
Traditional conceptualization of 
neurobiology of depression 

evelopment of traditional pharmacological
treatments for major depression has been based on the
monoamine hypothesis of depression, inferring a deple-
tion in the levels of serotonin, norepinephrine, and
dopamine in the central nervous system as the underly-
ing pathophysiology of depression This hypothesis is
supported by the mechanism of action of antidepres-
sants, although the mechanism of action is not precisely
understood and only about 50% of patients respond to
antidepressants with this action.1 Thus, new types of anti-
depressants (eg, κ-receptor antagonists, melatonin recep-
tor agonists, cytokines) are the subject of active
research.1 The antidepressant effect of neuromodulation
approaches (eg, vagus nerve stimulation therapy, deep
brain stimulation) have also challenged the monoamine
hypothesis and favored the network hypothesis of depres-
sion. This hypothesis assumes that dysfunctions of large
neuronal networks in the brain can be normalized
through a modulation of one node of the respective net-
work.
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Conceptualizations of the underlying neurobiology of
major depression have changed their focus from dys-
functions of neurotransmission to dysfunctions of neu-
rogenesis and neuroprotection. The “neurogenesis
hypothesis of depression” posits that changes in the rate
of neurogenesis are the underlying mechanism in the
pathology and treatment of major depression. Stress,
neuroinflammation, dysfunctional insulin regulation,
oxidative stress, and alterations in neurotrophic factors
possibly contribute to the development of depression. 
The influence of antidepressant therapies, namely phar-
macotherapy and neuroprotectants, on cellular plastic-
ity are summarized. A dysfunction of complex neuronal
networks as a consequence of neural degeneration in
neuropsychiatric diseases has led to the application of
deep brain stimulation. We discuss the way depression
seen in the light of the neurogenesis hypothesis can be
used as a model disease for cerebral aging. A common
pathological mechanism in depression and cerebral
aging—a dysfunction of neuroprotection and neuroge-
nesis—is discussed. This has implications for new treat-
ment methods.  
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In this article, we will rely on another explanatory
approach to depression, namely on the neurogenesis
hypothesis of depression.2 This hypothesis posits that
changes in the rate of neurogenesis are the underlying
mechanism in the pathology and treatment of major
depression.3 We then discuss in what way depression
according to the neurogenesis hypothesis can be used as
model disease for cerebral aging, and possible implica-
tions for new treatment methods. 

Current knowledge on 
neurobiological effects of depression

In current concepts, depression is seen as a chronic dis-
ease with recurrent episodes in the majority of cases.
About 30% of patients do not profit from conventional
antidepressant treatments (psychotherapy, pharmaco-
logical, electroconvulsive therapy),4 which leads to a
chronic manifestation of the disease. 
The neurogenesis hypothesis of depression assumes that
neurogenesis is influenced negatively by stressful expe-
riences and positively by antidepressant treatment.
Alterations in neurogenesis are believed to play a deci-
sive role in the pathology and treatment of major
depression3,5; this view is supported by several converg-
ing lines of research.

Neurodegeneration and neurogenesis

Imaging and postmortem studies have demonstrated cel-
lular loss in several brain areas, eg, in the prefrontal cor-
tex and amygdala6-9 and in the paraventricular nucleus
of the hypothalamus10 in depressed patients.10 High lacu-
nar volume in white matter has been observed in late-
life mood disorders,11 as has reduced hippocampal vol-
ume.12,13 A negative correlation of the hippocampal
volume and the length of the untreated depression, as
well as a normalization of the hippocampal volume in
remission, have been demonstrated.13

Neurogenesis and cellular plasticity

Adult neurogenesis was demonstrated in 1965 in rats
and some years later in the human dentate gyrus of the
hippocampus14 and in the subventricular zone of the lat-
eral ventricle.
It has been demonstrated that neurogenesis can be
inhibited by physical and social stress, depression, and

antidepressant treatment. Modulating factors seem to be
novelty, fear, and learning.3

Possible mechanisms of action relating depression to a
dysfunction in neurogenesis are psychological stress, glu-
cose and insulin regulation, oxidative stress, a reduction
in brain-derived neurotrophic factor (BDNF), and
telomere shortening.

Psychological stress and neuroinflammation

Psychological stress and neuroinflammation lead to an
activation of the limbic-hypothalamic-pituitary-adrenal
(LHPA) axis and proinflammatory cytokines are
released. It has been proven that inflammatory cytokines
can induce neurodegeneration in depression.15-18 For
example, in 2009, Maes and colleagues concluded that
chronic stress may exacerbate the release of proinflam-
matory cytokines and precipitate depressive episodes.15

The administration of high levels of proinflammatory
cytokines can cause changes in behavior similar to
depression, and the attenuation of an inflammatory
response can reduce depressive symptoms.19,20

Glucose and insulin regulation

Depression is often associated with higher levels of the
stress-related hormone cortisol. In depressive patients
suffering from hypercortisolemia, glucose and insulin
regulation are abnormal. High levels of cortisol have an
anti-insulin effect. In a comprehensive review, Rasgon
and colleagues21 have described how prolonged exposure
to glucose intolerance and insulin resistance is associated
with accelerated biological aging. Neurotoxic effects of
hypercortisolemia have also been described.22

Oxidative stress 

Oxidative stress and inflammation are also called the
“evil twins” of brain aging. It has been shown that oxida-
tive stress increases with aging while antioxidant activi-
ties decrease with higher age.23 Oxidative stress is seen
in depression and Alzheimer´s disease (AD).24

Brain-derived neurotrophic factor 

Brain derived neurotrophic factor (BDNF) seems to
play an important role in the neurogenesis hypothesis of
depression. BDNF also has anti-inflammatory and
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antioxidant effects. Diminished hippocampal BDNF
activity impairs stem cells in the dentate gyrus, an effect
related to depression.25 Unmedicated depressive patients
have decreased hippocampal serum concentrations of
BDNF.26

Telomeres

Telomeres are DNA protein complexes that protect
DNA from damage. The length of the telomeres is one
marker of biological age and genotoxic and cytotoxic
processes The effect of depression on telomeres has also
been under research. Patients suffering from depression
show premature telomere shortening,27 probably due to
inflammatory processes. In this relationship, the enzyme
telomerase is thought to have anti-aging or cell-pro-
moting effects. Telomerase has been shown to be
increased in unmedicated depressed patients,22 possibly
a compensatory response to telomere shortening. High
levels of cortisol lead to a downregulation of telom-
erase.28

An open question remains as to whether dysfunction in
neuronal plasticity is the cause, the consequence, or a
correlate of depression. 
In the following section, we will summarize evidence for
a positive effect of different antidepressant therapies on
neuroplasticity.

The effect of antidepressant therapies on
neuroplasticity and neuroprotection

Antidepressants

The effect of antidepressants on neuroplasticity has been
under research.29 The shrinkage of neurons in the hip-
pocampus can be reversed with antidepressants in animal
models.30,31 Treatment with antidepressants promotes neu-
rogenesis, thus normalizing hippocampal volume.12,13 The
appearance of new cells in the hippocampus after treat-
ment with antidepressants32 has been discussed as the
mechanism by which antidepressants overcome stress-
induced atrophy. In animal models, hippocampal neuro-
genesis plays a role in the action of antidepressants,33 but
its clinical relevance for the pathogenesis of depression in
humans remains to be established. A putative mechanism
could be that antidepressants decrease oxidative stress,24

reduce proinflammatory cytokines20,34 or lead to a BDNF-
dependent increase in cell proliferation.

Although the effect on neuroprotection and neurogen-
esis of antidepressants in animal models has been
proven, studies are needed to assess this effect in
humans. Currently, neurogenesis is considered as one
major aspect, but other factors possibly add to the patho-
physiology of depression and to pharmacological treat-
ment effects.3

Neuroprotectants

Neuroprotectants are drugs acting to protect against or
help repair the damaging effects of a disease an insult to
the brain.
Excessive nicotine consumption35,36 as well as with-
drawal37,38 has been proven to induce depression. In
depressed patients, nicotine has an effect on anhedonia
and mood.39,40 The neuroprotective effect of nicotine has
been demonstrated, possibly by activation of nicotinergic
receptors.41,42 Nicotine has a neuroprotective effect for
example in Parkinson´s disease (PD).43-45 Consequently, it
has been proposed to use nicotinic agonists for the treat-
ment of neurodegenerative diseases and depression.46-48

Alcohol and depression are highly comorbid, and high
doses of alcohol induce depressive-like behaviors in nor-
mal rats,49,50 but antidepressant effects of low doses of
alcohol in a rat model of depression has been demon-
strated. Light to moderate drinkers have a reduced risk
of dementia and cognitive decline compared with non-
drinkers,51 and low doses of alcohol are thought to pro-
vide neuroprotection through a dampening of inflam-
matory processes.51-53 The exact mechanism of
neuroprotection is not known.
Other substances have antidepressant as well as neuro-
protective properties, eg, the antioxidant resveratrol (for
example, in red grapes) has proven antidepressant
effects in a preclinical study54 and also reduces the risk
of AD and PD,55-57 possibly through a mediation of neu-
roinflammation.58 Curcumin, another antioxidant has
proven anti-inflammatory59,60 and antidepressant61,62 prop-
erties, and has been proposed in the treatment of neu-
rodegenerative disease.63

Ketamine, a non-competitive N-methyl-D-aspartic acid
(NMDA) receptor antagonist, has anxiolytic and anti-
depressant effects in preclinical and clinical studies,64-66

but its application in depression and neurodegenerative
disorder remains to be determined. 
Taken together, the first evidence exists that neuropro-
tection could also have an antidepressant and anti-aging
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effect, but large clinical studies are needed to further
evaluate their potential in clinical practice. 

Deep brain stimulation

Deep brain stimulation (DBS) is a surgical treatment. It
involves the implantation of a brain pacemaker, which
constantly stimulates specific structures in the brain with
electrical impulses. DBS is currently under research for
the treatment of chronic, therapy-resistant depression,
and other psychiatry disorders. The exact mechanism of
action is not fully understood, but possibly, DBS modu-
lates neuronal networks for emotional processing and
reward, which are dysfunctional in depression. Four tar-
gets are evaluated.
DBS to the subgenual cingulate cortex (Cg25) was
hypothesized to exert an antidepressant effect by mod-
ulating the depression network through a reduction of
Cg25 hyperactivity.67 Observations from historical
lesion studies (eg, anterior capsulotomy) and antide-
pressant effects seen in patients with obsessive-com-
pulsive disorder who were stimulated in the anterior
limb of the internal capsule/the ventral striatum,68 led
to a study in which the anterior limb of the internal
capsule/ventral striatum (ALIC).69 Converging evi-
dence from animal, pharmacological, and neuroimag-
ing studies points toward a nucleus accumbens (NAcc)
dysfunction in patients suffering from depression; this
led to the hypothesis that DBS to the NAcc would lead
to antidepressant effects by modulating the depression
network.70

For all three targets (Cg25, ALIC, NAcc), similar long-
term antidepressant effects have been published.69,71-76

Response (defined as a reduction of minimum 50% in
the Hamilton Rating Scale of Depression or the
Montgomery-Asperg Depression Rating Scale) varied
between 40% and 60%,69,71-76 but small study sizes do not
yet allow the selection of a favorite target.
Very recently, the supero-lateral branch of the medial
forebrain bundle (slMFB) has also been proposed as a
target.77,78 The slMFB is anatomically and functionally
connected with the above described DBS targets in
depression (Cg25, ALIC and NAcc) and electric field
stimulation as well as probabilistic fiber tracking have
demonstrated a possible involvement of the slMFB in
DBS of the current targets.77-79 In a recent slMFB-DBS
pilot study, six out of seven patients showed a fast and
sustained antidepressant response.80

The clinical effect of DBS has been explained as a mod-
ulation of neuronal excitability and as a direct activation
of neurons.81,82 Effects of DBS on neurogenesis and neu-
roprotection as studied in animal models will be
addressed here in more detail.
High-frequency DBS to the anterior thalamic nuclei
leads has increased neural progenitors in the dentate
gyrus of the hippocampus and increased number of new
neurons in mice.83 Also in rats, high-frequency (130 Hz)
DBS to the same nucleus has increased hippocampal
neurogenesis and restored prior experimentally sup-
pressed neurogenesis. Low-frequency (10 Hz) DBS did
not have the same effect.84 Increased neurogenesis has
been associated with enhanced behavioral performance
in other studies. For example, DBS to the fornix in mice
promoted proliferation in the dentate gyrus and ame-
liorated water maze memory after 6 weeks. This effect
was missing when neurogenesis was experimentally
blocked. This suggests a causal relationship between
stimulation-induced promotion of adult neurogenesis
and enhanced spatial memory.85

These animal data suggest that hippocampal neurogen-
esis seems a strong correlate of cognitive and emotional
processes.83 Hippocampal neurogenesis may possibly be
as sensitive indicator of limbic circuitry activation
induced by DBS, antidepressants (fluoxetine) and phys-
ical exercise.83

In a PD rat model, chronic high-frequency stimulation
of the subthalamic nucleus increased cell survival in the
striatum and promoted the recovery of the dopaminer-
gic system.86 In another study, continuous high-frequency
DBS to the subthalamic nucleus for several days demon-
strated delayed behavioral and cellular effects, suggest-
ing progressive functional reorganization in the cortico-
basal ganglia-cortical loop circuits.87 Preclinical studies
in both rats and monkeys have demonstrated that DBS
to the subthalamic nucleus can prevent the degeneration
of nigral dopaminergic neurons from the insult produced
by dopamine-depleting neurotoxins.88-91

Although human studies are missing, subthalamic nucleus
DBS in animals has demonstrated significant neuropro-
tective and neuroplastic properties. Thus, the initiation of
DBS earlier in the course of PD has been suggested.92 This
is assumed to provide added neuroprotective benefits in
addition to symptomatic relief. Currently, several studies
are under way exploring the neuroprotective potential of
early DBS in PD (ClinicalTrials.gov identifier:
NCT00282152, NCT01274832, NCT00354133). Results
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from these studies will be important for the discussion of
an early intervention in other diseases, for example in
depression. 
Overall, deep brain stimulation has contributed to a
novel view of depression—away from a synaptocentric
view to a conceptualization of dysfunctional brain net-
works for the processing of emotions.93 It has become
evident that several neuropsychiatric disorders might be
associated with network dysfunctions.94 Initial studies
have demonstrated a positive effect of DBS on neuro-
plasticity and neuroprotection. Future studies are
required to explore long-term effects of DBS on neuro-
neogenesis and neuroprotection.

Aging and dementia

AD is the most common neurodegenerative disease fea-
turing progressive impairments in memory, cognition,
and behaviour, and half of the cases of dementia are
caused by AD. The neurodegenerative hallmarks of AD
include the accumulation amyloid-β, the deposition of
amyloid plaques and the formation of neurofibrillary
tangles.95

Similar to the monoamine theory on depression, the
cholinergic hypothesis of dementia was proposed in 1982
by Bartus et al who believed that functional disturbances
in cholinergic activity occurred in the brains of healthy
older adults and demented patients.96,97

This hypothesis has been supported by positive effects of
cholinesterase inhibitors on cognition in patients suffering
from AD.98 Although much clinical development research
on cholinergic agents has followed, the clinical effects are
limited99 and no therapeutic strategy for AD has demon-
strated long-term efficacy to date.100 Thus, new concepts
and therapeutic approaches are required.
The role of inflammation (eg, cytokines) and telomerase
activity, which leads to neuronal degeneration94,98 have
also been suggested in the neurogenesis theory of
depression. These factors lead to a dysregulation of brain
networks.99 It is unclear whether amyloid-β itself by its
ability to alter synaptic (glutamatergic) transmission and
to impair the induction of long-term potentiation.99 A
disruption of the connectivity of memory networks have
been observable in early AD and asymptomatic indi-
viduals with high amyloid burden.100

Novel concepts of aging and dementia as a dysfunction of
neuronal networks led to the application of deep brain
stimulation in patients suffering from AD.103 Current stud-

ies targeting the fornix or the nucleus basalis of Meynert
will show whether deep brain stimulation will be superior
to pharmacological treatment (ClinicalTrials.gov identi-
fier NCT01559220, NCT01094145, NCT01608061) and if
the modulation of neuronal networks as suggested effec-
tive in the treatment of depression can be extended to
dementia.

Evidence for a common mechanism 
in depression and aging

Several lines of evidence suggest that depression and
neurodegenerative diseases such as AD underlie com-
mon neurodegenerative processes, and thus depression,
can be seen as a model disease for (pathological) neu-
ronal aging.

Clinical evidence

About 50% of patients suffering from AD have comor-
bid depression.104 This is especially the case in elderly
patients. Many medical comorbid diseases seen in
depression are diseases of advanced age (eg, heart dis-
ease, stroke).22 In addition, both depression and AD are
associated with cognitive decline.

Pathophysiology

An increase in neurodegeneration, coupled with a reduc-
tion of neuroprotection and neuronal repair, is proposed
as the unifying mechanism of depression and cerebral
aging.105,106 Dysregulation of BDNF107 and neuroinflam-
matory processes (eg, a dysregulation of cytokines) has
been proposed as a unifying factor in depression and
AD.15 Certain cytokines increase as a function of age; this
could be one cause for age-related dementia and depres-
sion.108 A positive feedback loop between neuroinflam-
mation, neurodegeneration, and depression has been
suggested109 and an increase in glucocorticoid level may
be the initial pathological marker of depression and
dementia.105,106

Treatment

Neuroprotectants (eg, ketamine, curcumin, resveratrol,
and nicotine) seem to have antidepressant properties
as well as an effect on neurodegenerative diseases
(AD, PD). Electroconvulsive therapy is known to have
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better results in elderly patients, although the reasons
are not yet understood. Therapies (eg, pharmacother-
apy, deep brain stimulation) interfering with detri-
mental consequences of neuronal degeneration are
promising treatments both for mood disorders and
cerebral aging. 

Conclusion and outlook

Current concepts of depression and cerebral aging
have been changed from a dysfunction of neurotrans-
mission to a dysfunction of neurogenesis and neuro-

protection. As underlying mechanisms of pharmaco-
logical treatment effects in depression and dementia,
a restoration of neuroprotection and neurogenesis
have been suggested. Converging evidence exists for
the dysfunction of complex neuronal networks as con-
sequence of neural degeneration in neuropsychiatric
diseases, leading to the application of deep brain stim-
ulation. Future studies using deep brain stimulation in
combination with neuroimaging, electrophysiology,
and cognitive behavioral experiments are required to
underline the hypothesis of dysfunctional neuronal
networks. ❏
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La depresión crónica como modelo de 
enfermedad del envejecimiento cerebral

Los conceptos neurobiológicos que están a la base
de la depresión mayor han cambiado su enfoque
desde las disfunciones en la neurotransmisión a dis-
funciones en la neurogénesis y en la neuroprotec-
ción. La “hipótesis de la neurogénesis de la depre-
sión” postula que los cambios en la tasa de
neurogénesis constituyen el mecanismo que sub-
yace a la patología y al tratamiento de la depresión
mayor. Es posible que el estrés, la neuroinflama-
ción, la disfunción de la regulación de insulina, el
estrés oxidativo y las alteraciones en los factores
neurotróficos contribuyan al desarrollo de la
depresión. Se resume la influencia de las terapias
antidepresivas en la plasticidad neuronal, como son
la farmacoterapia y los neuroprotectores. La esti-
mulación cerebral profunda se ha aplicado a partir
de disfunciones de redes neuronales complejas,
producto de la degeneración neuronal en enfer-
medades neuropsiquiátricas. Se discute la manera
en que la depresión desde la perspectiva de la
hipótesis de la neurogénesis pueda ser empleada
como modelo de enfermedad del envejecimiento
cerebral. Se discute un mecanismo patológico
común en la depresión y el envejecimiento cerebral
–una disfunción de la neuroprotección y de la neu-
rogénesis- lo que tiene efectos para nuevos méto-
dos terapéuticos.  

La dépression chronique, un modèle 
pathologique du vieillissement cérébral

Les concepts neurobiologiques sous-tendant la
dépression majeure sont passés des dysfonctions de
la neurotransmission aux dysfonctions de la neuro-
genèse et de la neuroprotection. « L’hypothèse neu-
rogénésique de la dépression » postule que le
mécanisme qui sous-tend la pathologie et le traite-
ment d’une dépression majeure est celui de modi-
fications du taux de neurogenèse. Le stress, la
neuro-inflammation, un dysfonctionnement de la
régulation en insuline, le stress oxydatif et des
modifications des facteurs neurotrophiques peu-
vent participer au développement de la dépression.
L’article résume l’influence des traitements antidé-
presseurs, c’est-à-dire des traitements pharmacolo-
giques et des neuroprotecteurs sur la plasticité cel-
lulaire. La stimulation cérébrale profonde est née
de l’observation d’une dysfonction des réseaux neu-
ronaux complexes suite à une neurodégénéres-
cence lors des maladies neuropsychiatriques. Nous
analysons la possibilité d’utiliser la dépression envi-
sagée sous la lumière de l’hypothèse neurogéné-
sique comme modèle pathologique du vieillisse-
ment cérébral. Nous étudions un mécanisme
commun à la dépression et au vieillissement céré-
bral, une dysfonction de la neuroprotection et de
la neurogenèse, ce qui a des conséquences en
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