one time point and the next. Taking
a HMM approach, we seek SETI and multivariate coupled
relationships among distinct trajectories into HMMs in each
condition to investigate biological evolutionary trajectory
that can be applied to a comprehensive set of RNA-seq time
series data to make probabilistic predictions of temporal
patterns for how differential expression will occur under dif-
ferent biological conditions. Also, count specific underlying
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distributions for RNA-seq time series data are used. First, we
introduce a mechanism to use the inference of temporally
differentially expressed genes in time series RNA-seq gene
expression profiles with multiple biological conditions at
a given time point. This was achieved by incorporating
GP and NBD with corresponding prior information into
the HMM for each gene, allowing samples having either
multiple replicates or single observations. We investigate
properties of the HMM technique such as how it benefits
by incorporating hidden variables when making the pre-
dictions of temporal patterns of differential expression for
given different biological conditions and how the number
of chosen latent variables varies with conditions within a
stage over a time period. As per Section 2.1, we present
how to express hidden states in the given models with
subindices composed of 𝑇 time points, 𝐶 different biological
conditions (e.g., drug treatments or tissues), and 𝐿 replicates.
As RNA-seq experiments generally have small sample sizes,
the identification of statistically significant temporally dif-
ferentially expressed (DE) genes may have limited power.
Also, some studies stress the importance of replication in
microarray studies, which have inherent variability [4, 5, 33,
34, 55] regardless of how well constructed DE methods are
applied. Thus, without replicates, no statistical significance
tests are reliable and powerful on detection of TDE. With
the reduction in sequencing costs, well-designed balanced
RNA-seq experiments with proper sample sizes and time
points will facilitate the use of temporal dynamic methods,
including AR(1) model. Here HMM is used with samples
and 4 biological conditions (different tissues). Consider that
the gene expression dataset (𝑦

𝑖𝑗𝑐𝑙
) has 𝐼 = genes, 𝐽 = time

points, 𝐶 = conditions, and 𝐿 = replicates. This algorithm
has theMarkovian assumption that the expression level at the
current time only depends on that at themost recent time.We
use hidden states to represent a change in expression levels
between different biological conditions.Thus, this framework
allows us to detect TDE genes and to facilitate the calculation
of the posterior probabilities of all possible TDE patterns. For
instance, with three time points, thismethod can estimate the
posterior probability of pattern EE-DE-EE, where EE stands
for equally expressed and DE for differentially expressed,
respectively. Namely, the main interest is to identify the rela-
tionship among the 𝐶 class latent mean values of expression
level for each gene g at each time point 𝑇 = 𝑡 denoted
by 𝜇
𝑔𝑡1
, 𝜇
𝑔𝑡2
, . . . , 𝜇

𝑔𝑡𝐶
. Hereby, the primary goal of HHM in

time course experiment with multiple different conditions is
to infer all potential relationships from different conditions;
for simplest case with two biological conditions, it is binary
outcome with EE/DE, and for complicated experimental
design with more than two biological conditions, suppose
that biological conditions correspond to different tissues,
hereafter tissues A, B, C, and D. Correspondingly, there are 4
expression profiles 𝜇

𝑔𝑡A, 𝜇𝑔𝑡B, 𝜇𝑔𝑡C, and 𝜇𝑔𝑡D, and 15 possible
expression pattern states include the following:

State 1 [1111] : 𝜇1 = 𝜇
2
= 𝜇
3
= 𝜇
4

State 2 [1221] : 𝜇1 = 𝜇
4

̸= 𝜇
2
= 𝜇
3

State 3 [1222] : 𝜇1 ̸= 𝜇
2
= 𝜇
3
= 𝜇
4

State 4 [1121] : 𝜇1 = 𝜇
2
= 𝜇
4

̸= 𝜇
3

State 5 [1212] : 𝜇1 = 𝜇
3

̸= 𝜇
2
= 𝜇
4

⋅ ⋅ ⋅

State 14 [1233] : 𝜇1 ̸= 𝜇
2

̸= 𝜇
3
= 𝜇
4

State 15 [1234] : 𝜇1 ̸= 𝜇
2

̸= 𝜇
3

̸= 𝜇
4

(7)

More generally, the number of all potential patterns as
a function of the number of tissues is equal to the Bell
exponential number of possible set partitions. Here each state
is not observed and needs to be estimated from the data.
Therefore, we refer to such states as hidden. For each gene g
at each time point 𝑇 = 𝑡, we want to estimate the probability
of each hidden state 𝑝(𝑔⃗

𝑔𝑡
= 𝑘) and then we associate

an observation model with each state and eventually also
compute the most likely sequential states over time to derive
timing differences for a given gene g. Fitting a hiddenMarkov
model involves estimating the transition probability matrix
𝐴, initial probability distribution 𝜋

0
, and unobserved hidden

state at time𝑇 = 𝑡, and estimations are done by EM algorithm
as described and implemented in the original paper of HMM.
The parametric empirical models (PEM) of GP and NBD
sample 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
) are considered here.

In the GP model, for two biological conditions at each
time point and two marginal distributions of hidden states
are given the following equations, as shown in Yuan et al.,
for microarray application. The underlying distributions and
joint predictive density (JPD) for discrete count data are
incorporated to infer posterior probability distributions:

𝑓
1𝑡
(𝑥
𝑔𝑡
) = 𝑓
0𝑡
(𝑥
𝑔𝑡
| 𝜆
𝑔𝑡
) 𝑑𝐺
𝑡
(𝜆
𝑔𝑡
) (8)

under EE state 1 and

𝑓
2𝑡
(𝑥
𝑔𝑡
) = ∫𝑓

0𝑡
(𝑥
𝑔𝑡1,...,𝑔𝑡𝑛1

| 𝜆
𝑔𝑡
) 𝑑𝐺
𝑡
(𝜆
𝑔𝑡
)

+ ∫𝑓
0𝑡
(𝑥
𝑔𝑡(𝑛1+1),...,𝑔𝑡(𝑛1+𝑛2)

| 𝜆
𝑔𝑡2
) 𝑑𝐺
𝑡
(𝜆
𝑔𝑡2
)

(9)

under TDE state 2.
If 𝜋
𝑖
represents the proportion of TDE genes at time 𝑡,

then the mixture type of marginal distribution of the data is
given by

(1 − 𝜋
1
) 𝑓
1𝑡
(𝑦
𝑔𝑡
) + 𝜋
2
𝑓
2𝑡
(𝑦
𝑔𝑡
) , where 𝑖 = 1, . . . , 𝑑.

(10)

And 𝑓
𝑜𝑡
(𝑦 | 𝜇

𝑔𝑡
) = 𝜆 exp(−𝜆𝑦)/𝑦!, 𝑥 > 0. 𝜆

𝑡
follows a

conjugate prior with gamma distribution parameters, shape
parameter 𝛼

𝑡
, and rate parameter 𝛽

𝑡
. Thus, three parameters

𝜃
𝑡

= (𝜆
𝑡
, 𝛼
𝑡
, 𝛽
𝑡
) need to be estimated for a given gene.

For the GP model, the Markov chain is assumed to be
homogeneous and the marginal distribution of 𝑥

𝑔𝑡
is the

finite mixture ∑
𝑑

𝑖=1
𝜋
𝑖
𝑓
𝑖𝑡
. We assume one-step first-order

correlation time series structure so that HMM contains with
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Poisson distributed state-dependent distribution. The goal
of this algorithm is to identify a certain set of genes that
are TDE in a combination of time series and four different
biological conditions, for example, distinct tissue types. To
address the utility of HMMs proposed in time course RNA-
seq experiments with multiple different tissues, we exploit a
parametric hierarchical empirical Bayes model with GP (data
w/o replication) and NBD (data w/replications) with beta-
prior as a well-modified Bayesian approach [42, 56, 57]. The
Newton et al. [57] approach identifies differentially expressed
genes for microarray experiment framework in multiple
biological conditions at a static time point and similarly
Hardcastle and Kelly [42] identify differentially expressed
genes either for pairwise comparisons or for multiple group
comparisons in an RNA-seq experiment framework at a static
time point. For microarray data, Yuan and Kendziorski [48]
proposed a HMM for a dynamic time course experiment
with multiple conditions Gamma-Gamma (GG) and Log
Normal Normal (LNN) to identify genes of interest whose
temporal profiles are different across two or more biological
conditions. Here, we adapted and extended that approach to
a general RNA-seq framework with GP and NBD models as
more flexible models. The earlier studies are limited to detect
temporal patterns other than ranking/ordering temporal
dynamic specific genes during developmental stages, which
biologists are more interested in examining. We assume two
common underlying distributions for RNA-seq read count.
In reality, violation of GP assumptions is very common and
in order to account for overdispersion. Alternatively, NBD
is applied with a beta-prior. The above inference method
provides for continuous trajectory regression involved with
timing evolution features to rank temporal genes statistically
for a given pattern, as well as such genes’ temporal differential
expression patterns among conditions. In addition, we exam-
ined multivariate identification of temporal expression using
the following several metrics.

2.5. Coupled Multivariate Identification of SETIs

2.5.1. Granger Causality. The concept of Granger causality
between two distinct SETIs assumes that the data at the
current time point affect the data at the succeeding time
point [58]. To determine Granger causality for each pair of
trajectories, we employ standard 𝐹-statistics to test if the
residual values derived from the fitting smoother for gene A
are incorporated into the equation for another gene B. If all
the coefficients for themeasurements of gene B are zero under
the null hypothesis, then there is no statistically significant
Granger causality between the trajectories for genes A and B.

2.5.2. Cotrajectory with Glass-d-Score. Similarly, each pair of
two trajectories, which correspond to two gene expression
levels, is explored by another dependency metric score and
detailed notations are described in the following, when there
is a given pair of two gene expression profiles:

(𝑔
𝑖
, 𝑔
𝑗
) 𝑑
𝑖𝑗

𝑘
=
𝑟
𝑖𝑗

𝑘
− 𝑟
𝑖

𝑘

𝜎
𝑟
𝑖
𝑘

, (11)

where 𝑟𝑖𝑗
𝑘
is the correlation coefficient between the expression

profiles of (𝑖, 𝑗) among all possible pairs.The null distribution
was assumed to have 𝑟𝑖

𝑘
(𝜎
𝑟
𝑖
𝑘
) themean and standard deviation

of correlation coefficient between gene 𝑖 and all other genes,
respectively.

2.5.3. Correlation Approach. As proposed in Ma et al. and
Barker et al. we propose a biologically motivated approach to
measure the relationship between two different genes based
on their temporal expression profiles in RNA-seq. Ma et al.
proposed to consider lagged coexpression analysis to capture
the scenario that there is a delayed response of gene B to gene
A so that the profile of gene B is correlated with the time
delayed profile of gene A.

2.6. Pairwise Methods. In this section, we describe the
pairwise methods that we consider in our comparisons with
the methods discussed above that can explicitly model the
time dependencies nature in the data. For comparisons
with our dynamic methods, we examined several popular
static methods, including Fisher’s exact test for simple two
sample comparisons and log linear model for multigroup
comparison, which can also be applied for RNA-seq time
series data in temporal analysis as intuitive but limited.

DE analyses: we first employed pairwise condition com-
parison methods in digital measures at a given static status
without respect to time. It is no surprise to take a union
set of all possible pairwise comparisons using these static
techniques to identify temporal dynamics in relatively small
experiments, where single sample for each time point and
very fewnumber of time points are contained in experimental
design.

(i) Fisher’s exact test: fromTable 1, the 2-sided𝑃 value for
TDE of each gene is computed with (12) [39]:

Pr (𝑔
+1,𝑔

= 𝑔 | 𝑔
+1.
, 𝑔
+2.
, . . . , 𝑔

.𝑔
) =

(
𝑔+1.
𝑔 ) (

𝑔+2.
𝑔.𝑔−𝑔

)

(
𝑔..
𝑔.𝑔
)

. (12)

(ii) Audic-Claverie statistics.

The Audic-Claverie statistics [59] are based on a distri-
bution 𝑝(𝑦 | 𝑥) over read counts 𝑦 in one sample in one
given group informed by the read counts 𝑥 under the null
hypothesis that the read counts are generated identically and
independently from an unknown Poisson distribution. 𝑝(𝑦 |

𝑥) is computed by infinite mixture of all possible Poisson
distributions with mixing proportions equal to the posteriors
under the flat prior over 𝜆. When the two libraries in a given
Solexa/Illumina RNA-seq experiment are of the same size,

𝑝 (𝑦 | 𝑥) =
1

2𝑥+𝑦+1

(𝑥 + 𝑦)!

𝑥!𝑦!
=

1

2𝑥+𝑦+1
(
𝑥 + 𝑦

𝑥
) . (13)

These are Audic-Claverie statistics [59] for given read
counts 𝑥 and 𝑦.

Pooling methods: as with ANOVA in microarray, log lin-
ear model and linear models for microarray data (LIMMA),
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Table 1: 2 × 2 contingency table.

Reads from sample of type
Tags in gene Group A Group B

Gene g 𝑔
+1,A 𝑔

+2,A 𝑔
.,A

Not gene g 𝑔
+1
− 𝑔
+1,A 𝑔

+2
− 𝑔
+2,A 𝑔

.,B

Total 𝑔
+1

𝑔
+2

𝑔
..

after variance-stabilizing transformation to allowmultigroup
and multifactor comparisons, can be applied by including a
time variable as the main factor in the model [40].

(i) Log linear model with the Poisson link function
(or negative binomial when replicates are available)
and likelihood ratio test model. In the model, the
time factor, biological condition factors, and their
interaction terms are included.

(ii) LIMMA (linear model for microarray) with 𝐹-
statistics under the linear model setting implemented
in R package is also applied for time series RNA-seq
read count data after variance stabilizing transforma-
tion.

Although such static algorithms have demonstrated a suc-
cessful identification of temporally expressed genes in some
degree in the past four years and our study, any temporal
dynamic analysis false discovery results in static methods can
be introduced due to violation of Markovian assumptions
frequently revealed in time series expression profile. As the
cost to sequencing continues to decline, there is urgent need
for more sophisticated statistical methodologies of power
in the identification of temporal expression or for use of
characterization of temporal dynamics to assess isoform
diversity within a gene level in a future investigation of time
series RNA-seq. Ideally, it is very critical to appropriately have
a good model to represent observed data since interpretation
of a model that does not contain valuable information is
useless. For this important purpose, our dynamic methods
are compared to these static methods by evaluating the
overlap in the number of differentially expressed genes in real
data sets.

3. RNA-seq Time Series Data

3.1. Three Different Types of Time Series. There are mainly
two types of time series in RNA-seq. The first is factorial
time series data that include at least two biological conditions
to be compared in a given time point and have multiple
developmental patterns over time as the number of condi-
tions. The second type of time series has a single condition
and corresponding developmental stage. In the third type of
time series, there are subsequently two additional subtypes,
circadian rhythmic data and cell cycle data. In this study,
we formulate the statistical framework of identification of
temporal changes in RNA-seq time series for first two types
of data and the periodic data-sets are reviewed in “another
reviewmanuscript” with discrete Fourier transformation and
other methods in a separation in depth.

3.2. RNA-seq Real Time Series Datasets

3.2.1. Factorial Time Course Experiment: A Sheep Model for
Delayed Bone Healing. We consider this published RNA-
seq time series data from a sheep model for delayed bone
healing. In Jager et al., surgery was conducted as described
in [52, 53] and the newly generated tissues were harvested
at different days, 7, 11, 14, and 21 after surgery. For each
time point, there are 6 biological replications for both groups
except one time point, for day 21 (group I, 𝑛 = 5, group
II, 𝑛 = 6), where two groups are defined by standard
healing system and delayed healing system.Thus, the authors
considered two treatments: standard healing system and
treatment with unstable external fixator leading to delayed
bone healing. While the standard bone healing system was
investigated in a 3mm tibial osteotomymodel stabilized with
amediallymounted rigid external fixator, delayedhealingwas
investigated in a 3mm tibial osteotomymodel stabilized with
amediallymounted rotationally unstable external fixator. For
each treatment, RNA-seq data were collected at 4 time points:
7, 11, 14, and 21 days, with 5-6 individuals’ DNA samples
pooled together at each time point. In their differential
expression, they used the pooled samples from 5∼6 lanes
of animal samples at one time point and Audic-Claverie
statistics were performed using 4 samples over 4 time points
by taking a union set of all possible pairwise comparisons
using static methods. We reanalyzed their sheep animal time
series data using three dynamic methods to identify TDE
genes.

3.2.2. Single Transient Time Course Experiment-I. We applied
two single biological condition time series data which are
interested in exploring developmental transient patterns dur-
ing a timeperiod rather than timing difference patterns incor-
porated with multiple conditions at a time as Section 3.2.1
example. Maize leaf transcriptome with four different devel-
opmental zones containing two replicates in each time point
[50] was employed.This is one representative for time course
experiment with single transient expression profile. Tissues
were collected from leaf 3 at 9 days after planting 3 hours
into the 𝐿 period from four segments: (1) basal (1 cm above
the leaf three ligule), (2) transitional (1 cm below the leaf
two ligule), (3) maturing (4 cm above the leaf two ligule),
and (4) mature (1 cm below the leaf three tip). Thus, maize
leaf data with different developmental stages are generated
from mRNA isolated from four developmental zones: basal
zone, transitional zone, maturing zone, and mature zone.
In the differential expression analysis, they simply applied
chi-squared static method and 𝐾-means clustering method
that both do not take into account time dependency, but
all samples are assumed to be independent. This maize leaf
time series data are reanalyzedwith proposedmethods in this
study.

3.2.3. Single Transient Time Course Experiment-II. This is a
time series experimental design to be composed of eight
stages during early zebrafish development, embryogenesis
[51]. In their study, wild-type zebrafish embryos (TLAB) were
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Table 2: Statistical evolutionary trajectory index (SETI) of the top candidate genes where FDR is controlled at less than 0.05 in a sheepmodel
data. The gene expression level is fitted on smooth spline function, autocorrelation of residuals is measured, and corresponding statistical
significance is tested. In addition, trimmed mean of bootstrap and 95 percent of confidence interval are also provided in the table.

Top candidate genes SETI (trimmed
mean of bootstrap) Bias of bootstrap 95% CI of SETI 𝑃 FDR

A5D9H5 1.23
(1.23) 0.12 [1.02, 1.43] 0 0

A6QQB6 1.23
(1.27) 0.09 [1.00, 1.46] 0 0

A0JN96 1.23
(1.23) 0.09 [1.03, 1.43] 0 0

DUFFY 1.23
(1.23) 0.13 [1.02, 1.43] 0 0

A6QP68 1.23
(1.23) 0.10 [1.03, 1.42] 0 0

gi|11992112 1.23
(1.23) 0.10 [1.05, 1.40] 0 0

staged according to standard procedures and about 1,000
embryos were collected per stage (two to four cells, 1,000
cells, dome, shield, bud, 28 hpf, 48 hpf, and 120 hpf) within
a tight time window of ∼10min. Their collection of embryos
was ensured that all embryos were at the same developmental
stage. The identification of long noncoding RNAs (lncRNAs)
expressed during zebrafish embryogenesis was explored to
assess a diversity of transcripts that are structurally similar
to, but noncoding, mRNAs. The analyses of RNA-seq time
series expression profiles focused on the identification of
temporal dynamics of lncRNAs using the Cuffdiff method
in its time series mode with upper quantile normalization,
which is also limited to pairwise comparison from previous
time point to right next time point. Here, the data reanalyzed
the transcriptomic gene expression profile data with 28,520
annotated protein coding genes. To consider the possibility
of similarities and differences in comparisons between static
and dynamic methods for time series RNA-seq data, we
systematically compared both methods with these data.

3.3. Results in Differential Expression Analysis on Static and
Dynamic Methods. For the sheep data, the authors applied
the Audic-Claverie method to the normalized expression
values, RPKM, to compare later time points to the ref-
erence time point (7 day) in both groups. After all pair-
wise comparisons, they combined the sets of differentially
expressed gene sets with 884 genes detected in total from
24,325 mappable genes. Based on these 884 genes, they
performed hierarchical clustering to identify gene clusters.
Each cluster was then subject to gene ontology analysis to
find significant biological functions. The differential analysis
performed in original paper is based on static differential
analysis method. We reanalyzed their sheep factorial time
course experiment data to identify TDE genes over time
through dynamic methods, HMM, SETI, and AR(1) model
to account for correlated time-dependency structure. HMM
identifies temporal patterns with classification of DE/EE at
each time point by posterior probabilities, whereas SETI
with statistical significance from permutation resampling

Figure 1: Venn diagram for differentially expressed gene sets
detected by Fisher’s exact test where the Benjamini-Hochberg FDR
is controlled at <0.05. In this figure, as the labels authors used in
[52, 53], K represents standard and R represents delayed healing
system in a sheep model for two different bone healing systems.

procedures and AR(1) model with gamma Poisson Bayesian
assumption on count data are applied within single biological
condition, separately. Results obtained by these dynamic
methods compared those of static methods, simple pairwise
methods, Audic-Claverie statistics and Fisher’s exact test,
and pooling static methods, glmFit in edgeR, LIMMA, and
log linear model as shown Figure 3. To identify temporal
dynamics by assuming correlated data structure, we per-
formed HMM modeling with Poisson-gamma since there
were no replicates. AR(1) model and SETI significance tests
were also done within each biological condition. Temporally
differential expression gene sets detected by these dynamic
methods were compared with the results of simple pairwise
tests and pooling methods. From the HMM, 646 temporal
dynamics of DE calls are identified to represent DE in at
least one time point.TheHMMmodel only explores different
temporal patterns of DE/EE states and does not rank the
genes by statistical significance, but is classifying gene expres-
sion profile into a number of temporal patterns by posterior
distribution of latent states. Because of this limitation, we
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Figure 2: Venn diagram of four DE sets having the number of DE
genes between two different healing systems detected by Fisher’s
exact test with FDR 0.05 at each time point (𝑡 = 7, 11, 14, and
21 days). Four time points were compared in simple pairwise
comparison between two biological conditions, R (delayed healing)
versus K (standard healing system). The label of each set depicts
the number of DE genes in the specific comparison. The majority
of interaction sets of DE genes between two successive time points
implies that high proportion in detected differentially expressed
genes at current stage tends to be redetected at next stage revealed
by inherent time-dependent structure in time series gene expression
profile.

employed the SETI and AR(1) models to discover develop-
mental transient patterns in each condition. The trimmed
mean time evolution trajectory index is presented for the
top three candidate temporal genes in each bone healing
system. The 95% confidence interval of bootstrapping and
FDR of permutation re-sampling are shown in Figure 4 and
Table 2. To determine temporal dynamics and meaningful
biological functions, only HMM-specific TDE genes which
are not contained in static methods are further explored in
gene clustering and biological functional network analysis as
shown in Figures 5(a) and 5(b), respectively. In the results,
they obviously showed temporally differential expression
implying that loss of information to assumption of stochastic
time-dependent structure might lead to false discoveries
and less power of detection. To discover temporal transient
patterns of differential gene expression within each biological
condition; healing system, we performed SETI and AR(1)
model approaches for each condition, SETI results are given
in Figure 4 showing top candidate TDE genes, of which some
genes such as gi|119921123 and B6DXC7 are of low expression
levels which we were not able to detect in static methods.
In the second data for our study, we have reanalyzed maize
leaf transcriptome data to identify TDE genes with static
and dynamic methods and compare between two. In their
paper, they investigated leaf development gradient in time
series gene expression data at successive stages (4 time points:
base, tip: basal, transitional, and maturing) and identified a
gradient of gene expression from base to tip: basal (23,354) >

Differential expression methods
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Figure 3: Venn diagram of five DE sets for static and dynamic
methods in a sheep model data. In static methods, for two simple
pairwise methods, Audic-Claverie statistics and Fisher’s exact test
were performed and both methods take a union set of all possible
pairwise comparisons to identify temporally differentially expressed
(TDE) genes across time points and two healing systems. As another
static approach, pooling methods of samples, log linear model
in [39], and generalized linear model fit in edge R in [36] were
performed and detected TDE genes by FDR 0.05. In dynamic
HMM method, we identify top candidate TDE genes defined at
least showing DE pattern from one time point based on posterior
probabilities for latent variables (DE/EE between given biological
conditions). On the basis of comparison of the number of DE genes
identified by each method, patterns of identification of TDE genes
are method specific suggesting validation procedures of methods in
biological aspects.

transitional (22,663) > maturing (22,036) > mature (21,332)
from a total of 25,800 annotated genes. In the differential
analysis in times series RNA-seq data, they used the method
proposed in Marioni et al. [40] for pairwise analysis. A total
of 16,502 genes were found to be differentially expressed in
at least one of the comparisons. They then performed 𝐾-
means clustering and showed eighteen clusters along the four
developmental zones (Base, −1 cm, 4 cm, Tip). To compare
gene sets detected by our dynamic methods with their gene
lists, dynamic methods, SETI, and AR(1) model are applied
again in this study and all temporally differentially expressed
genes are presented in Supplementary Tables 1 and 3, where
filtered gene set to be tested in differential expression has
5273 and 12,322 temporal dynamic transcripts from 42399
transcripts through SETI and AR(1) model, respectively. On
the basis of significant temporal expression, we compared
dynamic methods to static methods, which were used in
the original paper without accounting for correlated data
structure type. As the third real data application, to identify
temporal dynamics, we have reanalyzed the third data,
zebrafish embryonic transcriptome, focusing specifically on
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Figure 4: Top candidate temporally differentially expressed genes identified by statistical evolutionary trajectory index (SETI) within each
healing system in a sheep model data. Each panel depicts temporal patterns between log2 (normalized expression levels, RPKM) and four
different time points under their expression curves. The distinct colors represent significant individual genes ranked by SETI and FDR 0.05
by resampling procedures.

the identification and characterization of temporally differen-
tial expression using statistical evolutionary trajectory index
and autoregressive time-lagged AR(1) model. We further-
more implemented both methods to rank temporal genes by
statistical significance. As consequence of the resampling-
based procedures and posterior probabilities of autocorre-
lation, it was possible for gene-by-gene approach to order
temporal genes by two dynamic methods and identify genes
associated with cotemporal dynamics. To investigate such
paired temporal dynamics, we examined the relationships
between genes using bivariate identification methods. Glass-
s-d score is reported in Supplementary Table 5. Likewise, the
statistical evolutionary trajectory index with statistical signif-
icance for zebrafish data is given in Supplementary Table 2,
where we filtered out genes by coefficient of variation (CV)
criteria remaining 12,034 genes. Overall, both methods show
more robustness at low and moderate expression levels when
compared to existing parametric static methods indicating
that our methods achieve relative improvements in test of
identification of temporal genes and AR(1) model shows
more sensitive TDE calls than SETI resampling procedure in
two real data applications. Here, we examined how different
results are obtained by dynamic time series methods. For
simple pairwise static methods, we employed Audic-Claverie
statistics and Fisher’s exact test as these two methods have
been widely used in previous studies. They showed highly
concordant results on other RNA-seq datasets compared to
DEGseq, DESeq, edgeR, and baySeq (data not shown). In

differential analysis with simple pairwise methods, we took a
union set after all pairwise comparisons across a time period
and amongst different biological conditions as these methods
only consider two pairwise comparison testing and confirm
the results to those of original papers. For pooling static
methods, LIMMA, log linear model, and edgeR R package
with glmFit are carried out to identify TDEgenes. To compare
with above static methods, we employed three dynamic
methods described in the previous sections. The results are
shown in Figures 1 and 3. Figure 2 shows how dependent
structure is observed in patterns identified across time points,
36(23), 300(277), and 186(134), of the previous TDE gene set,
genes in 64% ∼92% percentage are differentially reidentified
at the right next time point, implying that there is temporal
dependent structure in sheep healing system RNA-seq time
series data.

3.4. Bivariate Dynamic Analysis for RNA-seq Time Series.
In systems developmental biology where characterization of
complexity of various time course data likely leads to address
inference of temporal dynamic patterns from transcriptome,
we are not often really interested in exactly how only a single
gene is temporally differentially expressed at a particular
time point or period. This knowledge would neither answer
an understanding of how biological networks in temporal
dynamics of gene regulation work nor enable predicting
any cooperative sets of genes to occur under biological
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(a)

Figure 5: Continued.
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(b)

Figure 5: (a) Coexpression patterns from gene clustering in a sheep model data. 200HMM-specific TDE genes are represented in heatmap.
Each row contains a vector of time series expression profile in log2 scale; consequently the visualization in heatmap is originally made
up of major three groups, high, moderate, and low expression levels with genens that are not detected by static methods but detected by
HMM, of which we selected the most statistically significant 200 genes to present this heatmap. Interestingly, some genes at low expression
levels were obviously differentially expressed at log2-scaled FC ∼4 up to 5 and even some genes that significantly show temporal patterns
at high expression levels were also detected, yet those genes were not detected by existing static methods suggesting that HMM method
reassuringly has higher sensitivity and robustness than other existing static methods in identification of differential expression regardless of
expression levels. (b) Gene functional pathway and network analysis with 528HMM specific TDE genes in a sheep model data. To explore
biological functions in this gene set further, whether or not those are genuinely differential expression or random noise by chance in terms
of biological insights, gene ontology (GO) and KEGG pathway analysis were performed to identify meaningful functionalities and some
meaningful functions related to developmental process (intermediate mesoderm formation, regulation of cell growth involved in regulation
of muscle adaptation, intermediate mesoderm formation, etc.) and gender specific terms (granulosa cell development and maternal placenta
development) are detected as we anticipated to confirm the sensitivity of dynamic HMM method. The purple and pink legends represent
coexpression and physical interactions across genes, respectively, and black nodes are query genes in networks.

conditions across time points. Thus, it is well known that
genes work collaboratively together in a structured biological
network; these biological phenomena underscore the impor-
tance taking into account the multivariate techniques when
modeling temporal dynamic gene expression. Since it is not
known beforehandwhich gene features are connected to each
other, investigators sought to define informative relationships
between individual gene patterns to identify many relevant
classes of dynamic temporal gene expression patterns. We
explored highly correlated relationships between temporal
gene sets detected by bivariate dynamic methods. Pairs of
trajectories were further investigated to explore the coupled
coordinated relationships between different temporal pat-
terns based on the three dependency metrics in Section 2.5.
Significance levels of such relationships were estimated by

bootstrapping resampling. The methodologies to test any
coupled relationship to pairs of district gene expressions
are based on (1) Granger causality, (2) correlation-basis
approach, and (3)Glass-s-d score as defined in [60]. In order
to efficiently identify copaired temporal dynamics, using
zebrafish data, we first identified statistically significant TDE
genes and ran Glass-d-score based on gene permutations.
Figure 8 demonstrates coupled temporal dynamics with log-
scaled expression level.

3.5. Gene Functional Pathway and Network Analysis. Once
temporal dynamics in gene-by-gene test and in gene-to-
gene interaction were determined, the resultant tempo-
ral gene expression sets detected by ranking individual
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Figure 6: Gene expression curves for five significant TDE genes
in maize leaf data. Mean expression curves are presented from two
replicates during four developmental stages comparing temporal
patterns each other in identifying statistically significant trajectories.

analysis and multivariate approaches, respectively, were fur-
ther explored to reveal temporal relationships underlying
biological processes based on gene ontology and functional
network/pathway analysis. Sheep gene symbols with 21,865
genes were converted into human gene symbols with 15,343
using BioMart in R package [61]. In gene ontology analysis
through Avadis NGS [62], 528 specific genes which were
detected by uniquely HMM were further analyzed. Inter-
estingly, as 63 females were sampled in the data, some of
gender-specific GO terminologies among significant ontol-
ogy terms were identified, that is, granulosa cell development
and maternal placenta development as well as intermediate
mesoderm formation, regulation of cell growth involved
in cardiac muscle cell development, positive regulation of
striated muscle contraction, response to stimulus involved in
regulation ofmuscle adaptation, intermediatemesoderm for-
mation, voluntary musculoskeletal movement, growth plate
cartilage development, extracellular matrix, and so forth.
The HMM-specific temporal dynamic gene sets were further
investigated for coexpressed gene sets and functional network
modules through ebdbNet and GeneNet in R package and
GeneMANIA [63–65] as shown in Figures 5 and 6.

3.6. Simulation Studies. We show that dynamic methods
outperform approaches that do not explicitly address the
time series nature of the data in simulation studies for
validation and evaluation. We evaluated the performance of
dynamic methods with simulation studies in which temporal
features are already known as gold standard TDE (temporally
differentially expressed) gene lists. Gold standard gene lists
contain entire information to mimic RNA-seq time series
profile if a gene is differentially expressed (DE) or equally
expressed (EE) over time as reference set to compare to
the results obtained from both dynamic and static methods
in terms of recall and precision measurement. To this end,

we generated simulated RNA-seq datasets with expression
profiling data points representing nondifferentially expressed
and differentially expressed genes in a series of time points
by using different values of autocorrelation parameter (𝜑).
We generated data for equally expressed genes by sampling
time series process parameters (𝑤) of a gene in invertible
Gaussian ARIMA process with 𝜑 = 0. We generated
data for differentially expressed genes across time points in
the same procedures as 𝜑 = 0.1, 0.25, 0.5, 0.75, and 0.9,
respectively. After time series process, regression effects and
autocorrelation parameters were simulated for 1000 genes,
4 simulated datasets were generated by setting the varying
number of time points and replicates in a time point, 𝑛𝑇 = 5

and 10, 𝑛𝑅 = 3, and 5 to compute 𝑃 value, FDR, and credible
interval of each gene for static and dynamic methods and
compared to gold standards to obtain true discovery rates in
our simulated datasets.

4. Conclusion and Discussion

We first performed pairwise comparisons using two simple
static methods, Audic-Claverie statistics and Fisher’s exact
test. The congruent set of both of them is highly overlapped
and we reported the results of Fisher’s exact test as more
common method in Figure 1. The dataset came from a
sheep model with two different healing systems at four
different days. This dataset provides an excellent design for
identification of temporally and simultaneously differentially
expressed (TDE) genes as we have two conditions at each
time. This type of time course is referred to as factorial
time course experimental design. The authors of [53] took a
union set of all these combinations of pairwise comparisons
in condition and time point to identify TDE genes. These
approaches might provide insights and intuitively simple
static methods are alternative in small experiments in gen-
eral. Evidently, the methods for time series dynamics are
still in their infancy. However, those algorithms all do not
consider dependency between samples in time course and
they assume that all samples are independently distributed,
though sequential correlation is obviously observed in data
as shown in Figure 2. We noticed that basically patterns of
detection of temporal changes by static and dynamic method
are different, albeit they agree in some degree. That is, most
of temporal genes at low and moderate expression levels are
detected as significant genes in dynamic methods, whereas,
due to power issues of parametric static pooling methods
and simplification of pairwise methods, static methods do
a good job at high expression levels. To confirm robustness
and reliability of gene detection methods in time series,
a comprehensive comparison and evaluation with varying
parameter settings closer to RNA-seq real world is further
needed. At low and moderate levels, many genes which were
not detected by static methods but dynamic methods still
showed log2-scaled FC ∼4 up to 5. We sought to test the
ability of dynamic methods whether or not those identi-
fied dynamic-unique TDE genes are genuinely differential
expression or just by a random chance because expressions
have been more affected by noise at low and moderate
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Figure 7: (a) Gene expression curves for five TDE genes in zebrafish data. Expression curves are presented during eight developmental stages
comparing temporal patterns to each other in identifying statistical significant trajectories. (b) Two specific genes in gene-by-gene temporal
dynamics with low expression levels via SETI in zebrafish data from (a). SETI enables identification of significant temporal patterns at low
expression levels which are not detected by other existing static methods.
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Figure 8: (a) A set of top cooperative TDE genes detected by Glass-d-score with FDR 0.05 as a candidate of cooperative gene pairs in
coexpression in zebrafish data. Glass-d-score and corresponding FDR at cutoff 0.05 by resampling procedure under the null hypothesis that
there are no TDE patterns across samples and those are shuffled with 1,000 repetitions. (b) One specific gene in coupled temporal dynamics
with low expression level via SETI and Glass-d-score from (a). Glass-d-score is robust in identifying coexpressed genes over time at low
expression levels.

levels in microarray, even though RNA-seq quality when
compared tomicroarray has beenmuch improved for now. In
Figure 4, to assess temporally differentially expressed genes,
we incorporated SETI with HMM algorithm in a sheep
model within each condition to see a variety of time-varying

trajectories since HMM provides only patterns of hidden
latent variables (DE/EE) at developmental stages. Left panel
shows three candidate genes at low and moderate levels
and right panel shows another three candidate genes at
high expression. To examine biological meanings in TDE
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genes detected by only HMM, we further performed gene
clustering coexpression patterns to see if those gene sets
have possibility of false negatives in altered expression of
cooperative genes and gene functional pathway analyses.
Notably, we confirmed meaningful biological functionalities
and temporal patterns in dynamic specific TDE genes in
downstream analyses, gene clustering, gene ontology, and
pathway/network analysis. Interestingly, as 63 females were
sampled in the data, some of gender-specific GO termi-
nologies among significant ontology terms were identified,
that is, granulosa cell development and maternal placenta
development, intermediate mesoderm formation, regulation
of cell growth involved in cardiac muscle cell development,
positive regulation of striatedmuscle contraction, response to
stimulus involved in regulation of muscle adaptation, inter-
mediate mesoderm formation, voluntary musculoskeletal
movement, growth plate cartilage development, extracellular
matrix, and so forth. Consistently, HMM, SETI, and AR(1)
model that account for time dependencyMarkovian property
in the models identified more of statistically significant TDE
genes than static methods regardless of expression levels.
In summary, the approaches we described use a developed
unified dynamic test framework that includes SETI with
statistical significance testing, ranking temporal genes by
AR(1)modeling and posterior probability of autocorrelation
parameter, and HMM to classify temporal dynamic patterns.
Thesemethods seem to be robust regardless of themagnitude
of expression (see Figures 7(b) and 8(b), and Supplementary
Tables) and more sensitive than static methods as shown in
Supplementary TDE Tables; moreover, TDE genes detected
by dynamic specific methods were confirmed as temporal
dynamics in clustering patterns and biologically significant
modules in network analysis implying that the gene sets
were not identified as false negative genes in static methods
that samples over time are assumed independently. We
anticipate that temporal RNA-seq experiments will be widely
performed in the near future due to reduced sequencing
cost and the rich information carried by these experiments.
In this paper, we consider several statistical approaches
that can explicitly model the time series nature in the
data. We discussed the limitations of simple static pairwise
comparison methods for time series data analysis; dynamic
statistical framework for RNA-seq read count with statis-
tical evolutionary trajectory index measure; autoregressive
time-lagged AR(1) model; hidden Markov model; pairwise
and multiple comparisons among trajectories to investigate
coupled bivariate dependency between distinct SETIs; and
pathway/network analysis in transcriptome data based on
detected temporally differentially expressed genes. Thus, this
study covers critical issues that have not been systematically
addressed in temporal RNA-seq data and we hope this will
motivate more rigorous developments of novel methods to
model and analyze RNA-seq data. Of particular interest will
be the extension of these methods to combined time series
datasets from RNA-seq, proteomics, and metabolomics for
in silico cell/organism predictive modeling [6]. In addition,
it will facilitate cross-species comparative analyses of tem-
poral gene expression to investigate developmental processes
and disease progression such as aging and virus-mediated

immune disease dynamics. Deep sequencing of mRNAs has
been a popular and effective approach for quantification of
alternative splicing events, and it is well known that more
than 90 percent of human genes have multiple isoforms
to produce different protein structures. Thus, an important
future direction is also to extend the statistical framework
of our dynamic methods to incorporate the characterization
of isoform diversity in time course in detecting differential
expression.
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