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Abstract
A long-standing but poorly understood defect in autoimmune diseases is dysfunction of the
hematopoietic cells. Leukopenia is often associated with systemic lupus erythematous (SLE) and
other autoimmune diseases. In addition, homeostatic proliferation of T cells, which is a host
response to T cell lymphopenia, has been implicated as potential cause of rheumatoid arthritis
(RA) in human and experimental models of autoimmune diabetes in the NOD mice and the BB
rats. Conversely, successful treatments of aplastic anemia by immune suppression suggest that the
hematologic abnormality may have a root in autoimmune diseases. Traditionally, the link between
autoimmune diseases and defects in hematopoietic cells has been viewed from the prism of
antibody-mediated hemolytic cytopenia. While autoimmune destruction may well be part of
pathogenesis of defects in hematopoietic system, it is worth considering the hypothesis that either
leukopenia or pancytopenia may also result directly from defective hematopoietic stem cells
(HSC). We have recently tested this hypothesis in the autoimmune Scurfy mice which has
mutation Foxp3, the master regulator of regulatory T cells. Our data demonstrated that due to
hyperactivation of mTOR, the HSC in the Scurfy mice are extremely poor in hematopoiesis.
Moreover, rapamycin, an mTOR inhibitor rescued HSC defects and prolonged survival of the
Scurfy mice. Our data raised the intriguing possibility that targeting mTOR dysregulation in the
HSC may help to break the vicious cycle between cytopenia and autoimmune diseases.
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Introduction
Autoimmune diseases are caused by activation of self-reactive T and B cells that escape a
multitude of mechanisms for immune tolerance [1–3]. Paradoxically, autoimmune diseases
are also associated with immune deficiency and infections. For instance, at least two-thirds
of patients with common variable immunodeficiency exhibit signs of autoimmune diseases
[4–7]. In addition, patients with primary immune deficiency, such as DiGeorge syndrome,
also exhibit signs of autoimmunity [8–12].

The cause and effect between autoimmune diseases and immunodeficiency remains
unresolved. It is generally agreed that autoreactive antibodies may cause elimination of
leukocytes and thus contribute to immune deficiency [4, 13]. Methotrexate and occasionally,
prednisone, the popular drug for autoimmune diseases, are known to cause cytopenia [14–
18]. On the other hand, lymphopenia has been shown to cause homeostatic proliferation
(HP) of T cells [19–22]. HP has been suggested as a direct cause of autoimmune diseases in
the NOD model of type I diabetes [23] and fatal autoimmune diseases in mice devoid of
regulatory T cells [24]. One can thus envisage a vicious cycle between autoimmune diseases
and immunodeficiency. How to untangle the web between autoimmunity and
immunodeficiency is not only of interest for fundamental understanding of immunology, but
also of practical significance in treatment of both autoimmune diseases and
immunodeficiency. In this presentation, we will review literature in this less explored area
and present our recent studies that address the impact of autoimmune diseases on
hematopoiesis and the molecular pathway underlying such impact.

A vicious cycle between autoimmune diseases and cytopenia
The link between autoimmune diseases and defects of hematopoiesis system has its root in
long-standing clinical observations. In the SLE patients, the cytopenia has emerged as a
major hematologic criterion. The American College of Rheumatology (ACR) has the
laboratory finding of hemolytic anemia, leukopenia, lymphopenia and thrombocytopenia as
a diagnostic marker for SLE [25]. Likewise, cytopenia has been observed in rheumatoid
arthritis patients and those with Sjogren’s syndrome [15, 26–28]. In addition to generalized
cytopenia, more selective defects such as T cell lymphopenia have been reported in
rheumatoid arthritis [29] and multiple sclerosis [30].

It is of interest to consider the cause-effect relationship between autoimmune diseases and
cytopenia. A well-established autoimmune disease in both adults and children is
autoimmune hemolytic anemia, in which autoreactive antibodies are abnormally produced
and mediate elimination of both erythrocytes and/or leukocytes [4, 13]. In addition, it is
increasingly clear that drugs frequently used for autoimmune patients, such as methotrexate
and occasionally prednisone, may have cytopenia as a major adverse event [14–18]. A
largely overlooked issue is whether autoimmune diseases may cause defective
hematopoiesis. This issue will be revisited in the next section.

On the other hand, cytopenia may also be a fundamental cause of autoimmune diseases. An
intriguing link between cytopenia and autoimmune diseases is T cell HP. HP refers to the
ability of T cell to mount proliferation in response to paucity of T cells in the host.
Physiologically, homeostatic proliferation occurs during the neonatal period. It has been
suggested that such proliferation may complement T-cell lymphopoiesis in the thymus to fill
the periphery lymphoid organs [20].

Importantly, homeostatic proliferation not only increases the number of T cells in the host,
but also fundamentally changes the T cells in at least two ways. First, since HP is primarily
driven by self-antigens [19, 21, 22], it is to be expected that homeostatic proliferation would
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increase the overall autoreactivity of T cells. This has been confirmed in mice with neonatal
thymectomy [31]. Second, T cells that have undergone HP acquire features of memory T
cells and thus have lower activation threshold [32, 33]. Both features suggest that
homeostatic proliferation may increase the risk of autoimmune diseases. To test this notion,
we used mice with a fetal autoimmune disease, called Scurfy [34–36]. The Scurfy mice were
chosen as they are known to exhibit both cytopenia and severe autoimmune diseases [34–
36]. Moreover, subsequent studies have identified a similar X-linked autoimmune disease,
known as IPEX for immune dysregulation, polyendocrinopathy, enteropathy, and x-linked
syndrome [37]. The genetic bases for both diseases were identified about 10 years ago, as
inactivating mutations of the FOXP3 gene [38–41]. As the first step to determine if T cell
production was defective in the thymus, we analyzed T cell development during the
perinatal period. We showed that, in the Scurfy mice, the production of T cells in the thymus
was reduced as proliferation of T cell progenitors was hampered by an increased Erbb2
expression in the thymus [42]. Corresponding to defective T cell production, the Scurfy
mice had exacerbated homeostatic proliferation [24]. Since increased survival of the Scurfy
mice can be achieved only by adoptive transfer of a combination of regulatory T cells and
non-regulatory T cells [24], homeostatic proliferation of T cells must be suppressed to
prevent the fatal autoimmunity in the Scurfy mice.

In order to test this hypothesis by genetic manipulation, one needs to identify a T-cell
intrinsic regulator for homeostatic proliferation. In this context, we have reported that a
functional CD24 gene on T cells is critical for homeostatic proliferation in a lymphopenic
host [43]. To test whether a similar requirement also holds true in the Scurfy mice, we
adoptive transferred a mixture of WT and CD24-deficient T cells to the Scurfy mice. As
shown in Fig. 1a, while wild-type T cells mounted a vigorous proliferation, CD24−/− T cells
were largely undivided. Thus, much like the lymphopenic host, the homeostatic proliferation
in the Scurfy mice also requires CD24 expression in T cells. The requirement for CD24 in
homeostatic proliferation in the Scurfy mice provides us with a model to evaluate its
contribution to the pathogenesis of autoimmune diseases in the Scurfy mice. We crossed the
CD24-null alleles into the Scurfy mice and monitored survival of Scurfy mice with different
CD24 genotypes. As shown in Fig. 1b, CD24-deficiency significantly extended the survival
of the Scurfy mice. These data make a compelling case that homeostatic proliferation is a
missing link between lymphopenia and autoimmune diseases

Apart from the Scurfy model, studies by others have demonstrated that T lymphopenia is
associated with exacerbation of autoimmune diseases in type I diabetes in the NOD mice
[23]. More importantly, the development of diabetes can be prevented by adoptive transfer
of naïve T cells [23]. Corresponding to mouse data, defective T cell production and
homeostatic proliferation was observed in RA patients [29, 44].

The link between lymphopenia and autoimmune diseases is strengthened by genetic studies
in mice, rats and humans. Lymphopenia was observed in the Y chromosome-associated
lupus in mice [45]. In the BB rat, the immune-associated nucleotide (Ian)-related genes are
associated with lymphopenia and risk of type I diabetes [46, 47]. More importantly,
DiGeorge syndrome, which is a prototype of primary immune deficiency due to defective T
cell production, is associated with autoimmune diseases, including juvenile arthritis and
Grave’s disease [8–12, 48].

Taken together, a compelling case can be made that cytopenia may be an important cause of
autoimmune diseases (Fig. 2). While lymphopenia provides the most compelling link
between autoimmune diseases and cytopenia, it is also likely that additional associations
with cytopenia can exacerbate autoimmune diseases. For instance, neutropenia is often
associated with infections [49]. Infections may initiate or exacerbate autoimmune diseases
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through both activation of Toll-like receptors [50] and/or through molecular mimicry [51,
52].

Hematopoietic stem cells and autoimmune diseases
As outlined above, autoantibodies and drug side effects are two accepted causes of
cytopenia in autoimmune patients. It is largely unresolved whether autoimmune diseases
may affect the function of HSC. The most important clue that autoimmune diseases may
affect the HSC functions comes from clinical experience with aplastic anemia, a
pancytopenia attributed to stem cell defects. Aplastic anemia is caused by defective stem
cell function and manifests as defective production of both erythroid, myeloid and lymphoid
cells. Most cases of aplastic anemia are considered idiopathic. Transplantation is
recommended when histocompatible donors are available. Since this is not an option for
most patients with aplastic anemia, immune suppression therapy, typically a combination of
anti-thymocyte globulin (ATG), which eliminates T lymphocytes, and cyclosporine A, a
commonly used immune suppressant, are adopted. Since immune suppression results in
complete response in 50–70% of patients, it is generally accepted that most acquired aplastic
anemia is a result of concurrent autoimmunity [53].

To directly demonstrate a link between autoimmune diseases and HSC function, we first
analyzed the hematopoiesis in the Scurfy mice, which is devoid of regulatory T cells [54],
and developed fatal autoimmune diseases and pancytopenia [34–36]. We observed a
progressive loss of bone marrow cellularity that closely correlated with the progression of
autoimmune diseases. Interestingly, the number of HSC (Flt2−Lin-Sca-1+c-
Kit+CD150+CD48−CD34−) temporally expanded in the Scurfy mice at three weeks of age
when the autoimmune diseases initiated but dropped precipitously by 4 weeks of age when
autoimmune symptoms reached their peak, to a level that is 5–10 fold lower than wild-type
littermates. In order to compare HSC activity in the bone marrow of WT and Scurfy mice,
we harvested bone marrow from 1, 3, and 4 week old mice and carried out competitive
transplantation. Our data demonstrated that while bone marrow cells from day 7 old Scurfy
mice were as competent as WT cells in long-term hematopoiesis, bone marrow cells from 3
and 4 week old Scurfy mice had greatly diminished hematopoiesis. The defects were
observed in all lineages of lymphocytes and myeloid cells. These data provide direct
evidence that autoimmune diseases have severe effects on both the number and function of
HSC [55]. This model is also valuable for therapeutic intervention of cytopenia associated
with autoimmune diseases.

mTOR hyperactivation as the underlying cause for defective hematopoiesis in
autoimmune diseases

Mammalian targets of rapamycin (mTOR) have emerged as a key cellular sense for
environmental changes, including nutrition, energy, inflammatory stimuli and growth
signals such as hormones [56–59]. mTOR is stimulated by signals that activate AKT, which
inactivates TSC1/TSC2 complex [57, 60–62]. Conversely, PTEN, a multi-functional
negative regulator of cellular signaling and genomic stability, is known to inhibit mTOR
activation, perhaps through inactivation of AKT [63]. TSC function is maintained by GSK
but abrogated by Wnt signaling pathway [58]. In addition, mTOR sense cellular energy level
through AMPK, which is in turn activated by energy-deprivation [59]. Inactivation of TSC
complex by IKKβ links mTOR to inflammation [64]. The levels of free amino acids are
sensed by RAGA/B complex, which in turn activates mTOR [65]. mTOR forms two distinct
signaling complexes, known as TORC1 and TORC2, by interacting with either Raptor or
Rictor, respectively [66, 67]. While the TORC1 is activated by AKT, TORC2 regulates
activation of AKT1. Moreover, TORC1 and TORC2 are differentially affected by TSC
complex. While inactivation of TSC increases TORC1 activity, deletion of TSC appears to
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inactivate TORC2 [68, 69], perhaps through a negative feedback mechanism. As depicted in
Fig. 3, mTOR pathway has now emerged as one of the best characterized central pathways
for cell-environment interaction, including HSC function. Since hematopoiesis is
dynamically regulated by the environment, the role for mTOR in HSC function is of great
interest.

Two groups have reported that targeted mutation of the Pten gene in the HSC results in
transient expansion and their loss of stem cell activity as demonstrated by dysregulation in
hematopoiesis in the host and lack of hematopoiesis in bone marrow transplantation studies
[70, 71]. Since Pten is a negative regulator of mTOR, it has been suggested that functional
loss caused by Pten may be due to hyperactivation of mTOR [70, 71]. However, other
studies have raised the possibility that this is achieved by dysregulation of FOXO and
genomic instability [72]. To address this issue, we tested the HSC function after inactivation
of TSC, which is a more specific regulator of mTOR activity. Our data showed that deletion
of the Tsc1 gene results in loss of quiescence and stem cell activation in the HSC, even
though loss of HSC function does not correspond to reduction of cells with HSC markers
[73]. The defects can be attributed to mTOR hyperactivation as treatment with rapamycin
restores the stemness of the HSC. More importantly, mTOR activation causes increased
production of radical oxygen species and mitochondrion biogenesis, which is responsible for
the defective stem cell function.

Given the broad similarity in stem cell behavior in autoimmune mice and those with Tsc1
deletion, we tested if mTOR activation is responsible for the stem cell defects in the
autoimmune mice. We have provided several lines of evidence for the hypothesis [55]. First,
we observed that inflammatory cytokines, such as IL-6 and TNFα, which were highly
elevated in the Scurfy mice, induced activation of mTOR within 30 minutes. Second, we
showed that HSC in the Scurfy mice had highly elevated levels of mTOR activation, as
revealed by the phosphorylation of mTOR and its downstream substrate S6. Third, we
showed that short-term treatment of rapamycin significantly restored bone marrow
cellularity and increased production of lymphoid, myeloid and erythroid lineages in the bone
marrow. Fourth, we reported that rapamycin treated bone marrow cells showed vastly
improved activity in long-term reconstitution in competitive bone marrow transplantation.
Last but not least, we observed a very significant improvement of survival of Scurfy mice by
short-term treatment with rapamycin.

The genetic basis of Scurfy mice is the mutation in Foxp3 gene. In human, the FOXP3
mutations result in the syndrome of immune dysregulation, polyendocrinopathy,
autoimmune-enteropathy (IPEX; OMIM304930) which is a fatal X-linked recessive disorder
of early childhood. Protean symptoms of IPEX are severe secretory enteropathy causing
failure to thrive, early onset insulin-dependent diabetes mellitus, and eczema [74–77].
Impressively, Bindl, et al reported that sirolimus successfully controlled the gastrointestinal
and dermatologic symptoms of IPEX and reduced the systemic inflammatory reaction in
three patients for up to 5 years without significant side effects [78]. Given the lack of
effective treatment for IPEX patients, it is surprising that only few follow up clinical reports
on using sirolimus in IPEX and IPEX-like children have been reported with variable results
since the initial report [79, 80].

Implications for the treatment of hematopoiesis defects in autoimmune diseases in
humans

Taken together, our studies have demonstrated that mTOR activation is an underlying cause
of hematopoiesis defects in autoimmune patients. The above discussion highlights the fact
that cytopenia is both a cause and effect of autoimmune diseases (Fig. 2). Therefore, how to
break the vicious cycle of cytopenia and autoimmune diseases has significant implication in
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the treatment of autoimmune diseases. Since mTOR hyperactivation is a root cause of HSC
defects in autoimmune diseases, an obvious question is whether it is feasible to use
rapamycin to restore hematopoiesis in autoimmune patients.

Perhaps the first issue is that of safety. A number of transplantation studies have led to a
labeling of cytopenia and lipidemia as rapamycin side effects [81, 82]. However, close
examination of the trials suggests that the side effects were observed in patients with
multiple drug combinations [82, 83], but rarely in rapamycin monotherapy [84, 85]. Even in
multi-drug combinations, the side effect was observed in patients with trough concentrations
equal or greater than 16 ng/ml [86]. These studies raise the possibility that when doses and
drug combinations are carefully managed, it is possible to implement a regimen to use
rapamycin for autoimmune diseases. Importantly, in a number of pilot studies, rapamycin
appears to have conferred clinical benefits for patients with SLE [87] and type I diabetes
[84]. However, to our knowledge, no clinical trial has been conducted to test the concept
that hematological defects in autoimmune diseases can be corrected with administration of
rapamycin.

It is important to bear in mind that our proposed use of rapamycin to correct hematological
defects in autoimmune diseases is based on reprogramming of HSC rather than immune
suppression. As such, one may expect a long-lasting therapeutic effect after a short treatment
window. In our experience with animal models, short-term treatment of rapamycin during
the perinatal period has a long-term effect in adult mice [55]. Thus, for survival studies, the
treatment lasted for only one week but the effect was observed for several months after the
treatment. For the test of long-term HSC function, the treatment lasted for only two weeks
and the impact on long-term HSC could be observed in a new host that received no
rapamycin. This is consistent with the notion that rapamycin reprogrammed HSC to increase
its stemness. The long-term impact of transient treatment suggests that it may be feasible to
identify a therapeutic window to avoid the adverse effects of rapamycin.

Conclusions and future directions
Autoimmune diseases and leukopenia form a vicious cycle. The leukopenia is caused by
both direct autoimmune destruction and drug toxicity of leukocyte and inflammation-
induced aging of HSC. Leukopenia exacerbates autoimmune diseases by increasing the risk
of infection and by inducing homeostatic proliferation. Recent studies suggested the
possibilities that environmental features and epigenetics may also be important in
pathogenesis of leukopenia in autoimmune diseases [88–90]. Since the HSC defect was
caused by mTOR hyperactivation, it may be possible to break this vicious cycle through
mTOR targeting. Further studies are needed to evaluate the feasibility of restoring
hematopoiesis in cytopenic autoimmune patients through judicious use of mTOR inhibitors
and other drugs available for the specific indications. A successful restoration of
hematopoiesis in autoimmune patients will not only fulfill an unmet medical need, but also
provide us an opportunity to evaluate the contribution of cytopenia to the progression of
autoimmune diseases.
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Highlights

Cytopenia and autoimmunity paradoxically co-exist in patients with autoimmune
diseases;

Cytopenia promotes autoimmune diseases through increased risk of infection and
lymphopenia-driven homeostatic proliferation;

Autoimmune diseases cause mTOR dysregulation and loss of stemness of HSC;

mTOR inhibitors may break the vicious cycle between cytopenia and autoimmune
diseases.
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Fig. 1.
Genetic evidence for a critical role for CD24-mediated homeostatic proliferation in the
pathogensis of autoimmune diseases in the Scurfy mice. a.. CD24-dependent homeostatic
proliferation of Foxp3WT T cells in the Scurfy mice. 4×106 total T cells from either WT
Thy1.1+ B6 or Thy1.1− CD24-deficient B6 mice were mixed at a 1:1 ratio and injected into
four day old Scurfy B6 mice or wild type littermates. Four days later, the recipient mice
were sacrificed and the spleen and lymph node cells were stained with anti-CD4, Thy1.1
antibodies. Data shown are profiles of gated CD4 T cells in the lymph nodes and have been
repeated twice. Note that in the WT mice, donor T cells did not dilute CFSE regardless of
CD24 genotype. In contrast, WT but not CD24-deficient T cells divided in the Scurfy host.

Zheng et al. Page 13

J Autoimmun. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CD24-deficiency abrogated homeostatic proliferation of T cells in the Scurfy mice. b.
Heterozygous deletion of CD24 is sufficient to prolong survival of the Scurfy mice. Life
span of CD24+/+ and CD24+/− Foxp3sf mice. The mice that have not reached the endpoint of
analysis are shown as censored samples, marked by a cross. An extremely significant
difference was observed between the life spans of the two strains of mice (P<0.00001).
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Fig. 2.
A vicious cycle between cytopenia and autoimmune diseases. Cytopenia, as observed in
autoimmune patients, has been shown to be caused by autoreactive hemolytic antibodies,
drug toxicity or HSC defects associated with mTOR-hyperactivation. Cytopenia may
exacerbate autoimmune diseases by increased infection and lymphopenia. Infection has been
shown to exacerbate autoimmune diseases, both through molecular mimicry and activation
of TLR. On the other hand, since lymphopenia-induced HP requires self MHC-peptide
complex, homeostatic proliferation may increase the frequency of autoreactive T cells.
Furthermore, since HP converts naïve T cells into memory-like T cells with a lower
activation threshold, HP will likely facilitate activation of autoreactive T cells. Given the
central role of mTOR activation in HSC defects, we propose that rapamycin may be used to
break the vicious cycle between cytopenia and autoimmune diseases.
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Fig 3.
A putative molecular mechanism underlying the hematopoietic defects in autoimmune
patients. mTOR is negatively regulated by the TSC1/2 complex, which senses energy levels,
inflammatory environments, growth signals from Wnt and other growth factors. Although
apparently down-stream of the TSC1/2 complex, amino acid levels also regulate mTOR
activity through the GTPase RAGA/B complex. Hyperactivation of mTOR disrupts the
quiescence and function of HSC through increased mitochondrial biogenesis and ROS
production. By suppressing TORC1 activation, short-term treatment of Scurfy mice with
rapamycin resulted in long-term restoration of HSC function. Therefore, it is worth
exploring whether the drug may be used to restore hematopoiesis in autoimmune patients.
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