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Summary
Approximately half the world uses biomass fuel for domestic energy, resulting in widespread
exposure to indoor air pollution (IAP) from biomass smoke. IAP has been associated with many
respiratory diseases, though it is not clear what relationship exists between biomass use and
pulmonary function. Four groups containing 20 households each were selected in Santa Ana,
Ecuador based on the relative amount of liquid petroleum gas and biomass fuel that they used for
cooking. Pulmonary function tests were conducted on each available member of the households ≥7
years of age. The pulmonary functions of both children (7–15 years) and women (≥16 years) were
then compared between cooking fuel categories using multivariate linear regression, controlling
for the effects of age, gender, height, and exposure to tobacco smoke. Among the 80 households,
77 children and 91 women performed acceptable and reproducible spirometry. In multivariate
analysis, children living in homes that use biomass fuel and children exposed to environmental
tobacco smoke had lower forced vital capacity and lower forced expiratory volume in 1 s
(P<0:05). However, no significant difference in pulmonary function was observed among women
in different cooking categories. Results of this study demonstrate the harmful effects of IAP from
biomass smoke on the lung function of children and emphasize the need for public health efforts
to decrease exposure to biomass smoke.
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Introduction
Indoor air pollution (IAP) is the second largest environmental contributor to morbidity
worldwide, surpassed only by unsafe water and sanitation.1 The largest source of IAP is the
combustion of biomass fuels (wood, charcoal, crop residues, or dung) for domestic energy
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by nearly half the world’s population. 2 IAP from biomass combustion has been associated
with many common diseases including acute lower respiratory infections (ALRI), middle
ear infections (otitis media), cancers of the nasopharynx and larynx, perinatal disease, and
diseases of the eye (cataracts and blindness).3 It is estimated that IAP causes 2.2–2.8 million
deaths annually including approximately 1 million deaths due to ALRI among children.4,5

Women and children are particularly vulnerable to these adverse health effects because of
their greater exposure to IAP from cooking.

Exposure to environmental tobacco smoke (ETS) is known to cause decreased pulmonary
function and abnormal lung development, particularly with prenatal and early childhood
exposures.6 Several studies also suggest that exposure to biomass smoke is associated with
impaired pulmonary function.7–13 Many of these studies, however, did not control for the
effects of age and anthropometric factors such as height.7,9,10

The primary goal of this study was to examine the impact of biomass fuel use on pulmonary
function among women and children in a rural Ecuadorian community. We hypothesized a
significant decrease in pulmonary function with increasing use of biomass fuel among both
women and children. The study was conducted in Santa Ana, Ecuador due to the extensive
use of biomass fuel and a high prevalence of respiratory disease. This study was a
collaborative effort between Purdue University and The Cinterandes Foundation.

Materials and methods
Study site

Santa Ana is a rural community in the Andes of southern Ecuador. It is located 18 km
southeast of the city of Cuenca and extends across 46 km of mountainous countryside at
altitudes range from 2300 to 3200 m. Climate in the region is generally cool and dry with
average monthly lows of 8 °C and highs of 20 °C. The study took place during the dry
season from June to November of 2004.

There are approximately 5000 people in Santa Ana living in nearly 1000 households.
Eighty-five percents of the population are mestizos (of mixed European and Native
American ancestry) while the remaining 15% are Quechuan (a Native American
population). Most community members work in manual labor and almost all households rely
on sustenance farming. The illiteracy rate is high (14%) and only 30% of adults have
completed elementary education. Though nearly 80% of households receive electricity, the
majority lack municipal water and many do not have access to latrine or toilet facilities.
Most households rely on biomass fuel for cooking, which is typically done indoors over
open wood fires. Some households also rely on liquid petroleum gas (LPG) stoves for part
or all of their cooking. Exposure to LPG has been associated with lower pulmonary function
when compared with a cleaner fuel such as electricity.14–16 However, LPG is known to be a
much cleaner fuel source than biomass combustion, and at this time none of the households
in Santa Ana used electricity for cooking. All houses studied had a separate room for
cooking, but ventilation was poor with few windows and doors, which were usually kept
closed.

Sampling and data collection
Households were selected by random and quota sampling. All households in the community
were initially randomized by assigning each a random number using a random number
generator. Households were then sequentially visited based on their random number. The
cooking fuel source was identified for each of the households visited, and the interviewer
used quota sampling to identify four cooking categories that contained 20 households each.
The four categories were: LPG only, primarily LPG with some biomass fuel, primarily
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biomass fuel with some LPG, and biomass fuel only. If a household declined to participate,
the next household on the randomly generated list was contacted.

The study was initially explained to local government, church, and healthcare workers in
Santa Ana and their oral consent was obtained. Written consent for each child’s participation
was obtained in Spanish from an adult in the household and written assent was obtained
from literate children. Households were visited by a trained healthcare worker and an
outreach member of the local government. The age, gender, height, and exposure to ETS
were recorded for each woman and child living in the household. Pulmonary function tests
were conducted on individuals ≥7 years old using a Koko Trek portable flow spirometer
(Ferraris Respiratory, Louisville, Colorado) that was calibrated daily with a 3 L syringe.
Spirometric measurements included forced vital capacity (FVC), forced expiratory volume
in 1 s (FEV1), FEV1/FVC (expressed as a percentage), and forced expiratory flow over the
middle half of the FVC (FEF25–75%). Spirometry was conducted with subjects in a standing
position with a nose clip applied. Based on guidelines of the American Thoracic Society,
maneuvers were only accepted if they had low back-extrapolated volume (<5% of the FVC
and <0.15 L), both the FVC and FEV1 for were within 0.20 L of the best effort FVC and
FEV1, and there was a low volume accumulated at the end of the effort.17 Subject performed
two acceptable and reproducible efforts. Data analysis was conducted on the largest FVC of
the two curves, the largest FEV1, the ratio of the largest FEV1 to the largest FVC, and the
FEF25–75% from the curve with the largest FVC+FEV1 sum.

Statistics
Analysis of variance (ANOVA) and Pearson’s χ2 tests were used to compare the difference
in baseline characteristics (age, gender, and height) between cooking fuel categories for both
women (≥16 years old) and children (7–15 years old). Multivariate linear regression analysis
was used to assess the association of cooking fuel with pulmonary function, controlling for
age, gender, height, and exposure to tobacco smoke (defined by the presence of a smoker in
the household). A P-value <0.05 was considered significant for all analyses. Statistical
analyses were performed using SPSS version 12.0.18

All of the research procedures were approved by the Committee on the Use of Human
Research Subjects at Purdue University.

Results
Among the 80 households in the study, 77 children (of 88 available children) and 91 women
(of 114 available women) performed acceptable and reproducible spirometry. There were no
significant differences in gender, age, height, or exposure to ETS between children in
different cooking fuel categories (Table 1). Among women, there were significant
differences in the mean height (P = 0:02) of adults in different cooking fuel categories.
Women cooking with LPG were taller than those cooking with biomass fuels. Women living
in households that cooked with LPG also tended to be younger than women living in
households that cooked with biomass fuel (P = 0:07). Among households in the study, only
adult men smoked tobacco. The median number of cigarettes smoked by these men was 3.5/
day (Interquartile Range = 8).

Mean pulmonary function values are presented for women and children in Table 2.
Multivariate analysis for pulmonary function of children showed significantly lower FVC
among children living in households that cooked with biomass fuel only (P = 0:04),
primarily with biomass (P = 0:03), and primarily LPG (P = 0:01) when compared with
children living in households that cooked with LPG only (Table 3). Similarly, a lower FEV1
was observed among children living in households that cooked with biomass fuel only (P =
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0:05), primarily with biomass fuel (P = 0:01) and primarily with LPG (P = 0:02). Passive
exposure to tobacco smoke (defined by the presence of a smoker in the household) was also
associated with a significantly lower FVC (P = 0:01) and FEV1 (P = 0:001) among children.
No significant differences in FEV1/FVC or FEF25–75% were noted between children in
different cooking categories or children exposed to passive tobacco smoke. Furthermore,
there were no significant differences in pulmonary function among women in different
cooking fuel categories (Table 4).

Discussion
This study documents lower pulmonary function among children living in households that
cook with biomass fuel and children exposed to ETS. No difference in pulmonary function,
however, was observed among women in different cooking fuel categories. The mechanism
for decreased pulmonary function and impaired lung development among children exposed
to air pollutants is not clear. Fetal and neonatal exposures to pollutants may alter lung
“programming” causing permanent changes in lung structure and function.19 The
pathogenesis of these changes could be related to inflammation, thickened airway walls,
small caliber airways, increased smooth muscle tone, or decreased elastic recoil.20

Exposure to ETS
Among children, exposure to ETS is known to decrease pulmonary function and impair lung
growth.6 Fetal and early postnatal exposure to maternal smoking has been associated with
significant deficits in lung function that persist into young adulthood.21–23 Childhood
exposure to ETS has also been implicated in lung damage and reduced lung function.
Studies on ETS exposure among children often show a lower FEV1 when compared to non-
exposed children.24–27 The impact of ETS on lung volume, however, is less clear. Though
many studies show decreased FVC among children exposed to ETS,24,28,29 the majority find
no significant difference between exposed and non-exposed children.6 Children exposed to
ETS in our study were found to have both lower FEV1 and FVC.

Fewer studies have examined the association between pulmonary function and ETS in
adults, and these often produce inconsistent results.30 Some studies demonstrated lower lung
flow (FEV1 and FEF25–75%) among adults exposed to ETS,31,32 while others found no
significant difference.33–35 Though adults exposed to ETS may have slight changes in
pulmonary function, ETS alone is not expected to have clinically significant impacts on
adult lung function.36 The fact that we did not see a significant functional deficit with
exposure to ETS among women may also be due to a recent onset of smoking in the
community and the small number of cigarettes smoked by the smokers in our study.

Exposure to biomass smoke
Previous studies have also demonstrated lower pulmonary function among children exposed
to biomass smoke.7,9,10

Jordanian school children living in homes that cooked with wood or kerosene had
significantly lower FVC (1.02 vs. 1.32 L), FEV1 (0.91 vs. 1.24 L), and FEF25–75% (1.24 vs.
1.86 L/s) than children living in homes that cooked with electricity.9 The same study also
showed that children exposed to ETS had lower FVC (1.29 vs. 1.49 L), FEV1 (1.20 vs. 1.40
L), and FEF25–75% (1.84 vs. 2.24 L) when compared with non-exposed children. In northern
India, boys living in houses that cooked with biomass fuel had significantly lower mean
FVC and FEV1 (2.40 and 2.19 L, respectively) when compared with boys living in homes
that cooked with kerosene (2.41 and 2.23 L), mixed fuels (2.48 and 2.33 L), or LPG (3.03
and 2.75 L).7 School children in southern Turkey also had decreased FVC and FEV1 with
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exposure to wood-burning stoves.10 These studies consistently demonstrate decreased
pulmonary function among children exposed to IAP from biomass smoke. However, the
analysis of these studies did not control for the confounding effects of age or height. The
present study found similar relationships, and also controlled for the effects of age, gender,
height, and ETS, in multivariate analysis.

Adults exposed to IAP from biomass combustion have also been found to have decreased
pulmonary function, often associated with COPD.3 COPD is usually attributed to tobacco
smoke, which accounts for more than 80% of cases in the developed world.37 In developing
countries, however, COPD is prevalent in areas where smoking is uncommon. Numerous
studies have identified biomass smoke as a primary risk factor for COPD in rural
areas.8,38–41 For example, in Bogotá, Colombia hospital patients that cooked with firewood
were 3.9 times as likely to have severe obstructive pulmonary disease than patients who did
not cook with wood.39 Other hospital-based investigations found adjusted odds ratios for
COPD in the range of 1.8–9.7 associated with exposure to biomass smoke.3

Observational studies of non-smoking women with long-term exposures to biomass smoke
have shown combined restrictive and obstructive changes in pulmonary
function.11,12,13,42,43 In the Mid-Antolia region of Turkey, adults that used biomass fuel for
cooking or heating had significant functional deficiencies (FVC, FEV1, FEV1/FVC,
FEF25–75%) when compared with adults that did not use biomass fuel.13 On physical exam,
pre-dominant findings of biomass smoke exposure include bilateral basilar crackles and
clinical signs of cor pulmonale.11,12,43 A diffuse reticular-nodular pattern has commonly
been observed on radiograph, and histopathologic examination of lung biopsies revealed
extensive anthracosis and thickening of the basement membrane. Signs of acute and chronic
inflammation were detected with bronchoscopy. Women in theses studies were commonly
exposed to biomass smoke for 8 h/day over the previous 50 years.12

Women exposed to biomass smoke in our study did not have significantly different lung
functions when compared with unexposed women. Santa Ana has recently undergone
economic development, and it has only been in the previous 10 years that households began
cooking with LPG. This recent change in domestic energy may explain why differences in
pulmonary function were not detected among women in different cooking fuel categories.
All women were likely to have been raised in households that relied completely on biomass
fuel, and thus are expected have similar childhood exposures. Current differences in IAP
exposure among women may not have a significant impact, since the adult lung is thought to
be less susceptible to the effects of air pollution than children’s lungs.36

Limitations
Individuals of Quechuan descent have been shown to have lower ventilatory response to
sustained hypoxia.44 Several studies have also shown that Quechuans have increased
pulmonary function when compared with individuals of European/North American
descent.45–47 A study comparing the height-adjusted FVC between Quechuan natives and
expatriate Europeans/North Americans born and raised at high altitudes showed
significantly greater FVC among the native Quechuan.47 This increased pulmonary function
may be associated with an accelerated growth in lung function relative to stature, the large
chest sizes of Quechuan people, and an increased alveolar surface area.48 The findings of
this paper may, therefore, be unique to the population that was studied. We did not assess
the ancestry of individual participants in our study and, therefore, cannot comment on the
impact of ethnicity on pulmonary function among individuals in Santa Ana. Furthermore,
there is not an appropriate reference equation to calculate the percent-predicted pulmonary
function of individuals in this population.
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Major limitations of this study also include its cross-sectional design. Thus, past exposure to
biomass smoke and recent changes in biomass use were not assessed. The study was also
limited by the use of a surrogate measure (cooking fuel) to assess IAP from biomass smoke,
though levels of biomass smoke are expected to increase with increasing use of biomass
fuel.49 Furthermore, we cannot comment on the duration of exposure to different fuel
sources as we could not adequately assess cooking time among households. Lastly, the study
was limited by its relatively small sample size in each cooking fuel category, decreasing the
power to detect small differences in pulmonary function.

Conclusions
This study contributes to the evidence of the adverse impact of IAP from biomass
combustion on pulmonary function. Results of the study demonstrated decreased pulmonary
function among children living in homes that cook with biomass fuel when compared with
children living in homes that cook with LPG only. Prospective studies are needed to assess
the long-term effects of biomass smoke on lung development and lung growth among
children. Further research is also warranted to assess the potential reversibility of changes in
pulmonary function due to childhood exposure to biomass smoke. Given the extensive use
of biomass fuels, public health efforts in the developing world that are concerned with
respiratory health should address the risks IAP exposure.
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Table 2

Mean pulmonary function values for women and children in different cooking fuel categories.

FVC mean (SD) FEV1 mean (SD) FEV1/FVC mean (SD) FEF25–75% mean (SD)

Children (7–15 years)

LPG only 2.57 (0.69) 2.27 (0.68) 87.9 (9.7) 3.12 (1.16)

Primarily LPG 2.38 (0.55) 2.13 (0.54) 89.4 (5.4) 2.77 (0.95)

Primarily biomass 2.46 (0.57) 2.13 (0.49) 86.7 (5.6) 2.49 (0.75)

Biomass only 2.61 (0.84) 2.28 (0.65) 88.5 (6.0) 2.84 (0.68)

All children 2.48 (0.64) 2.20 (0.59) 88.3 (7.0) 2.83 (0.96)

Women (≥16 years)

LPG only 3.58 (0.61) 3.02 (0.53) 84.4 (5.7) 3.55 (1.02)

Primarily LPG 3.42 (0.61) 2.81 (0.58) 81.8 (6.0) 3.02 (1.05)

Primarily biomass 3.16 (0.74) 2.65 (0.57) 84.4 (6.6) 3.00 (0.91)

Biomass only 2.99 (0.92) 2.53 (0.80) 84.9 (6.4) 2.90 (1.12)

All women 3.29 (0.76) 2.76 (0.64) 83.9 (6.2) 3.12 (1.04)
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